Größe: px
Ab Seite anzeigen:



1 Faculty of Mechanical Science and Engineering, Chair of Building Energy Systems and Heat Supply Dipl.-Ing. Martin Heymann, Dr.-Ing. Karin Rühling PILOT APPLICATION OF RDS-PP Pilot Application of the Designation System RDS-PP at the Complex Process Equipment of the TU Dresden Centre for Energy Technology (CET) 7th November 2012 Address Phone: 0351/ Research project funded by Faculty of Mechanical Science and Engineering Fax: 0351/ VGB Research Foundation Institute of Power Engineering FKZ: 324 TU Dresden Dresden

2 CONTENTS 1 Introduction 1 2 Centre for Energy Technology 2 3 Structure and Application of the RDS-PP System 4 4 Process of Designation General Conjoint Designation (#) Designation Block Function (=) General Application to the CET Labelling Sample Applications Product Aspect/Equipment (-) Function Allocation (==) General Group Level (==) Individual Level (==) Signal Designation (;) Document Designation (&) Designation Block Location (++) Combination of Designation Blocks Data Processing General Database Structure Visualisation Website Designation Hierarchies as Dynamic Trees Display of Ancillary Information Database User-Interface Fileserver Project Data User Administration Measurement Database Publications, Qualification, Papers 30 7 Conclusions/Prospect 31 Bibliography 32

3 Contents A Appendix 33 A.1 Designation Examples A.2 Scheme for Function Allocation at Group Level A.3 Designation Guide (german) A.4 Information Sheet Documentation (german) A.5 Introduction Presentation (german) A.6 Measurement Database A.7 Translation List A.8 Data-CD ii

4 ACKNOWLEDGEMENT The project Pilot Application of RDS-PP was funded by the VGB Research Foundation with a total amount of Euro for personnel costs, general expense and consumable/travel expenses. This enabled a practical test of the RDS-PP designation system on a complex energy generating plant and to accompany the structuring and designating of the Centre for Energy Technology at the TU Dresden according to RDS-PP. The project management team would like to thank VGB Powertech e.v., especially Mr Kaiser and Mrs Bochynski, providing technical and organizational support for the project. A special tribute obtains to Mr Müller and Mr Wank of Siemens AG for their dedicated support and expertise in matters of process control/signal designation and structuring of power plants. Furthermore, we thank the Ingenieurgesellschaft für Technische Gesamtplanung mbh, Dresden (GESA), in particular Mr Schubert for the interest in RDS-PP going beyond the need for the building project, flexibility and patient cooperation. Dresden, July 2012

5 LIST OF ABBREVIATIONS Abbreviation BMS BT BL CET CHP DOM GESA HAST HRB PT PCS RDS-PP SIB SVG VGB XML Clear Words Building Management System Building Technology Breakdown Level Centre for Energy Technology of the TU Dresden Combined Heat and Power Document Object Model Ingenieurgesellschaft für Technische Gesamtplanung mbh, Dresden House Connection Station Heat Recovery Boiler Process Technology Process Control System Reference Designation System for Power Plants Staatsbetrieb Sächsisches Immobilien- und Baumanagement Scalable Vector Graphics VGB PowerTech e.v. Extensible Markup Language

6 1 INTRODUCTION Motivation The RDS-PP (Reference Designation System for Power Plants) is a further development of the current German KKS system (Kraftwerk-Kennzeichensystem). In addition to pure designation the RDS-PP can be used for structuring and classifying of energy technology systems, as well as organizing the complete document and information management. The system offers, in addition to the consideration of new technologies and the possibility of project-specific adjustments, important innovations of structuring the specifications for the process control system. It goes far beyond the scope of the KKS and includes not only power plant processes, but all processes of energy conversion. Project During the research project, the Centre for Energy Technology (CET), a technical centre for teaching and research in the field of energy conversion, distribution and application has been established, including about 40 testing fields. These are highly cross-linked on the electricity and heat side and bilaterally (delivery and supply) coupled with the upstream networks. Thus, the CET offers excellent conditions to serve as a pilot application to demonstrate the possibilities of the new RDS-PP. The application will extend covering not only conventional technology, but also new technologies such as the DREGID process (Dresden gas turbine cycle with integrated steam process), Oxyfuel technology with CO 2 separation and the use of renewable energy. The organization structure of the research project Pilot Application of RDS-PP is shown in Figure Project Executing Organisation Executor, User Building Promoter engineering consultants PCS Figure 1.1: Organizations and companies involved in the research project The following project report is based on the publication Heymann u. Rühling (2010). For figures with German inscription use the translation list in Table A.2, please.

7 2 CENTRE FOR ENERGY TECHNOLOGY Figure 2.1: Centre for Energy Technology - Vision and Implementation The Centre for Energy Technology (CET) will bundle the energy technology research at the TU Dresden and make students education more demonstratively and more practically-oriented. Initial planning has taken place since the turn of millennium. The demolition of the power plant located at this place began in 2007, the high-building in The research project Pilot Application of RDS-PP has begun in early 2009 and thus in a very late stage of the planning phase for interior design and equipping of the energy management systems. Hence some difficulties with implementing the RDS-PP system are resulting in reference to a uniform and consistent designation. The CET was finally passed to the responsibility of the TU Dresden on with almost one-year delay (see Figure 2.1). Since then, the focus have been on the commissioning of decentralized test rigs according to the research activities of the participating chairs. The CET provides the technical basis for a future- and industry-oriented energy research. It is possible to offer integrated projects and solutions for manufacturers and energy providers with the existing infrastructure. Synergies are possible with the CET, on one hand in terms of knowledge management, and on the other hand by energetically und organizationally efficient use of the available equipment. This is allowed by the cross-linked networks. The degree of this cross-linking is illustrated in the block diagram from Figure?? showing the possible paths of heat and fluid transport between the specific systems. The Centre for Energy Technology is an example of a practical engineering education and is clearly increasing the appeal of power engineering main subjects. Conventional technologies are vividly demonstrated and novel regenerative approaches are developed. Here, students are actively involved. The issue of designation will play a role for students in daily contact with the systems, but also with new experimental set-ups.

8 2 Centre for Energy Technology The four complexes integrated in the new building of the CET are: Combustion Engineering Experimental Power Plant Experimental Turbomachinary Energy Saving, Renewable Energy Technology Prof. Dr.-Ing. Michael Beckmann Prof. Dr.-Ing. Uwe Gampe Prof. Dr.-Ing. Konrad Vogeler Prof. Dr.-Ing. Clemens Felsmann Chair for Combustion, Heat and Mass Transfer Chair of Thermal Power Machinery and Plants Chair of Turbomachines and Jet Propulsion Chair of Building Energy Systems and Heat Supply 3

9 3 STRUCTURE AND APPLICATION OF THE RDS-PP SYSTEM Table 3.1: Overview for standards/guidelines RDS-PP according to Müller (2009) An article on the RDS-PP, which describes the history aptly (new version: Königstein u. a. (2011)), was published in VGB PowerTech, in the course of the publication of the Technical Standards DIN (2007) entitled Technical Product Documentation - Reference Designation System - Part 10: Power Plants. It points out to the successful global deployment of the German designation system (KKS) of the VGB since the early 70s. There was the need to adjust the KKS requirements when the international basic standards for the designation issue were released in 1996 and these rules were cited in the European directives and harmonized standards. This adaptations and certain extensions were developed in the VGB Working Group Anlagenkennzeichnung und Dokumentation jointly by manufacturers and operators, and introduced into the national and international standards. The KKS replacement derived its name from the basic standard DIN EN (2010) with the subtitle Structuring Principles and Reference Designations, which became Reference Designation Sytem for Power Plants - RDS-PP. Table 3.1 provides an overview of the the RDS-PP underlying standards, guidelines and application notes. When one speaks of the RDS-PP, the entirety of the red framed documents is meant. It should be noted that the application notes, especially the part A (General) and B4 (control), have been only partially available during time of processing. This was compensated for the pilot project by the very good cooperation with the experts of the VGB, which directly

10 3 Structure and Application of the RDS-PP System Table 3.2: Used processing status of standards and guidelines for the project Name Status VGB-B 101 May 2007 VGB-B 102 Concept, status June 2010 VGB-B 103 February 2010 VGB-B VGB-B 116 Concept, status February 2008 VGB-R DIN April 2007 incorporated the results and preliminary work from the relevant working groups into the research project. Project specific requirements, being necessary for the designation process, have been documented in the project manual Heymann (2012) 1 in accordance with the Appendix C of DIN (2007). The project manual contains requirements for the Conjoint designation (#), for the breakdown level 0 of the Function aspect (=) and the Function allocation in the group level (==), for the designation of Location (++), for documentation issues (&) and the designation depth. The following list of items (see Table 3.2) with the creation date of the used standards and guidelines is to be found here as well. Following basic concepts need to be clarified for further considerations for the application of the RDS-PP (see DIN (2007); DIN EN (2010); ISO/TS (2008)): Object Entity treated in the process of design, engineering, realization, operation, maintenance and demolition. Depending on its purpose, an object may be viewed in different ways called aspects. System Set of interrelated objects. When a system is part of another system, it may be considered as an object. Power-Plant-Process Process for the generation of electrical energy and/or heat energy products, including the conversion, supply, and disposal processes. Aspect Specific way of selecting information on or describing a system, or an object of a system (function viewpoint, product viewpoint, location viewpoint). Reference-Designation Unambiguously identifies objects in a system with the purpose of setting information about an object, with which the system is realized, into relationship. The complex systems of the CET were stepwise structured on the normative basis described above and designated according to their function and the associated processes in collaboration with the VGB and the GESA (Ingenieurgesellschaft für Technische Gesamtplanung mbh). From this derives the designation of the signals of the process control system (PCS). Furthermore, documents and locations were considered. Thus, the CET is a suitable showcase for the designation of complex systems via RDS-PP. The development of standards and guidelines for RDS-PP should be noted. 1 See Appendix A.3 for the German version. 5

11 4 PROCESS OF DESIGNATION 4.1 General The purpose of designation work is to address objects and associated information through a unique identifier. An object within a system can be considered from various perspectives. We therefore ask the following questions: What is the system or object doing? (function viewpoint) How is the system or object constructed? (product viewpoint) Where is the system or object located? (location viewpoint) It must be distinguished in design and implementation level for the designation process (see Figure 4.1). For the design level objects can be identified using the reference designation, which is formed by means of RDS-PP. Information on systems can be assigned to this reference designation. The formation of new identifiers is possible by linking with additional designation blocks, e. g. pointing to plant documents. The vendor-specific type identifier is used to refer to a single physical component for designation in the implementation level. Information can be assigned to this identifiers by linking or allocation as well. Object System Part Information System Data Design Reference Designation System Documents Implementation Physical Component Typ Identifier Equipment Data Equipment Documents Figure 4.1: Distinction in design and implementation level (source: Müller (2009)) 4.2 Conjoint Designation (#) Conjoint designation is a reference designation of a plant/system with respect to the site, not being related to one of the defined aspects. It is used optionally and requires project specific settings. It may e. g. be used to distinguish between power units and so allow an identical designation in these units DIN (2007); VGB-B 116 B1 Entwurf (2008). The designation structure is shown in Figure 4.3. Process and building technology are distinguished for the CET project by the conjoint designation. This is done in order to fulfil the existing uniform standards for the designation of

12 4 Process of Designation #G Building Technology #P Process Technology Figure 4.2: Definition of process and building technology on the designation block Conjoint Designation building technology at the TU Dreden and also to keep the pilot project within manageable, well-defined limits. #G means building technology (BT) and #P process technology (PT) (see Figure 4.2). Only the process technology systems are designated via RDS-PP. This division generally corresponds to the division of responsibilities for the various systems. Systems being associated with #G are supervised by the SIB or Department 4 of the TU Dresden, systems with #P CET internally by the responsible chairs. Under certain circumstances, this designation block should have been used more in detail and for distinguishing the local test rigs of the CET, since they partly are stand-alone power generation and conversion systems. This approach would have significantly reduced the problems with missing data positions for numbering in the BL0 of the function designation (see Section 4.3.2). Figure 4.3: Structure and contents of designation block Conjoint designation (source: ISO/TS (2008)) 4.3 Designation Block Function (=) General The Function is fixed as the main aspect for designating technical objects in the power plant technology. A function-oriented structure is based on the purpose of a system, without 7

13 4 Process of Designation Figure 4.4: Structure and contents of designation block Function (source: ISO/TS (2008)) necessarily taking into account the products with which this purpose is fulfilled or their location. The breakdown level 0 (BL0) of the designations is optional and requires a project specific setting. Useful summarised subsystems are refered. Systems and subsystems are classified by VGB-B 101 (2007) and numbered in BL1. DIN EN (2010) determines the classification for the GS2 for aggregates and technical equipment. VGB-B 102 Entwurf (2010) catalogues specific terms of power plant technology attributed to the standardized letter codes. The designation structure is shown in Figure Application to the CET =E Elektrotechnik =K Lehr- und Versuchskraftwerk =L Prozessleittechnik =R Rationelle Energieanwendung/ #P Reg. Energien Prozesstechnik =T Turbomaschinen Experimental Power Plant Energy Saving, Renewable Energy Techn. Experimental Turbomachinary =K =R =T =V Combustion Engineering =V Verbrennung / Vergasung =W Wassersysteme =Z Zentrale Versorgungssysteme Figure 4.5: Structure of individual research complexes in BL0 of Function designation 8

14 4 Process of Designation The designation of the equipment according to their function has particular importance as a basis for other designations tasks and appears next to the clear words in the labelling of the plant components. The project specific breakdown level 0 (BL0) is elaborated, agreed by all involved and is documented in Heymann (2012). It serves to identify the main systems. A code letter and one to two numbering positions are provided in DIN (2007), wherein the second numbering letter has downstream character. Figure 4.5 shows the rough organisation of the CET by the code letters. The function fields electro-technique, process control, water systems and central supply systems were distinguished, apart from the actual research complexes Combustion Engineering, Experimental Power Plant, Turbo Machinery and Energy Saving, Renewable Energy Technology. The first numbering letter of the BL0 serves to break down in main systems of the individual complexes of the CET project. The second one is used either for a further detailing or for counting of main systems. During the designation process it has been found, that a further numbering letter is needed for BL0 to designate multiple of similar, parallel installed systems in the CET. This additional numbering letter is separated from the rest of BL0 by a dot (. ). This ought to point out the non-standard design. Two digits from 0 to 9 are provided. The use of the additional numbering letters in BL0 is optional. Further structuring according to the function aspect in BL1 and BL2 was realised by GESA for all equipment installed as part of the building measure. All other test rigs were designated in the context of the research project Pilot Application of RDS-PP. The designation is going to be carried out by the responsible persons themselves with the expiry of the project. For this, an infrastructure in form of a database was created (see Chapter 5), and employees was trained in RDS-PP issues. Systems and subsystems are classified and counted in BL1. Especially for the experimental power plant (=K), this was possible without difficulties due to the accordant content of the VGB-B 101 (2007). The classification of other test rigs proved to be difficult where there was no direct equivalent to systems in a power plant (e. g. grill wind tunnel =T21). In these cases, or if, for example, a complete test rig is assigned to a single GS1-class, very long RDS-PP designations occur without real additional benefit of letters of the BL1. For example, all subsystems of the residential or house connection station (=R11, =R12) can be assigned to the process hot water system and thus receive a ND in the BL1. In these cases partly promotion for the responsible persons of test rigs was necessary, especially with regard to the unambiguousness of the created designations. This allows the integration into the CET central document and data management system (see Chapter 5). For the systems listed in Table 4.1 it was necessary to use classifying designation parts which are not defined in VGB-B 101 (2007) but marked as free to use. The decadal counting of parallel structures by the two counting letters of BL1 came to its limits for the water systems =W, especially the highly branched heating water and cooling water systems =W20 and =W30. In these cases, parallel strings were counted by the second counting letter of BL2. The technical facilities are classified by the letters of the BL2. This allows a quick and easy identifying of the function of metering points and system equipment using an internationally approved standard. The first numbering digit of BL2 was generally not used for classification. Usually it was labelled with 0 for the centrally planned test rigs. An 1 can be used for not centrally planned test fields for distinguishing. For example, =R31HQA10BT003 designates the measuring of the outlet temperature from the solar thermal collector field, which is logged by the PLS. The measurement =R31HQA10BT101 is located in the same string, but recorded by a local data logger. The second digit of the BL2 is used for structuring or counting. The third digit is used for counting only. 9

15 4 Process of Designation Table 4.1: Allocation of undetermined classifying designation parts, marked free to use in VGB-B 101 (2007) Letter Code German English HQ Solarthermie Solar Thermal HQA Leitungssystem (Vorlauf) Line System (Feed Line) HQB Leitungssystem (Rücklauf) Line System (Return Line) HQC Förderung Pumping HQD Wärmeübertragung Heat Transfer HQE Speicherung Storage HQK Druckhaltung Pressure Maintenance System MQ Photovoltaisches Sytem Photovoltaic System MQA Solargenerator Solar Generator NZ Erdwärme Geothermal Energy NZA Leitungssystem (Vorlauf) Line System (Feed Line) NZB Leitungssystem (Rücklauf) Line System (Return Line) NZC Förderung Pumping NZD Wärmeübertragung Heat Transfer NZK Druckhaltung Pressure Maintenance System Labelling The labelling of system components takes place according to VGB-R 171 (2010). The signs of the process (#P) and building technology (#G) are manufactured with different color codes. Black signs with white text are used for process technology. The full function designation and clear words are required (see Figure 4.6). White signs with black text are provided for the building technology. Specifications for the label layout: Size 50 x 100, Arial, 20, bold Line spacing 1, 2 RDS-PP and clear words horizontally and vertically centred Figure 4.6: Example labelling, =K61GBF21HP002, reverse osmosis Long plain text can be spread over several lines. Longer words are to shorten according to the list of abbreviations VGB-B 107 (1999). The plain text starts with the most general part, such as the system name, and is becoming more specific to the right or below. 10

16 4 Process of Designation Sample Applications Experimental Power Plant (=K) The structure of the Experimental Power Plant (=K) in BL0 is shown in Figure 4.7 and A.1. All local measuring points and controllers, which are not associated to the central control system (=L), can be found via the =K9 designation. Furthermore, the first numbering digit of the BL0 divides the power plant into its main systems. The second digit is counting the systems. For example, a second additional gas turbine generator would be designated with =K22. The currently built-up is designated with =K21. The distinction in heat recovery boiler 1 (=K31), auxiliary firing (=K32) and CO 2 separation (=K33) rather can be regarded as an additional structuring, but can also be regarded as a counting of boiler components. A detailed power plant schematic including RDS-PP designations of technical facilities and equipment is documented in =K &MFB. =K1 Brennstoffversorgung incl. -aufbereitung =K2 Gasturbosatz =K31 AHK-1 =K3 Abhitzekessel =K32 Zusatzfeuer #P Prozesstechnik =K Lehr- und Versuchskraftwerk =K4 Wasser-Dampf-System =K33 CO2-Separation =K5 Dampfturbosatz =K6 Chem. Wasseraufbereitung =K9 Meß- und Regeltechnik Figure 4.7: Designation of the Experimental Power Plant =K, structuring in BL0 Energy Saving/Renewable Energy Technology (=R) The testing field Energy Saving/Renewable Energy Technology (=R) offers the opportunity for testing components and aggregates from all sectors of the energy system and building technology and in terms of hardware in the loop to incorporate into emulations. It has connections to all CET media flows, i. e., district heating, hot water, heating water, cooling water, chilled water, tap water, technical gases, compressed air, brine from geothermal and solar thermal systems and delivery and supply of electric energy. The testing field is classified as follows using the first numbering digit of BL0 (also see Figure A.2): =R1 District Heating =R2 Testing Field Energy Saving =R3 Testing Field Renewable Energy =R8 Superordinated Equipment 11

17 4 Process of Designation =R9 Measuring and Control Equipment A further structuring via the second numbering digit of the BL0 is essential due to the complexity and variety of the topic. The district heating field is divided into flat (=R11) and house connection stations (=R12). The testing field Energy Saving includes a heat and cold storage (=R21/=R22), µchp (=R25), heat pumps (=R26) and chillers (=R27), for example. Up to now, solar thermal systems (=R31, cf. Figure 4.8) and photovoltaics have been summerized under the Renewable Energy testing field. All local measuring points and controllers, which are not associated to the central control system (=L), can be found via the =R9 designation. The field Superordinated Equipment includes all equipment which is not assigned to a specific test rig, for example the climate chamber (=R81), the borehole heat exchangers (=R82) and devices for mobile use (=R89) like degassers, filling stations, mobile pumps etc. The use of the second numbering digit of BL0 for classification makes an additional counting digit necessary, as described in Section For example, in parallel operating house connection stations can be designated with =R12.01 and =R12.02 according to this. Figure 4.8: Solar thermal system =R31, left: collector field (=R31HQD10EP001), right: domestic hot water storage (=R31HQE22CP101) Water Systems (=W) The water systems (=W) are the heart of the CET and connect the various fields. This takes advantage of synergies in using the CET equipment and firstly allows the efficient operation of the systems. Additional heat is stored centrally, transformed to a different temperature level, and used elsewhere as needed. The cooling water network (=W30) offers the opportunity of re-cooling over central cooling towers, which are, however, associated with the building technology (#G). The complex water systems, including the district heating connection, solar thermal (brine 1) and geothermal (brine 2), are shown with their intersections (heat exchangers, storages) on the =W &MFB scheme. The various water systems can be distinguished in the first numbering digit of BL0 in hot water/district heating =W10 (up to 160 C), heating water =W20 (up to 90 C), cooling water =W30 (up to 60 C) and chilled water =W40 (6 18 C). 12

18 4 Process of Designation =W20 NDA Leitungssystem (Vorlauf) #P Prozesstechnik =W Wassersysteme =W1 Heißwasser =W2 Heizwasser =W3 Kühlwasser =W4 Kaltwasser =W20 Heizwasser =W20 NDB Leitungssystem (Rücklauf) =W20 NDC Förderung =W20 NDD Wärmeübertragung =W20 NDE Speicherung =W20 NDK Druckhaltesystem Figure 4.9: Designation of heating water system =W20, structuring down to BL1 For example, the heating water network (=W20) is presented in more detail (see Figure 4.9). The heating water, just as the hot water system, is assigned to the letter N for process energy supply, foreign consumers and ND for process hot water system in BL1. Furthermore, the sub-systems feed line, return line, pumping, heat transfer, storage and pressure maintenance system were distinguished. Figure 4.10 shows the heating water network in a very simplified form. The test rigs =V1 and =V2 from the Combustion Engineering complex, the heat recovery boiler =K31 of the power plant, the hot water system =W10, the district heating =W10 and the heat sources of the experimental field Energy Saving, Renewable Energy Technology =R (i. e. =R25, =R11, =R12) serve as heating water supply. The heat can be stored at a temperature level of 60 to 85 C (=W20NDE01) and thus stands available for heating of the building (# G). Excess heat is transferred to the cooling water system and dissipated by the cooling towers. The heating water networks =W20ND_50 and =W20ND_60 for heat consumers and producers of complex =R are hydraulically separated by heat exchangers with their own pumps and their own pressure maintenance systems. The heating water network =W20ND_50 is supplied directly from the district heating. The numbering digits of BL1 are generated as follows, whereupon the feed and return line are symmetrical, except the connection of the pressure maintenance in the return line. The heating water collection drain is designated with =W20ND_10. The individual heat suppliers are counted in the second numbering digit. One exception is the heat supply from the hot water network =W10, which is named =W20ND_40. The branch of the heating-water storage receives 20 as the counting digit of BL1. The heating water distributor is designated with =W20ND_30 and individual consumers are counted in the second numbering digit. The hydraulically separated heating water networks of complex =R are labelled with 50 and 60. The individual outlets to the test rigs are counted in the second digit. The decadal numbering allows rapid classification of the individual strands in this complex pipe system. 4.4 Product Aspect/Equipment (-) This designation block is used for product-oriented designation of objects. The designation design is shown in Figure The letters codes of BL1 are formed according to VGB- B 102 Entwurf (2010). Equipment can be clearly identified even in complex subunits by 13

19 4 Process of Designation Verbrennung =V11 bis =V21 AHK =K31 =W20 NDA =W20 Heizwasser REQ =R =R26 =R23 =R24 Reserve Heißwasser =W10 15 =W20 NDA Fernwärme =W10 DH Heizwasserspeicher =W20 NDE01 Heizung #G Kühlwasser =W =W20 NDB =R81 =R11 Reserve =R =W20 NDA50 Figure 4.10: Designation of heating water system =W20, numbering in BL1 Figure 4.11: Structure and contents of designation block Product (source: ISO/TS (2008)) linking function and product designation. Equipment designations in the CET project were used especially for the process control. Another example is the differentiation of frequency converter -TA01 and the associated pumps -GP01 or transducers -BE01 and the associated flow-monitoring points -BF Function Allocation (==) General The Function allocation is an independent designation task. It is used for function-oriented structuring with regard to interaction (dynamic effect) of technical objects (static functions). It is used to designate relationships between functions, technical equipment and components. This task can not be met by the block Function and its specified limits. The relationship between function and function allocation is done via allocations. Thus, several functions are 14

20 4 Process of Designation assigned to the function allocation; a function can also perform tasks in several sub-processes (see DIN (2007); VGB-B 116 B1 Entwurf (2008)). The application of the function allocation is the basis for: a simple, clear and reliable process control, a work-sharing planning with minimized interfaces, a functional classification of the process control (group level) and a signal designation (individual level) Group Level (==) Figure 4.12: Structure and contents of designation block Function allocation for functional areas (source: ISO/TS (2008)) According to DIN (2007) this designation block is used to designate functional areas and/or functional groups of technical objects which are represented under a functional aspect different to that in the designation block Function. For example, plant processes can be divided and structured. The designation structure is shown in Figure The designations of function allocation in the group level serves as reference designation for process signals such as requests, disengaging, blocks and reports emanating from the process control system. They are a useful tool for structuring the process control system. A scheme for the generation of designations has been developed for the Pilot Application of RDS-PP project (see Table A.1). The subdivision of main processes of the individual CET complexes is shown in Figure A.3 as tree diagram. Similar to the definition of the function BL0, the first digit of the process designation refers to the corresponding complex of CET. The first numbering digit of BL0 differs in supply, main and disposal process as proposed in the application example of DIN (2007). Figure A.3 exemplifies main processes and corresponding supply processes for the provision of heat in the complex Energy Saving/ Renewable Energy Technology. The first two letters in the BL1 are defined with DA, DB, DC in VGB-B 101 (2007). This means a doubling with the first numbering digit of BL0. The third code letter classifies supply and disposal processes and points to the appropriate media. For example, DAA would indicate a fuel supply, DAB air supply and DAD heat supply. DCB corresponds to a waste gas treatment and DCD to heat removal. The third code letter is used for a further division into sub-processes when considering main processes. Thereby a complex-wise numbering is used. The first numbering digit counts the main processes and assigns a supply or disposal to this main process. The second numbering digit of BL1 is set to 0 for the main processes, for the 15

21 4 Process of Designation supply and disposal processes it refers to the media. The designation section Control task was not used. A complex designation tree was created. The project-specific requirements adopted for this project allow to derive much information from the designation, such as reference to the media or type of supply/disposal process. The different use of the data positions for the main processes and for supply/disposal processes means that the designations are no longer structured strictly hierarchically. Furthermore, three data positions are used for the distinguishing in supply, main and disposal process according to the requirements in VGB-B 101 (2007). This leads to long designations and also injures their hierarchical structure. Figure 4.13: Structure and contents of designation block Function allocation for technical equipment (source: ISO/TS (2008)) Individual Level (==) Control Unit =L20 CCA11 AG204 - KF05 ==K41 LAC21 GP001 Power Switch =E20 BFA03 QA001 - QA01 Engine M =K41 LAC21 GP001 - MA01 M Pump =K41 LAC21 GP001 - GP01 Figure 4.14: Example: Combining serveral technical equipment to a function allocation in the individual level This designation block is used to designate technical equipment which is viewed in the sense of the function allocation (DIN (2007)). The designation structure is shown in Figure Functions of technical facilities and equipment are combined using allocations. The designation is derived from the designation of the considered primary function and forms the reference designation for field signals. For example, the function allocation in the individual level has been derived from the main function pumping feed water =K41LAC21GP001 and the corresponding equipment from control, electronics, mechanics and hydraulics, which is shown in Figure

22 4 Process of Designation 4.6 Signal Designation (;) Figure 4.15: Structure and contents of the designation block Signal (source: ISO/TS (2008)) According to DIN (2007), signals are formed by the combination of a reference designation and the signal name. The function allocation in group level serves as reference designation for process signals and in individual level as reference for operation/field signals. It is possible either to form signals according to the signal origin (information source) or according to the signal application (information sink). The first code letter of the BL1 is an X, if the reference designation refers to the signal origin, otherwise a Y. The further structure of the signal block is shown in Figure The second code letter classifies the signal. The signals designations in the process control system of the CET are named according to their origin. The signals formed for the main function pumping feedwater =K41LAC21GP001 are shown in Figure For the individual alarm ==K41- LAC21GP001 ;XM01 it is irrelevant whether it is a control, electrical, or other problem. If the feed water is disturbed, ==K41- LAC21GP001 ;XM01 will be sent no matter what operating facility causes this error. M ==K41 LAC21 GP001 Operating Notification: ;XG01 Individual Alarm: ;XM01 Individual Control "off": ;XB02 Figure 4.16: Formation of signal designations The interface HRB, requirement of feed pumps ==J12DAD11 ;XB21 servers as example for a process signal. The information listed in Table 4.2 can be derived from the signal designation. The possibility of designating process signals via the function allocation in group level as a reference was sparely used in the project. A small benefit of ten used process signals for the Experimental Power Plant is accompanied by the effort to create the extensive hierarchies. 4.7 Document Designation (&) According to DIN (2007) the non-manufacturer-specific, appropriate designation of documents is achieved by combining the object designation and the document kind classification 17

23 4 Process of Designation Table 4.2: Example: Distribution of data digits of a process signal German Englisch ==J Prozesssignal eines Kraftwerksprozesses Process Signal of a Power Plant Process ==J1 Versorgungsprozess Supply Process ==J12 Gas- und Dampfprozess Gas and Steam Process ==J12DA Versorgungsprozess Supply Process ==J12DAD Versorgung mit Wärme Heat Supply ==J12DAD1 zugeordnet Hauptprozess Nummer 1 Main Process Number 1 ==J12DAD11 Medium: Dampf Medium: Steam ==J12DAD11 ;X Referenzkennzeichen ist der Reference Designation is the origin ==J12DAD11 ;XB21 Signalursprung Binärsignal of signal Binary Signal Figure 4.17: Structure and contents of designation block Document kind class (source: ISO/TS (2008)) code (see Figure 4.17). The object designation can be the RDS-PP reference designation on the one hand, on the other hand be the product number of the manufacturer. A function or equipment designation, a function allocation, a point of installation or a location can serve as reference designation. The document kind classification code is formed by the Directive VGB-B 103 (2010). Requirements for documentation issues are summarized in a fact sheet (see Appendix A.4). There are rules for a folder structure and file names to be used available, beside the summery of rules of the standard. The numbering digit of the document kind classification code is not used for further classification as proposed in the directive, but is optional for this project and if provided, used for counting similar documents of an object. Also documents of the implementation level use the corresponding function designation as reference, if possible. The manufacturer-specific product number is used for multiple occurring objects only. A table should be created for these documents assigning the document designation to all corresponding functions. This procedure avoids the multiple presence of a document in different memory location, and thus possibly with different timeliness. The system schematic Comprehensive Water Systems =W &MFB which is stored in the folder =W with the name =W&MFB Anlagenschema übergreifende Wassersysteme-.pdf would be one example. If possible, the document should also be stored in its original format with the same file name. SIEMENS1LC4253-4AA91-Z &MDA referring to a pump drive is an example for the use of the manufacturer-specific product number as reference. The document SIEMENS1LC4253-4AA91-Z &MPB lists all functions and operation equipment that use this engine. 18

24 4 Process of Designation Figure 4.18: Structure and contents of designation block Location (source: ISO/TS (2008)) 4.8 Designation Block Location (++) The structure and content of the Location designation block is shown in Figure The specifications for the CET-project are documented in Heymann (2012). There is no need to use the BL0 as all major systems are located inside one single building. The designation of rooms at the TU-Dresden is carried out centrally by Department 4, Subject 4.1 with its own key. This should be transferred to the RDS-PP key. It is this pattern: ++ZETxx.yy_zzzz e.g. ++ZET05.DG_425 Table 4.3: Height levels in Location designation xx yy Height level [m] Clear words German English 01 KG -5,72 Kellergeschoss Cellar 02 UG -3,03 Untergeschoss Basement 03 EG 0,00 Erdgeschoss First Floor 04 OG +4,46 Obergeschoss Second Floor 05 DG +8,99 Dachgeschoss Top Floor 06 DA >8,99 Dach Roof The digits xx of BL1 must consist of numbers according to the RDS-PP standard and specify the height level (see Table 4.3). A dot. ist used as subdivision character. Two letters yy are following, also spanning the height level. The digits zzzz comply the TU internal room names. Figure 4.19 shows the rooms of the top floor represented as a tree diagram. 19

25 4 Process of Designation ++ZET01.KG Kellergeschoss (-5,72m) #P Prozesstechnik ++ZET Zentrum für Energietechnik ++ZET02.UG Untergeschoss (-3,03m) ++ZET03.EG Erdgeschoss (0,00m) ++ZET04.OG Obergeschoss (+4,46m) ++ZET05.DG Dachgeschoss (+8,99m) ++ZET06.DA Dach (>8,99m) ++ZET05.DG_425 Komplex K5 (Regenerative Energien und Rationelle Energieanwendungen) ++ZET05.DG_425/1 Messkabine Komplex K5 ++ZET05.DG_426 Nebenraum Komplex K2 ++ZET05.DG_427 Wärmetauscher ++ZET05.DG_428 Schalldämpfer K4 ++ZET05.DG_429 Kühltürme Figure 4.19: Designation of Locations for the CET Figure 4.20: Permitted designation block link-ups (source: ISO/TS (2008)) 4.9 Combination of Designation Blocks The designation system RDS-PP allows to combine individual designation blocks. There are two variants: Linking of two or more designation blocks in a new unambiguous designation (identifier). The possible combinations are shown in Figure The originated identifiers are composed hierarchically. The designation block further to the right classifies and identifies a sub-element of the block further to the left. A 1:n relation exists. For example, =K41LAC21GP001 &MDA001 would be a data sheet of Pump =K41LAC21GP001. Allocation of a designation block or of a linked designation to one or more designation blocks or linked designations (associative relation). A n:m relation exists. For example, a room can be assigned to its functions or systems, but also an extensive system to the rooms in which it runs. Figure 4.21 represents the main designation blocks and their linkings, each is also given an example with. On the presentation of the blocks Terminal and Installation point 20

26 4 Process of Designation was omitted. Furthermore, the allocations between function allocation in individual level and operating equipment as well as between the operating equipment and location block are shown. In principle, allocations between any designations blocks and their linkings are possible. Function allocation (IL) ==K41 LAC21 GP001 Pump, electric motor, power switch, controler 1..* 1..* Function =K41 LAC21 GP001 Pumping feed water 1 0..* 1..* 1..* Location ++ZET01.KG_K107 Room ZET K Signal ;XM * Product -MA01 Electric motor 1..* Individual Alarm 1..* Operating equipment * 1..* Function allocation (GL) ==J22 DBC10 CHP-Process, "Transport process heat" 1 1..* 1..* Document &MFB001 Scheme Figure 4.21: Diagram of individual designation blocks, of their linkings ( ) and the main allocations ( ) 21

27 5 DATA PROCESSING 5.1 General Various data has to be stored and archived consistently at the Centre for Energy Technology and for the research project Pilot Application of RDS-PP. This information must be accessible for the users depending on access authorisation. Identifiers, which are designations and their linkings, and the corresponding clear words are present. Hierarchical information about these identifiers has to be displayed, as well as created allocations. For identifiers pointing to documents this documents have to be made available in electronic form if possible. The information must be open to users, the VGB as promoters and the public via a user administration with detailed specifications of the user permissions. Likewise, project information, such as proceedings of meetings, introducing materials into the topic RDS-PP and the normative foundations should be easily available for users in order to facilitate familiarisation into the designation issue and to gain acceptance. Designation tasks should be integrated in the daily work as far as possible. The advantages of a unambiguous designation of objects should be illustrated to the CET employees. This is done by using the structures created for a user-friendly management of documentation and the measurement data of the CET. The above requirements can be fulfilled best with a web-based solution and the appropriate technologies (see figure 5.1). A point is made of using open source, platform-independent, and freely-available software. Clearly defined interfaces should involve flexibility and extensibility. The implementation of the outlined way of data storage and the associated user interfaces will be discussed below. The visualization can be reached at 5.2 Database Structure To use the options of the RDS-PP system presented in Chapter 4 in full, the use of a database is advised. A database system offers advantages over the use of a simple spreadsheet software like MS-Excel especially in terms of data consistency. On the definition of the Figure 5.1: Technical infrastructure of RDS-PP data management

28 5 Data Processing RDS-PP-designation as a primary key it can be ensured that each record has a unique, and only once occurring indicator. Furthermore, in tables, where two records are associated with each other by allocation, referring to only truly existing records can be guaranteed by foreign key constraints. A MySQL-Database has been applied. Currently, MySQL is the most common open source and platform independent database, and often used for web programming. The access by administrators occurs via phpmyadmin as a graphical user interface. Furthermore, the database can execute commands of the internationally standardized query language SQL, which enables automated analysis and data manipulation. The end user access is possible by the user interface (front end) described in section 5.3. Figure 5.2: Structure of the MySQL database The structure of the database is shown in Figure 5.2. It consists of the tables gemeinsame_zuordnung, tab_ident und tab_zuordnung. In Table gemeinsame_zuordnung, the structure of the block Conjoint designation is deposited. Via a foreign key constraint it is associated with the Table tab_ident. In tab_ident any identifiers and the corresponding clear words can be stored. The column Link1 is provided for references to documents. Further columns are the creation date, the user name of the creator, a unique ID and a version number. The designation respectively the identifier is divided into individual designation blocks. A column with the appropriate prefix exists for each of these blocks. The linking of at most three blocks in addition to the conjoint designation is provided according to the standard, which would be covered by the database. The columns for each part of the designation and the version number are combined by a UNIQUE key constraint. This ensures the unambiguousness for each record and the consistency of the table. Two identifiers from Table tab_ident are allocated in Table tab_zuordnung. This is done by an entry in the columns ID1 and ID2, each with a foreign key constraint to the ID column of tab_ident. The creation date and author are stored for each record. The columns ID1 and ID2 are a UNIQUE key function. It is possible to map arbitrary n:m-relations with this table structure. For example, the location ++ZET01.KG_K107 and other identifiers, such as documents etc., can be allocated to the function-oriented designation =K41LAC21GP001. Conversely, function designations and technical equipment situated in this room can be allocated to the location. As the table could in principle accept any allocation twice, e. g. 3->5 and 5->3 in evaluations the second entries are ignored. The user interface does not allow duplicate entries. The belonging of a linked identifier to its general designation block (e. g. =K41LAC21GP001 &MDA001 is associated to =K41LAC21GP001) does not have to be defined explicitly in the mapping table, but arises implicitly from the designation design. The letter codes from the guidlines VGB-B 101 (2007); VGB-B 102 Entwurf (2010) can be entered in the table kennbuchstaben_norm. The column kb is provided for this. The source of the entry is specified in the column type and in beschr_norm and in beschr_kurz the clear words from the directive, respectively a short form of the clear words. The entries are used to 23

29 5 Data Processing support the user with the creation of designations and to provide them for system designations in case of manually entered clear words are missing. New HAST =R =R1 =R =R12NDA10 0 =R12NDA 0 =R12NDA20 Global version counter: =R =R1 =R =R12NDA10 5 =R12NDA 5 =R12NDA20 =R12NDB =R12NDB (a) There is a new house connection station. What happens to the old designation data? =R12NDA10 0 =R12NDA 0 =R12NDA40 =R =R1 Figure 5.3: Archiving of records =R12 =R12NDB 0 =R12PCB (b) Old (archived) and new designation tree in the database RDS-PP designations are uniquely identifying an object for the current point in time. Designation structures are changing during a project, especially in the CET with its permanently developing test rigs. The database is to archive the data traceable for all individual states. Therefor the table tab_ident contains the column version. The current state is marked with a 0 in the entry. If, for example, as shown in Figure 5.3, a new house connection station (HAST) will be installed in place of the old system, both must be designated =R12 according to the designation structure. A global version counter, enumerating all previous archiving steps, is increased by one to obtain consistent entries in the database (in this example: 4 + 1). The software automatically registers the new counter in the version column of all identifiers from the old HAST and indeed for all sub-elements but also for the direct parent elements. This is necessary to ensure a consistent state at any later changes occurring in the designation structure of the parent elements. According to this, the new HAST can be added to the database with =R12 and its sub-items with the version entry 0. This procedure allows to structure the new HAST arbitrarily and to recount its systems. At once all old identifiers and their allocations retain. The database is backed up to a file daily. This is done with the program mysqldump. 5.3 Visualisation Website The contents of the database are provided online to the project participants via a graphical interface (http://tu-dresden.de/mw/rds-pp). A graphical representation based on the database is realized with dynamic tree structures, in order to illustrate the complex constitution of the RDS-PP hierarchies. The presentation should be variable so that the information can be illustrated and selected in their entirety as well as in detail. Additionally, the user should be able to manipulate the RDS-PP database and to access project data, such as protocols, 24

30 5 Data Processing standards and other documents with specifications for designation issues, via a web-based interface. The RDS-PP prefixes and the possible linkings of individual designation blocks are shown at a glance using a rapidly expandable legend. An explanation for the navigation in the website and the graphical symbols is available Designation Hierarchies as Dynamic Trees The hierarchical information is represented as a tree structure (see, e. g. Figure 4.9 or the freely accessible project page). For each identifier there is a branch point (node), where the RDS-PP designation and the clear words description are displayed. Lines lead from each node to the children elements. When clicking on a node, the sub-items are fading in or out. A small dot inside the node indicates whether sub-elements are present. The position of the nodes is optimized automatically when expanding the child elements, so that overlap is prevented in the graphical representation even with complex tree structures. At the time, hierarchies of the aspects Function, Function allocation (group level) and Location are available. Their selection is done via a drop-down menu. The technology of the tree representations is based on dynamic vector graphics. The SVGformat (Scalable Vector Graphics) is used, which is a derivative of the XML standard. This allows to utilise many freely available program libraries and ease of use, since SVG is textbased and so readable for humans. It is possible to integrate JavaScript functions directly in the SVG via a particular tag. A modern web browser can display SVG graphics directly and manipulate their DOM (Document Object Model) tree using JavaScript. This allows the dynamic representation of the tree as described above in response to user interactions. The SVG graphics are generated automatically by a Perl script that evaluates the hierarchy information of identifiers from the database. It is adjustable which data characters should be combined into one hierarchy level. The Perl programming language is extra suitable for this purpose because it provides comprehensive functions for the handling of text data. The individual designations are fragmented using the concept of regular expressions by a pattern matching and using the rules for RDS-PP from the standard. Furthermore, it is possible to generate the text-based SVG files on an elegant way Display of Ancillary Information The identifiers can be accessed interactively by using the dynamic trees. Additional information, such as allocations and linkings, is belonging to the identifiers. These are displayed in an extra-frame (part of an HTML page) at the right side of the website (see Figure 5.4). Nodes with additional information are marked in colour. If the user moves the mouse cursor over such a node, tabulated information appears in the right frame. The table is dynamically again, therefore reacts to user actions. For each designation aspect one tab (similar to tabs in the web browser) is available listing all relevant identifiers. The table contains the identifier in the table header and and the clear words of the related objects. For example, all documents, that belong to the current designation via linking or via manually allocation, appear in the tab marked with &. If these documents are available in electronic form, the designation in the list will appear as a direct link to the document. It is possible to deposit any internet addresses, which allows the access to the Wiki version of the institute for example. Here also web-based experimental protocols or any other information can be stored. Tabs for products, signals, locations or points of installation are shown, depending 25

31 5 Data Processing on the content of the database. With identifiers associated to the current node via linking, only the additional designation blocks are represented. The complete designation appears for allocations. The proposed concept can represent all identifiers possible with RDS-PP and their relations in a demonstrative way. It allows quick and easy access to all relevant information Database User-Interface Contents of the database can be changed directly via the web browser in this section of the website. Technologically the php framework yii is used. It is an object-oriented structured and open-source programming library, which is particularly suitable for webbased visualization of databases. It works with the MVC (Model View Controller) concept, which divides the software in the data model, the presentation of the data and the program control. For the current project, it mainly offers a simple database access, a visual representation of the tables with filter functions and a user management. The tables tab_ident and tab_zuordnung presented in Chapter 5 can be displayed and adapted. For the table tab_ident, it is possible to make filter specifications in the table header for each column as to extract individual identifiers effectively and quickly. For example, all signals for the haulage of heating water can be listed by filtering W20NDC in the BLOCK1 column and ; in the VZ2 column (see Figure 5.5). The listed items can be deleted or edited directly in the table with sufficient authority. When deleting an item, it is Figure 5.4: Display of ancillary information, example photovoltaics =R32 prompted if all sub-items should be deleted, and those are listed. The old object and its sub objects are archived (by setting a version number unequal to 0 ) and a new one is applied with the version number 0 as described in Chapter 5 by pressing the button New Version. New identifiers can be inserted by using the appropriate input fields (see figure 5.5). The designation is entered completely and fragmented according to the database structure, spaces are ignored. Whether a document is uploaded or a link to an article of the institute wiki is added, is selected by so-called radio buttons. A new identifier is added after clicking on the Anlegen button (visible by a success message) or an error message is shown. The manual allocations between two designations can be created or removed via an own view in the user interface. The selection of individual identifiers takes place by two simplified tables, which also have the filter function described previously. After clicking on the Anlegen button, the new allocation will be entered (visible by the success message) or an error message will be displayed, such as if the allocation already exists. The allocations can be removed or listed via a table opposing the designations instead of the IDs from tab_zuordnung. 26

32 5 Data Processing Figure 5.5: Creating a new designation, illustration of tab_ident with filtering The table kennbuchstaben_norm should primarily be an aid to the designation work itself. The selection can be restricted simply an quickly via the filter function using the letter codes or their clear words expression. This allows a certain classification of systems, technical objects and documents even by laymen Fileserver Documents referenced by the visualisation can be stored at any location accessible via hyperlinks. Because the access to a document in the Internet can not be ensured in long term, the exclusive use of self-managed storage is recommended. This is the wiki of the institute on the one hand, on the other hand a separate file server. The files on the file server can be read from the Internet, if the appropriate authorization is available. Files can be uploaded either via the user interface, or using a secure FTP connection (ssh, sftp). There are four folders kept in respect of each of the complexes of the CET, one is kept for the water systems and one common one. The files are stored in the appropriate folder depending on the user s membership to one of the CET complexes. As stated in Heymann (2012), subfolders are created according to the BL0 of the reference designation. If identifiers for documents are removed via the user interface, they will be moved to a backup folder. The file server is backed up daily by the central backup system of the TU Dresden Center for Information Services and High Performance Computing Project Data The users reaches a static web page, that provides access to the following documents, being important for the designation process, via the slide Projektdaten : Designation manual Heymann (2012) including project-specific requirements to RDS-PP in the CET, Minutes of meetings on the RDS-PP issues, Standards and guidelines for RDS-PP, in consultation with the VGB with individual access rights, 27

33 5 Data Processing Publications and presentations originated from the research project, Links, e. g. to the VGB homepage. Above all, the guidelines provided by the VGB VGB-B 101 (2007); VGB-B 102 Entwurf (2010); VGB-B 103 (2010); VGB-B 116 Entwurf (2008) allow independent in-detail designation of the test facilities by the users themselves and beyond the project runtime User Administration High demands are made on the user administration in the current research project. Firstly, the general public is to be informed as simple and comprehensive as possible, on the other hand, the information on the decentralized test rigs has to be protected from unauthorized access. For the available websites of the project Pilot Application of RDS-PP there is the following concept for (see Figure 5.6). Internetpräsentation Projektbeschreibung Vorträge, Veröff. Visualisierungsbeispiel Visualisierungswerkzeug Öff. TUintern, PW1 PW2 Projektdaten Normen, Richtlinien Datenbank, Fileserver Figure 5.6: Access control for RDS-PP visualization, TU internal... access for TU-IP addresses, PW1... access with private password, PW2... database access separated by research complexes with private password The Internet presentation of the project (see Chapter 6) is freely accessible. The visualization tool, displaying the RDS PP hierarchies, is reachable without password query only for selected areas of the IP addresses. This will allow easy access to the CET documents, thus extending the range of users. The entry of the personal user name and password is required from outside the TU Dresden and the relevant chairs. Documents can be stored on the file server in folders, that are associated with a specific complex in the CET. In this case, user write access for the corresponding complex is checked. The password input is always required to see standards or guidelines and to access the database or file server. The appropriate rights must be assigned to users explicitly. In principle, the implementation is so flexible that privileges can not only be awarded for each complex but with higher details. The access protection for displaying the different areas of the web page is solved via.htaccess configuration files of the web server. It is possible to assign users to different user groups. The areas of the website are released for specific user groups in the.htaccess-file. The access control for editing content of the database, including file upload, is adopted by the yii framework. 28

34 5 Data Processing Figure 5.7: Website screen shot of the measurement database 5.4 Measurement Database A flexible and powerful measurement database has been created referencing its measuring points via RDS-PP. This also was done because of an impulse from the RDS-PP research project. On the one hand, the CET measuring data and other signals are logged by the central process control system (PCS), on the other hand, data from various data loggers of the decentralized test rigs occur. The measurement database combines these data and archives it safely. The individual measurement points can be displayed in graph or table form with a slight delay in time. The measurement points can be selected by an ID, by the clear words or the RDS-PP reference designation. The advantages of the RDS-PP bear when using the reference designation. The RDS-PP designations are explicit for the whole CET, classify the measuring point and provide quick access to relevant documents and other information. Screenshots are shown in Figure 5.7 and A.4. 29

35 6 PUBLICATIONS, QUALIFICATION, PAPERS Objectives of the research project include the documentation of the experiences, the derivation of training materials and the return of operating experience to the VGB. A number of materials, reports, and presentations have been created, which will be presented briefly at this point. All documents are stored on the accompanying data CD. To make the project on CET employees familiar with the RDS-PP issue, an introductory lecture on the subject of RDS-PP was repeatedly offered in the second half of This explaines the different aspects of the RDS-PP and its normative foundations using the complex example of feed-water pumps of the Experimental Power Plant. The corresponding presentation and a leaflet can be found in Appendix A.5. The presentation can be used as a basis for introducing students to the subject designation. The research project was presented for the VGB Working Group Anlagenkennzeichung und - dokumentation several times (Schwarze Pumpe , Essen , Dresden ). For 2009, a status report and a small set of slides of the project is available in English language. The project was presented to the scientific community with a presentation and a paper published in the proceedings of Keli, 2010 in Dresden Heymann u. Rühling (2010). The following contents are available on the public website : What is RDS-PP? Presentation of the objectives and details of the research project Pilot Application of RDS-PP Dynamic tree visualisation of the basic structure of function designation in the CET (see Subsectiont 5.3.2) Publicly available documents to the RDS-PP issue Hyperlinks to the corresponding VGB websites

36 7 CONCLUSIONS/PROSPECT Based on nowadays perspective, the decision for a universal designation system in general and RDS-PP in particular has been appropriate. The systems of the CET have been organized and structured as part of the designation process. This will make a targeted work with the highly complex systems easier. It is possible to address all systems, units and equipment of the CET and the associated signals and documents via their reference designation. This significantly facilitates the long-term data management. Important foundations were laid for the designation of processes and procedures by developing the Function allocation in group level for the CET. Students and staff will be made familiar with the internationally standardized designation system for power plant and energy technology by RDS-PP. In course of the project, the CET has been structured on the aspects of Conjoint designation (#), Function (=), Function allocation, in group and individual level, (==) and Location (++) in collaboration with the experts of the VGB and the engineering consultants GESA. Thereof, the identifiers for signals (;), equipment (-) and documents (&) were derived. A web-based visualization and management software was developed which allows an easy and fast access to all designated CET objects and documents. This will anchor the RDS-PP subject to the daily work in the CET beyond the running time of the research project, and thus to the students education. The project was introduced at the Conference Electrical Engineering, C&I and IT in Power Plants 2010 with a presentation and an article Heymann u. Rühling (2010). A publicly available website brings the relevant information on RDS-PP and on the research project all together (Hyperlink).

37 BIBLIOGRAPHY [DIN ] Norm DIN April Kennzeichnungssystematik für technische Produkte und technische Produktdokumentation - Teil 10: Kraftwerke 3, 3, 4.2, 4.3.2, 4.5.1, 4.5.2, 4.5.3, 4.6, 4.7 [DIN EN ] Vornorm DIN EN :2009 Mai Industrielle Systeme, Anlagen und Ausrüstungen und Industrieprodukte Strukturierungsprinzipien und Referenzkennzeichnung Teil 1: Allgemeine Regeln 3, 3 [DIN EN ] Vornorm DIN EN :2009 Mai Industrielle Systeme, Anlagen und Ausrüstungen und Industrieprodukte Strukturierungsprinzipien und Referenzkennzeichnung Teil 2: Klassifizierung von Objekten und Kennbuchstaben von Klassen [Heymann 2012] Heymann, Martin: Kennzeichnungshandbuch, RDS-PP im ZET der TU Dresden, Februar , 4.3.2, 4.8, 5.3.5, [Heymann u. Rühling 2010] Heymann, Martin ; Rühling, Karin: Pilot-Anwendung des RDS-PP am Zentrum für Energietechnik der TU Dresden. In: Konferenz Elektrotechnik, Leittechnik, Informationsverarbeitung im Kraftwerk, VGB Powertech e.v., Mai 2010 (VGB Keli), S. S 5.3 1, 6, 7, A.3 [ISO/TS ] Norm ISO/TS :2008 November Technical product documentation - Reference designation system - Part 10: Power plants 3, 4.3, 4.4, 4.11, 4.12, 4.13, 4.15, 4.17, 4.18, 4.20 [Königstein u. a. 2011] Königstein, Harry ; Müller, Heinz ; Kaiser, Jörg: Das RDS-PP Übergang vom KKS zu einer internationalen Norm, aktualisierte Fassung. In: VGB PowerTech 8 (2011) 3 [Müller 2009] M ü l l e r, K.-H.: RDS-PP, Das internationale Kennzeichnungssystem für die Kraftwerkstechnik. Mai , 4.1 [VGB-B ] Kennbuchstaben für Kraftwerkssysteme. Mai , 4.3.2, 4.1, 4.5.2, 5.2, [VGB-B 102 Entwurf 2010] Kennbuchstaben für Grundfunktionen, Technische Einrichtungen und Produktklassen in Kraftwerken. Juni , 4.4, 5.2, [VGB-B ] Kennbuchstaben für Dokumentenartklassen in Kraftwerken, (DCC- Schlüssel). Februar , [VGB-B ] VGB Abkürzungskatalog aus dem Bereich der Kraftwerkstechnik. Januar [VGB-B 116 B1 Entwurf 2008] Kennzeichensystem für Kraftwerke RDS-PP, Anwendungserläuterungen, Kennzeichnung in der Maschinentechnik. Februar , [VGB-B 116 Entwurf 2008] Kennzeichensystem für Kraftwerke RDS-PP, Anwendungserläuterungen. Februar [VGB-R ] Lieferung der Technischen Dokumentation (Technische Anlagendaten, Dokumente) für Kraftwerke. April

38 A APPENDIX A.1 Designation Examples Figure A.1: Designation of the Experimental Power Plant =K, structuring BL0

39 A Appendix =R1 Fernwärme =R11 Wohnungsanschlussstationen =R12 Hausanschlussstation-Yados =R21 Wärmespeicher =R22 Kältespeicher =R23 Wärmeübertrager =R2 Versuchsfeld Rationelle Energieversorgung =R24 Druckhaltung =R25 μkwk #P Prozesstechnik =R Rationelle Energieanwendung/ Reg. Energien =R26 Wärmepumpe =R27 Kältemaschine =R28 Trinkwassererwärmung =R3 Versuchsfeld Regenerative Energie =R31 Solarthermie =R32 Photovoltaik =R81 Klimakammer =R8 übergeordnete Technik =R82 Erdwärmesonden =R89 Geräte für mobilen Einsatz =R9 Meß- und Regeltechnik =R91 Messkabine =R92 Wetterstation Figure A.2: Designation of the research field Energy Saving, Renewable Energy Technology =R, structuring BL0 34

40 A Appendix ==Q12 DAA14 Strahlungseintrag ==J Lehr- und Versuchskraftwerk ==Q Rationelle Energieanwendung/ Reg. Energien ==Q1 Versorgung ==Q12 DAA31 Brennstoffversorgung ==Q11 Wärmenutzung ==Q12 DAD23 Wärmebezug Heizwasser ==Q12 Wärmebereitstellung ==Q12 DAD26 Wärmebezug Sole ==Q13 Kältebereitstellung ==Q12 DAD27 Wärmebezug Luft ==Q14 Elektroenergieerzeugung ==Q12 DAE21 Elektroenergieversorgung ==Q15 KWK ==Q16 Speicherung #P Prozesstechnik ==S Turbomaschinen ==U Verbrennung / Vergasung ==Q21 ==Q22 DBB10 Wärmenutzung solare Wärmebereitstellung ==Q22 Wärmebereitstellung ==Q22 DBB20 Wärmebereitstellung, Wärmepumpe ==X Wassersysteme ==Y Zentrale Versorgungssysteme ==Q2 Hauptprozess ==Q23 Kältebereitstellung ==Q24 Elektroenergiebereitstellung ==Q25 KWK ==Q22 DBB30 Wärmebereitstellung, Kessel ==Q26 Speicherung ==Q3 Entsorgung Figure A.3: Research field Energy Saving, Renewable Energy Technology =R, structure of Function allocation in group level 35

41 A Appendix 36

42 A Appendix A.2 Scheme for Function Allocation at Group Level Table A.1: Creation scheme for designations of Function allocation in group level for CET project 37

43 A Appendix A.3 Designation Guide (german) 38

44 Institut für Energietechnik Professur für Energiesystemtechnik und Wärmewirtschaft Kennzeichnungshandbuch, Stand Februar 2012 RDS-PP im ZET der TU Dresden Wie beim Treffen der am Projekt beteiligten Partner vom vereinbart, sollen wichtige projektspezifische, nicht durch die DIN vorgegebene Absprachen und Festlegungen in einem Strukturierungsbuch dokumentiert werden. Die einzelnen Punkte basieren auf dem Vorschlag des Anhangs C der DIN Die Kennzeichnungsaufgabe ist unterteilt in Gebäude- und Prozesstechnik sowie in die autark automatisierten Versuchsstände. Hierbei wird die Gebäudetechnik nicht nach dem RDS-PP-Schlüssel gekennzeichnet. Für die autark automatisierten Versuchsstände ist die Kennzeichnung optional. 1 Allgemeine Festlegungen 1.1 Änderung der Benennungen für Funktionen, Systeme, Anlagen (VGB B101), technische Einrichtungen und Betriebsmittel (DIN ) (nur ohne deren inhaltliche Veränderung möglich) Bisher keine. 1.2 Festlegung der Zählsystematik und Zählrichtung für alle zählenden Kennzeichenteile Die Zählung soll möglichst dem Prozessfließschema folgend vorgenommen werden. Autarke Mess- und Regeltechnik der Versuchsstände wird mit einer 9 als erste Ziffer der GS0 bezeichnet. Über die Ziffern der GS1-Ebene erfolgt eine Strukturierung innerhalb der Teilanlage. 1.3 Festlegung zu # Gemeinsame Zuordnung hinsichtlich Inhalt und Umfang, Art und Anzahl der Datenstellen Die Bezeichnung der gemeinsamen Zuordnung besteht nur aus einem Buchstaben. Die Prozesstechnik wird mit #P gekennzeichnet. Die Gebäudetechnik wird mit #G gekennzeichnet und sonst nicht nach RDS-PP strukturiert. Identifikatoren werden folgendermaßen gebildet: #G =TU-internes Kennzeichen 1

45 1.4 Festlegung zu Gliederungsstufe 0 des Funktionsaspektes (=) und der Funktionalen Zuordnung in der Gruppenebene (==GE) hinsichtlich Inhalt und Umfang, Art und Anzahl der Datenstellen Funktion (=) Die Bezeichnung in der obersten Gliederungsebene GS0 besteht aus einem Buchstaben und 2 Ziffern von 1 bis 9. Die erste Ziffer hat übergeordneten Charakter; die zweite Ziffer hat nachgeordneten Charakter. Es wurde festgelegt, die bisherigen Komplexnummern K2 bis K5 verkürzend einem charakteristischen Buchstaben zuzuordnen. Es gilt: Funktion (=) Lehr- und Versuchskraftwerk K Rationelle Energieanwendung/ Reg. Energien R Turbomaschinen T Verbrennung / Vergasung V Ausbildungskernreaktor A Elektrotechnik E Prozessleittechnik L Wassersysteme W Zentrale Versorgungssysteme Z Im Kennzeichnungsprozess hat sich ergeben, dass eine weitere Zählstelle in der GS0 benötigt wird. Diese wird von der restlichen GS0 durch einen. abgetrennt, was auf die nicht normgerechte Ausführung hinweisen soll. Es sind 2 Ziffernstellen von 0-9 vorgesehen. Z.B.: =R12.01 für Yados-HAST, =R12.02 für Danfoss-HAST Funktionale Zuordnung (==) Die Bezeichnung in der obersten Gliederungsebene GS0 besteht aus einem einzelnen Buchstaben. Weitere Datenstellen werden nach dem festgelegtem Schema. Siehe Anhang 5.6. Es gilt: Funktion (=) funktionale Zuordnung (==) Lehr- und Versuchskraftwerk K J Rationelle Energieanwendung/ Reg. Energien R Q Turbomaschinen T S Verbrennung / Vergasung V U Wassersysteme W X Zentrale Versorgungssysteme Z Y

46 1.5 Festlegung der Spationierung bei der Schreibweise der Kennzeichen Es wird die einzeilige kleine Spationierung nach Anhang A der DIN verwendet. Das heißt Leerzeichen befinden sich nur zwischen den einzelnen Gliederungsstufen (z.b. #P =K11 EKA01 FL001). In den Leitwarten ist die mehrzeilige Spationierung zu verwenden. 1.6 Belegung von nicht festgelegten, aber frei zur Anwendung verfügbaren klassifizierenden Kennzeichenteilen HQ HQA HQB HQC HQD HQE HQK MQ MQA NZ NZA NZB NZC NZD NZK Solarthermie Leitungssystem (Vorlauf) Leitungssystem (Rücklauf) Förderung Wärmeübertragung Speicherung Druckhaltung Photovoltaisches Sytem Solargenerator Erdwärme Leitungssystem (Vorlauf) Leitungssystem (Rücklauf) Förderung Wärmeübertragung Druckhaltung 2 Festlegungen bei der Funktions-Kennzeichnung 2.1 Festlegungen der numerischen Kennzeichenabschnitte Für die GS0-Bezeichnung der übergeordneten Komponenten für die Versuchsstände der TU Dresden siehe Anhang 5.1. Für die GS0-Bezeichnung der untergeordneten Komponenten für die Versuchsstände der TU Dresden siehe Anhang 5.2 bis 5.5. Der nummerische Teil der GS1 dient der Unterteilung eines Systems in Stränge und Abschnitte Die zweite Stelle des nummerischen Teils der GS2 kann bei stark verzweigten Systemen (z.b. Kühlwasser) zur Gliederung verwendet werden. Die erste Stelle wird bei Bedarf für eine Klassifizierung verwendet, die dritte Stelle zur Zählung der Aggregate. 2.2 Festlegungen der Kennzeichnung für systemübergreifende Messwertverarbeitungen zentrale Mess- und Regeltechnik wird mit einer 9 als erste Ziffer der GS0 gekennzeichnet.

47 2.3 Festlegungen der Kennzeichnung für Signale und Signalverwendung sowie die Belegung der Untergruppen bei den Hauptgruppen Die Signalkennzeichen werden aus der Funktionalen Zuordnung der Einzelebene sowie der Gruppenebene abgeleitet. Signale der Gebäudetechnik werden nach folgendem Muster zusammengesetzt: #G =TU-Internes Kennzeichen ;Signalkennzeichen 3 Festlegungen bei der Aufstellungsort-Kennzeichnung Die Bezeichnung des Aufstellungsortes soll optional möglich sein. Die Raumkennzeichnung wird zentral durch das Dezernat 4, Sachgebiet 4.1 der TU Dresden mit einem eigenen Schlüssel durchgeführt. Dieser soll auf den RDS-PP Schlüssel übertragen werden. Es gilt folgendes Muster: ++ZETxx.yy_zzzz z.b. ++ZET01.KG_K105/1 xx muss laut RDS-PP Norm aus Ziffern bestehen und gibt das Höhenniveau an (siehe Tabelle) yy soll eine Abkürzung ebenfalls für das Höhenniveau darstellen und der Bezeichnung entsprechen, die später im Fahrstuhl verwendet wird (siehe Tabelle). zzzz wird der Raumname aus Spalte 2 der Tabelle in ZET-Raumliste.pdf sein. xx yy Höhe [m] Klartext 01 KG -5,72 Kellergeschoss 02 UG -3,03 Untergeschoss 03 EG 0,00 Erdgeschoss 04 OG +4,46 Obergeschoss 05 DG +8,99 Dachgeschoss 06 DA >8,99 Dach 3.1 Festlegungen der Zählung bei der Bauwerk-Kennzeichnung Es wird anstatt der VGB-B101 die Bauwerks-Kennzeichnung der TU Dresden verwendet siehe Anhang 5.7 (abweichend zur DIN ). 3.2 Festlegungen bei Raum-Kennzeichnung Für die Raumkennzeichnung des ZET siehe Anhang Festlegung der prioritätsbezogenen Kennzeichnung von Bauwerken, die mehrere Systeme beinhalten Bisher keine.

48 3.4 Festlegung der Bauwerk-Kennzeichnung für Kanal- und Brückenbauwerke als verbindende Bauwerke Bisher keine. 4 Weitere Festlegungen 4.1 Bearbeitungsstand der verwendeten Normen und Richtlinien Um von Weiterentwicklungen der VGB-Richtlinien profitieren zu können, sollen bis Ende 2009 auch noch nicht vom VGB veröffentliche Bearbeitungsstände Verwendung finden. Abweichungen von offiziellen Versionen sind zu dokumentieren: VGB-B 101 Mai 2007 VGB-B 102 Entwurf, Stand Juni 2010 VGB-B VGB-B 116 noch nicht fertig VGB-R , überarbeitet DIN April Beschilderung Die Beschilderung der Anlagenkomponenten erfolgt nach der VGB-R 171. Die Schilder der Prozessleittechnik und der Gebäudeleittechnik, sind mit unterschiedlichen Farbcodes auszuführen. Für die Prozesstechnik sind schwarze Schilder mit weißem Text zu verwenden. Gefordert ist das komplette Kennzeichen nach dem Funktionsaspekt und einem Klartext. Für die Gebäudetechnik sind weiße Schilder mit schwarzem Text vorgesehen. Abmessung 50 x 100 Arial, 20, fett, Zeilenabstand 1,2 RDS-PP und Klartext horizontal und vertikal zentriert Design bei längerem Klartext auf zwei Zeilen (längere Texte sind über AküLi VGB zu kürzen):

49 Design bei kurzem Klartext auf einer Zeile: Der Klartext beginnt mit dem allgemeinsten Teil, z. B. der Systembezeichnung und wird nach rechts bzw. nach unten spezieller. 4.3 Dokumentation Alle Teile der Technischen Dokumentation sind nach RDS-PP zu kennzeichnen. Es ist das Merkblatt - Dokumentenkennzeichnung für das ZET der TU Dresden zu beachten (vgl. Anhang 5.9) 4.4 Kennzeichnungstiefe Alle Hauptbauteile (Wärmeübertrager, Speicher, Absperrungen, Sicherheitsventile, Sensoren, Aktoren usw.) sind zu kennzeichnen. Alle für den Betrieb der Gesamtanlage wichtige Bauteile oder für die Dokumentation wichtigen Elemente sind zu kennzeichnen. Fertig gelieferte Baugruppen erhalten eine Kennung. Bestandteile müssen nicht gekennzeichnet werden. 4.5 Kennzeichnungstiefe in den einzelnen Versuchsfeldern Für jeden Versuchsstand ist eine funktionsbezogene Kennzeichnung bis zur GS1- Ebene vorzunehmen. Alle für den Betrieb der Gesamtanlage wichtige Armaturen oder für deren Dokumentation wichtigen Elemente sind zu kennzeichnen. Für die einzelnen Versuchsstände ist eine weitere Kennzeichnung optional, aber wünschenswert um die Vorteile des RDS-PP für die Versuchsstanddokumentation nutzen zu können. 5 Anhang 5.1 GS0-Klassifikation ZET Datei: ZET Bezeichnungssystem Vorlage G0_Ebene gesamt_2009_06_18.xls Tabelle: Übersicht bis 1_ Ziffer Aktuelle Struktur:

50 5.2 GS0-Klassifikation Verbrennung / Vergasung Datei: Tabelle: ZET Bezeichnungssystem Vorlage G0_Ebene gesamt_2009_06_18.xls V_K GS0-Klassifikation Lehr- und Versuchskraftwerk Datei: Tabelle: ZET Bezeichnungssystem Vorlage G0_Ebene gesamt_2009_06_18.xls K_K GS0-Klassifikation Turbomaschinen Datei: Tabelle: ZET Bezeichnungssystem Vorlage G0_Ebene gesamt_2009_06_18.xls T_K GS0-Klassifikation Rationelle Energieanwendung Regenerative Energien Datei: Tabelle: ZET Bezeichnungssystem Vorlage G0_Ebene gesamt_2009_06_18.xls R_K Schema zur Kennzeichnung der Funktionalen Zuordnung in der Gruppenebene (==) Schema: Aktuelle Struktur: Schema ==Kennzeichen_ xlsx 5.7 Gebäudekennzeichnung der TU Dresden Datei: map_tu_campus.pdf 5.8 Raumkennzeichnung ZET Datei: ZET-Raumliste.pdf und ZET-Raumübersicht_06_2008.pdf 5.9 Mekblatt Dokumentenkennzeichnung Datei: Dokumentenkennzeichnung für das ZET der TU Dresden.pdf

51 A Appendix A.4 Information Sheet Documentation (german) 46

52 Merkblatt - Dokumentenkennzeichnung für das ZET der TU Dresden Dokumente der Prozesstechnik des ZET sollen nach dem neuen Kennzeichnungssystem für Kraftwerke RDS-PP gekennzeichnet werden. Alle Dokumente sind elektronisch zu übergeben und zwar sowohl im Originalformat als auch als pdf. Relevante Normen und Richtlinien: DIN , Kennzeichnungssystematik für technische Produkte und technische Produktdokumentation - Teil 10: Kraftwerke, April 2007 VGB B 103, Kennbuchstaben für Dokumentenartklassen in Kraftwerken (DCC-Schlüssel), Erste Ausgabe, Februar 2010 Dateiname Der Dateiname besteht aus dem kompletten Dokumentenkennzeichen, inkl. Vorzeichen, einem Datumsschlüssel im Format YYYYMMDD und einem Klartext. Beipiele: =K&MFB Anlagenschema Lehr- und Versuchskraftwerk.pdf =K&MFB Anlagenschema Lehr- und Versuchskraftwerk.dwg Anmerkung: keine Umlaute und %/\ nicht verwenden Ordnerstruktur 1. Anlagenteile Die Ordnerstruktur einspricht der GS0 der Funktionskennzeichnung. Es sind die Ordner =E, =K, =L, =R, =T, =V, =W, und =Z zu verwenden. Die Unterordner heißen z.b. =K41, =W20 usw. speziellere Dokumente sind in die Unterordner einzuordnen, allgemeine Dokumente in die Hauptordner 2. Ausrüstungsteile (z.b. Datenblätter für Ventile): Kennzeichnung mit herstellerspezifischen Typ- oder Inventarkennzeichen als Objektkennzeichen einmalige Einordnung in Ordner mit Hersteller als Ordnername Erstellung einer Excelliste gleichen Namens, die alle Referenzkennzeichen enthält für die der Typ verwendet wird Dokumentenkennzeichen (nach DIN und VGB B103) Zusammensetzung Dokumentenkennzeichen: =W & MFB Anlagenschema übergreifende Wassersysteme =K41LA & MDC Inbetriebnahmeanleitung Speisewassersystem =W10NDA11BT001 & EDD Kalibrierbericht Vorlauftemp. Heißwasser =L23CWA10 & EFS / 001 Schaltplan Prozessleittechnik ISP P4.1, Blatt 001 SIEMENS 1LC AA91-Z & MDA Datenblatt Pumpenantrieb

53 Objektkennzeichen: Anlagenteile (Normalfall): nach RDS-PP gebildetes Referenzkennzeichen des Objektes/Systems, welches die Dokumente beschreiben z.b. =W1 (Heißwasser), =K41LAC21GP001 (Speisewasserpumpe) Ausrüstungsteile Vielfach verbaute Aggregate: herstellerspezifisches Typkennzeichen für z.b. SIEMENS 1LC AA91-Z (Elektromotor) Dokumentenklassenschlüssel (3 Datenstellen, z.b. &EFS): 1. Datenstelle: A - Übergeordnetes Management, B - Übergeordnete Technologie C - Bauwesen (Hoch- und Tiefbau) E - Elektrotechnik, Instrumentierung und Steuerungstechnik (einschließlich Informations- und Kommunikationstechnik), M - Maschinenbau einschl. Verfahrenstechnik Datenstelle: gebildet nach Richtlinie VGB B 103, diese enthält eine umfangreiche Liste möglicher Dokumentenarten der Zählteil wird nicht verwendet. Bei Fragen zur Kennzeichnung bitte wenden an: Martin Heymann, 0351/ ,

54 A Appendix A.5 Introduction Presentation (german) 49

55 '()* =341 9 $%"&"" '(,-.9/ !"""#" :8;7</.8: )*+",9-./'.// !"#$%"&%

56 )./ $%&'(')*+,&'-.+&/ &'9/-.1/0+1=+41=):&C&:&-+'1./0&>&/0)1./0& <')/0&)809)=1=&1.&+G8)'*9'6:)&'C ),&8)'*9'):&(')*+,&'-.+;<& '/0=9)=1=*9'&=&.)>+&?&8&.:)* -1!!! I./0:9..&. H&'.+&:&'E&+'&18&' AB)./01&5CD:&-+' &"'"()*"!"%+!#$,"%" /+ /)"0!!!"%'0'2!" "%&"'",1&35C?&1+5E)+&/01-F ->&+&!"#$!"# % " #$" 342%"(567897:88;< :1&R =>"=: SP

57 $%&'!"#$ ()#&*+,-+.,,/

58 "(&!)*+,- &! '(%#)*+, !! " #$%&!'!"#$%!#"./0#"), :5 -./!# %7&%84

59 , ($")*"(+"#(((,-./0 "$/,0 -.!"#$"%$&'()* %11$/!"#"$ # %&'"" " 123" *23%1"& :;<47=>9 (,/ :;8

60 !"# $%&'()*+,-+.,,/0))12.!"#!$""%&'()$*'+$

61 98135!"# $ !"#$%&'%()* ()*+,-+.,,/01) *, -./01%23/4,

62 !"#!$%&$' ()*$&+%&,-./01/002!3!"#$%& &-45!6 '$(!

63 "#$#" #$%$#!$ 9135 #!!" &'()$*+,-./-0..1#"%+,2$30 %&'(#)*+,-.,/--0"!$*12#3/

64 *$!+'%$$,%$' +$, %"#!"#$%&'(%)!"#$%$&!'($()$'! -! & *"#$%./0 -./0$ #%759$: )%28, 97

65 )".)#!!/##"0#+"+& '()*#(!"#$%&'!"#$%&% #"()*+&,#*%&'!$ )- 23#" :88;(,1&:5<,=: +,-./ "%557%85

66 &#(&## -)120!"#$%&'#()*#"))+,#-.$ %/#- 345#)-+6789:8;99<=".;>!">;!"#$%#&$$'()*+&,-).&

67 !"#$%#&$$'()*+&,-).&!"#$%#&$$'()*+&%,)-&

68 !"#$% &#' &'#(

69 "!'=>?,1) (*+,(-. *+./ 0., #$%&4<+!:44!4'((-./ 34"556"44#$%&5%!46$%&"! 3&'7!8)9:;8"5 6$%&"!3&'*BB8)9'((211C?0) *+1*2,,.!""#$%&'() 0.,*2,,.) D;C49.EF,GF1,,H#&!I,J&I1!"#$"%##&'()*%&+(,%

70 /!%"- %&'(' )' '*+',-' (%.!"#$ 0!"1!'( !" #$!%!&!'()*+!,-.)" /0*, :96

71 Fakultät Maschinenwesen Institut für Energietechnik Professur für Energiesystemtechnik und Wärmewirtschaft RDS-PP für das ZET Kontakt: Martin Heymann, Professur für Energiesystemtechnik und Wärmewirtschaft, Tel.: 0351/ bzw , Fax.: 0351/ , 1 Motivation Das Reference Designation System for Power Plants, kurz RDS-PP, ist ein Werkzeug um Objekte und Prozesse in der Kraftwerkstechnik zu strukturieren und zu kennzeichnen. RDS-PP... :... ist anwendbar für alle Kraftwerkstypen... ist durchgängig für den gesamten Lebenslauf... gilt gleichsinnig für alle technischen Fachbereiche... ist einsetzbar für Planer, Hersteller und Betreiber Kennzeichnen lassen sich Standorte, Systeme, technische Einrichtungen, Betriebsmittel, Signale, Anschlüsse, Dokumente und Prozesse. Es gilt das allgemeine Prinzip: So wenig wie möglich, so viel wie nötig. 2 Wichtige Normen/Richtlinien Das RDS-PP, ist in DIN definiert und wie die anderen Normen verfügbar. Die Kennbuchzeichenschlüssel befinden sich in VBG B 101 und VBG B 102. Vor allem die Richtline VBG B 101 wird zur Zeit vom VGB überarbeitet. Für das Verständnis sind die Anwendungserläuterungen des VGB wichtig, welche sich allerdings noch in der Entwurfsphase befinden und so nur stark eingeschränkt auf diese zurückgegriffen werden kann. 3 Definitionen nach [1] und [2] Prozesse: Kennung eines spezifischen Objekts, gebildet in Bezug auf das System, von welchem das Objekt Bestandteil ist, basierend auf einem oder mehreren Aspekten des Systems Objekt: Betrachtungseinheit, die in einem Konstruktions-, Planungs-, Realisierungs-, Betriebs-, Wartungsund Demontageprozess behandelt wird Aspekt: spezifische Betrachtungsweise eines Objekts (Funktions-, Produkt- und Ortssicht) Struktur: Organisation von Beziehungen zwischen Objekten eines Systems, welche Bestandteil-von- Beziehungen beschreibt (besteht aus/ist ein Teil von) System: Menge miteinander in Beziehung stehender Objekte, die in einem bestimmten Zusammenhang als Ganzes gesehen und als von ihrer Umgebung abgegrenzt betrachtet werden Referenzkennzeichen: identifiziert Objekte in einem System eindeutig mit dem Zweck, Informationen über ein Objekt, mit denen das System realisiert ist, in Beziehung zu setzen. Das Objekt kann unter verschiedenen Aspekten bertachtet werden (Funktions-, Produkt-, Ortsaspekt). 1

72 4 Grundlagen Kennzeichenaufbau Abbildung 1: RDS-PP zugrunde liegende Normen/Richtlinien, Quelle: [4] Abbildung 2: Referenzkennzeichen, Aulegungs- und Ausführungsebene, Quelle: [4] 2

73 Abbildung 3: Maximaler Umfang des Kennzeichens, Quelle: [1] Abbildung 4: Zulässige Kombinationen, Quelle: [1] Abbildung 5: Kennzeichenaufbau der verschiedenen Sichten, Quelle: [3] 3

74 Zuordnungen zwischen verschieden Identifikatoren Abbildung 6: Strukturen nach unterschiedlichen Aspekten, Zuordnung verschiedener Identifikatoren, Quelle: [4] Die in Abb. 4 aufgeführten Kombinationen von Kennzeichnenteilen bilden so genannte Identifikatoren, also ein neues Kennzeichen. Identifikatoren können miteinander über n:m Beziehungen, so genannten Zuordnungen, verknüpft werden (siehe Abb. 6). 4

75 5 Übersicht mögliche Aspekte (In Anlehnung an [1] und [3].) Gemeinsame Zuordnung (#) Die gemeinsame Zuordnung ist eine Referenzkennzeichnung einer Anlage/ eines Systems bezogen auf den Standort, nicht auf einen der definierten Aspekte. Sie wird optional angewendet und erfordert eine projektspezifische Festlegung. Funktion (=) In der Kraftwerkstechnik ist zur Kennzeichnung technischer Objekte die Funktion als Hauptaspekt festgelegt. Diese Kennzeichnung orientiert sich an dem Zweck des Objektes, ohne dabei zu berücksichtigen, wo es eingebaut ist und mit welchem Produkt die Aufgabe realisiert ist. Die Gliederrungsstufe 0 (GS0) ist optional und erfordert eine projektspezifische Festlegung. Bezeichnet werden sinnvoll zusammengefasste Teilanlagen. In der GS1 werden Systeme und Teilsysteme nach der VGB B 101 klassifiziert und anschließend nummeriert. Bei den Aggregaten und technischen Einrichtungen legt die DIN die Klassifizierung fest. Produkt ( ) Dieser Kennzeichnungsblock wird verwendet, um technische Objekte nach dem Produktaspekt durch den Hersteller zu kennzeichnen. Diese Kennzeichnung ist allein ausreichend für Produkte, die noch nicht eine bestimmte Funktion innerhalb eines Systems erfüllen. Damit besteht für den Hersteller die Verpflichtung seine Erzeugnisse mit einem Referenzkennzeichen zu versehen (am Objekt und in den Produktdokumenten) ohne wissen zu müssen, wo es später zum Einsatz kommt. Mit der Verwendung, Planung und Einbau im Kraftwerk, wird das Produkt zum Betriebsmittel (siehe unten). Ist ein Produkt weiter in seine Bestandteile zu strukturieren, kann die Geschachtelte Produktkennzeichnung angewendet werden. Dabei werden mehrere Blöcke hintereinander geschrieben; das Vorzeichen muss nur vor dem ersten Kennzeichenblock geschrieben werden. Betriebsmittel (= ) Zur eindeutigen Kennzeichnung von Betriebsmitteln wird in der Kraftwerkstechnik der Übergang vom Funktionsaspekt zum Produktaspekt genutzt. Hierbei wird dem Kennzeichenblock Funktion der Kennzeichenblock Produkt angefügt. Diese Kombination bildet das eindeutige Betriebsmittelkennzeichen. Funktionale Zuordnung (==) Die Funktionale Zuordnung steht für eine eigenständige Kennzeichnungsaufgabe. Sie ermöglicht die Strukturierung des Kraftwerksprozesses (dynamische Funktionen, Wirkungen) unter dem Aspekt des Zusammenwirkens einzelner Funktionen (statische Funktionen, Aufgaben). Diese Aufgabe kann nicht vom Kennzeichenblock Funktion und deren festgelegten Grenzen erfüllt werden. Der Zusammenhang zwischen Funktion und Funktionale Zuordnung wird hergestellt über Zuordnungen. So sind der Funktionale Zuordnung mehrere Funktionen zugeordnet; eine Funktion kann Aufgaben auch in mehreren Teilprozessen erfüllen. Die Anwendung der Funktionalen Zuordnung ist die Basis für: 5

76 eine einfache, übersichtliche und sichere Prozessführung eine intelligente Verdichtung von Informationen über das Prozessgeschehen eine arbeitsteilige Planung mit Minimierung der Schnittstellen eine funktionale Gliederung der elektrischen Stromversorgung eine funktionale Gliederung des Prozessleitsystems (Gruppenebene) eine Signalkennzeichnung (Einzelebene) Funktionale Zuordnung (==) Gruppenebene Mit diesem Kennzeichenblock werden Funktionsbereiche und/oder Funktionsgruppen von technischen Objekten gekennzeichnet, die unter einem anderen funktionalen Aspekt gebildet werden als in dem Kenn- zeichenblock Funktion. Es lassen sich Kraftwerksprozesse gliedern und strukturieren. Die erstellte Struktur kann als Grundlage für die Strukturierung des Prozessleitsystems verwendet werden. Funktionale Zuordnung (==) Einzelebene Mit diesem Kennzeichenblock werden technische Einrichtungen gekennzeichnet, wenn sie im Sinne der funktionalen Zuordnung betrachtet werden. Die Kennzeichnung in der Einzelebene dient als Grundlage für die Kennzeichnung von Signalen. Einbauort (+) Dieser Kennzeichenblock wird angewendet zur Kennzeichnung der Einbauorte von technischen Objekten. Entsprechend der Aufgabenstellung aus den verschiedenen Fachgebieten sind unterschiedliche Kennzeichenmasken festgelegt: Einbauorte in Einbaueinheiten der Elektro- und Leittechnik (Pulte, Tafeln, Schränke); systembezogene Einbaueinheiten der Elektro- und Leittechnik; aufstellungsortbezogene Einbaueinheiten der Elektro- und Leittechnik; Einbauorte in Einrichtungen der Maschinentechnik. Aufstellungsort (++) Dieser Kennzeichenblock dient der Kennzeichnung der topologischen Lage von technischen Einrichtungen und Betriebsmitteln in Gebäuden oder im Gelände. Das Aufstellungsortkennzeichen liefert eine Information über die örtliche Lage der technischen Einrichtungen und Betriebsmittel. Spezifische Kennzeichnen Signalkennzeichnung (;) Signale werden mittels einer Kombination der Kennzeichenteile funktionale Zuordnung (Einzelebene) und Signalname gekennzeichnet. Die funktionale Zuordnung fasst hierbei alle für die Erfüllung der Funktion notwendigen Teilfunktionen zusammen. Anschlusskennzeichnung (:) Zum Herstellen von elektrischen oder mechanischen Verbindungen wird eine eindeutige Kennzeichnung der Anschlussstellen benötigt. 6

77 Dokumentenkennzeichen (&) Die herstellerneutrale, objektbezogene Kennzeichnung von Dokumenten erfolgt mit der Kombination aus Objektkennzeichen und dem Dokumentenartklassenschlüssel in Anlehnung an DIN EN Der Kennzeichenblock Dokumentenartklasse wird angewendet zur Kennzeichnung von Dokumenten zur Unterscheidung nach Informationsinhalt, unabhängig davon, auf welchen Informationsträgern sich die Dokumente befinden. 6 Komplexbeispiel Um die wichtigsten Möglichkeiten des RDS-PP Systems zu veranschaulichen wird beispielhaft das Speisewassersystem im ZET nach verschiedenen Aspekten gekennzeichnet. Die Schaltung ist vereinfacht dargestellt. Nach der projektspezifischen Festlegung der Gliederungsstufe 0 (GS0) erfolgt die Kennzeichnung der GS1 nach der VGB B101 und der GS2 nach VGB B102. Die Varianten der Nummerierung sind in den Anwendungserläuterungen beschrieben. Abbildung 7: Kennzeichnung des Speisewassersystems nach der Funktion Als Kombination des Funktionskennzeichen mit dem Produktkennzeichen ergibt sich das Betriebsmittelkennzeichen (siehe Abb. 8). Für die funktionale Zuordnung der Einzelebene wird das Funktionskennzeichen der Hauptfunktion übernommen und mit dem == als Vorzeichen kombiniert (siehe Abb. 9). Dieses Kennzeichen dient der Signalkennzeichnung als Grundlage (siehe Tab. 1). Der Entwurf für die Strukturierung der Kraftwersprozesse des ZET ist in Abb. 10 und 11 zu sehen. Abb. 11 stellt zusätzlich die Interaktion innerhalb eines Prozessleitsystems dar. Die Gruppen- und Untergruppensteuerungen sind mittels der Gruppenebene der Funktionalen Zuordnung strukturiert. Die einzelnen Anlagen lassen sich über die mit der Einzelebene der funktionalen Zuordnung gebildeten Signalkennzeichen ansprechen. Die Abb. 14 fasst die vorgestellten Kennzeichnungsarten noch einmal zusammen. Tabelle 1: Signalkennzeichnung als Kombination aus Funktionaler Zuordnung und Signalnamen Pumpe in Betrieb: Einzelstörmeldung: Einzelsteuerung aus : ==K41 LAC10 GP001 ;XB01 ==K41 LAC10 GP001 ;XM01 ==K41 LAC10 GP001 ;YB02 7

78 Abbildung 8: Produktsicht der Speisewasserpumpe Abbildung 9: Funktionale Zuordnung Einzelebene 8

79 Abbildung 10: Strukturierung des Kraftwerksprozesses GuD mittels Funktionaler Zuordnung Gruppenebene 9

80 Abbildung 11: Signalaustausch im PLS 10

81 Abbildung 12: Dokumentenkennzeichnung Abbildung 13: Dokumentenkennzeichnung 11

82 Abbildung 14: Übersicht 12

Program SUC 2013-2016 P-2 Scientific information: Access, processing and safeguarding

Program SUC 2013-2016 P-2 Scientific information: Access, processing and safeguarding Program SUC 2013-2016 P-2 Scientific information: Access, processing and safeguarding White Paper for a Swiss Information Provisioning and Processing Infrastructure 2020 Contact: isci@crus.ch Web: www.crus.ch/isci



OWNER S MANUAL BEDIENUNGSANLEITUNG OWNER S MANUAL BEDIENUNGSANLEITUNG Contents Introduction...................................................................5 Description of the system......................................................5


Sartorius LMA300P LMA316PA / LMA321PA

Sartorius LMA300P LMA316PA / LMA321PA perating Instructions Betriebsanleitung Sartorius LMA300P LMA316PA / LMA321PA Microwave Moisture Analyzer Mikrowellen-Feuchtemessgerät Mat.-Nr. 98648-014-18 98648-018-36 LMA316PA / LMA321PA Englisch 3


Freelance. Getting Started

Freelance. Getting Started Freelance Getting Started Freelance Getting Started Version 9.2 SP1 NOTICE The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB


Sartocheck 4 Sartocheck 4 MultiUnit

Sartocheck 4 Sartocheck 4 MultiUnit Operating Instructions Betriebsanleitung Sartocheck 4 Sartocheck 4 MultiUnit Filter Integrity Tester Filterintegritäts-Testgerät Version 2.03 85030-519-11 Vers. 09 2009 Contents Inhalt English...............................................


Supporting Public Deliberation Through Spatially Enhanced Dialogs

Supporting Public Deliberation Through Spatially Enhanced Dialogs MASTER THESIS Supporting Public Deliberation Through Spatially Enhanced Dialogs Gerald Pape 2nd November 2014 Westfälische Wilhelms-Universität Münster Institute for Geoinformatics First Supervisor: Second


date / Datum issue / Ausgabe author / erstellt reviewed / geprüft 2008-10-24 01_998_330_0_m Carsten Dietze Heiko Ebermann

date / Datum issue / Ausgabe author / erstellt reviewed / geprüft 2008-10-24 01_998_330_0_m Carsten Dietze Heiko Ebermann Manual CoolTherm Server Cabinet with integrated liquid cooling Effective cooling capacity 12-25 / 35 KW Bedienungsanleitung CoolTherm Schaltschrank mit integrierter Flüssigkeitskühlung Nutzkühlleistung


User Guide. KVM series3-1621 Keyboard/Video/Mouse Switch English

User Guide. KVM series3-1621 Keyboard/Video/Mouse Switch English User Guide KVM series3-1621 Keyboard/Video/Mouse Switch English control 3 USA Notification Warning: Changes or modifications to this unit not expressly approved by the party responsible for compliance



THE USE OF XING AND LINKEDIN FOR RECRUITMENT IN ENTERPRISES THE USE OF XING AND LINKEDIN FOR RECRUITMENT IN ENTERPRISES 22nd June 2012 Carlo Colicchio Iso Demirkaya Alex Hächler Project 1 / FHNW Master of Science in Business Information Systems Introduction Title:


FOR. Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften der Universität Mannheim.

FOR. Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften der Universität Mannheim. DESIGN PRINCIPLES FOR SUPPLY NETWORK SYSTEMS Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften der Universität Mannheim vorgelegt von Diplom-Kaufmann


Entwicklungen in den Informations- und Kommunikationstechnologien

Entwicklungen in den Informations- und Kommunikationstechnologien Entwicklungen in den Informations- und Kommunikationstechnologien Herausgeber: Friedrich-L. Holl Band 3 Study Criteria for success of identification, authentication and signing methods based on asymmetric



International Symposium INFORMATION MANAGEMENT IN FOREST ENTERPRISES International Union of Forestry Research Organizations 4.04.02 - Working Party: Managerial Economics in Forestry 4.13.00 - Research Group: Managerial, Social and Environmental Accounting International


',3/20$5%(,7. Titel der Diplomarbeit: etom Enhanced Telecom Operations Map: Design und Erstellung von Telekom-Referenzprozessen.

',3/20$5%(,7. Titel der Diplomarbeit: etom Enhanced Telecom Operations Map: Design und Erstellung von Telekom-Referenzprozessen. ',3/20$5%(,7 Titel der Diplomarbeit: etom Enhanced Telecom Operations Map: Design und Erstellung von Telekom-Referenzprozessen. Verfasser: angestrebter akademischer Grad Magister der Sozial- und Wirtschaftswissenschaften


Evaluation of the COGITO system

Evaluation of the COGITO system Risø-R-1363 (EN) Evaluation of the COGITO system V. Andersen and H.H.K. Andersen Risø National Laboratory, Roskilde August 2002 Abstract This report covers the deliverable D7.2 of the COGITO project. It


BIOSTAT RM 20 50 basic

BIOSTAT RM 20 50 basic Operating Instructions Bedienungsanleitung BIOSTAT RM 20 50 basic 85032-534-52 85032-534-52 Vers. 11 2011 Contents English.............................................. Page 5 Deutsch.............................................


Sustainability as a driver of innovation in the automotive industry on the example of Recycling old cars and car parts.

Sustainability as a driver of innovation in the automotive industry on the example of Recycling old cars and car parts. University of Applied Science Campus Wels Course: Innovation- and Productmanagement Sustainability as a driver of innovation in the automotive industry on the example of Recycling old cars and car parts.


IT-Outsourcing in Switzerland. IT-Outsourcing in der Schweiz

IT-Outsourcing in Switzerland. IT-Outsourcing in der Schweiz IT-Outsourcing in Switzerland IT-Outsourcing in der Schweiz Dr. iur. Roger Staub Nicola Benz Rechtsanwälte Attorneys at Law Avocats I T - O u t s o u r c i n g i n S w i t z e r l a n d I T - O u t s


Burkhard Stiller Thomas Bocek Cristian Morariu Peter Racz Martin Waldburger (Eds.) Internet Economics II. February 2006

Burkhard Stiller Thomas Bocek Cristian Morariu Peter Racz Martin Waldburger (Eds.) Internet Economics II. February 2006 Burkhard Stiller Thomas Bocek Cristian Morariu Peter Racz Martin Waldburger (Eds.) Internet Economics II TECHNICAL REPORT No. ifi-2006.02 February 2006 University of Zurich Department of Informatics (IFI)


NI DataFinder Server Edition

NI DataFinder Server Edition NI DataFinder Server Edition Search Engine for Technical Data NI DataFinder Server Edition September 2013 374430H Support Worldwide Technical Support and Product Information ni.com Worldwide Offices Visit


Heiko Bischoff, Masahiro Eto, Pierre Schaller Thanks to: Matthias Klag, Michael Ruf The information in this document is subject to change without

Heiko Bischoff, Masahiro Eto, Pierre Schaller Thanks to: Matthias Klag, Michael Ruf The information in this document is subject to change without Heiko Bischoff, Masahiro Eto, Pierre Schaller Thanks to: Matthias Klag, Michael Ruf The information in this document is subject to change without notice and does not represent a commitment on the part


Eidesstattliche Erklärung

Eidesstattliche Erklärung Can a Paths Catalogue in European High-Speed Rail Operations enhance Competition? Master Thesis University of Zurich Executive MBA Prof. Dr. Schenker Degree Program: Executive MBA Authors: Eric Cosandey


NI DataFinder Server Edition

NI DataFinder Server Edition NI DataFinder Server Edition Search Engine for Technical Data NI DataFinder Server Edition July 2012 374430G Support Worldwide Technical Support and Product Information ni.com Worldwide Offices Visit ni.com/niglobal


User Guide / Bedienungsanleitung. KVM series3-client Client Software for Keyboard/Video/Mouse Switch

User Guide / Bedienungsanleitung. KVM series3-client Client Software for Keyboard/Video/Mouse Switch control 3 User Guide / Bedienungsanleitung KVM series3-client Client Software for Keyboard/Video/Mouse Switch English / Deutsch KVM s3 Client Installer/User Guide Edition January 2006 Comments... Suggestions...


UPS WEB/SNMP MANAGER. CS121 Series. User Manual - English Benutzerhandbuch - Deutsch Rel.49

UPS WEB/SNMP MANAGER. CS121 Series. User Manual - English Benutzerhandbuch - Deutsch Rel.49 UPS WEB/SNMP MANAGER CS2 Series User Manual - English Benutzerhandbuch - Deutsch Rel.49 Limited Warranty This software and the enclosed materials are provided without warranty of any kind. The entire risk


Schulz, Judith Company-Wiki as a knowledge transfer instrument for reducing the shortage of skilled workers

Schulz, Judith Company-Wiki as a knowledge transfer instrument for reducing the shortage of skilled workers Schulz, Judith Company-Wiki as a knowledge transfer instrument for reducing the shortage of skilled workers Bremen : Institut Technik und Bildung 2009, 24 S. - (ITB-Forschungsberichte; 42) Empfohlene Zitierung/


NI DataFinder Server Edition

NI DataFinder Server Edition NI DataFinder Server Edition Search Engine for Technical Data NI DataFinder Server Edition July 2014 374430J Support Worldwide Technical Support and Product Information ni.com Worldwide Offices Visit ni.com/niglobal


A Division of Cisco Systems, Inc. ADSL2 Gateway. with 4-Port Switch. User Guide WIRED AG241. Model No.

A Division of Cisco Systems, Inc. ADSL2 Gateway. with 4-Port Switch. User Guide WIRED AG241. Model No. A Division of Cisco Systems, Inc. WIRED ADSL2 Gateway with 4-Port Switch User Guide Model No. AG241 ADSL2 Gateway with 4-Port Switch Copyright and Trademarks Specifications are subject to change without


5. GI/ITG KuVS Fachgespräch Ortsbezogene Anwendungen und Dienste 4.-5. September 2008, Nürnberg

5. GI/ITG KuVS Fachgespräch Ortsbezogene Anwendungen und Dienste 4.-5. September 2008, Nürnberg 5. GI/ITG KuVS Fachgespräch Ortsbezogene Anwendungen und Dienste 4.-5. September 2008, Nürnberg Jörg Roth (Hrsg.) Georg-Simon-Ohm-Hochschule Nürnberg 90489 Nürnberg Joerg.Roth@Ohm-hochschule.de Abstract


A Division of Cisco Systems, Inc. GHz 2.4 802.11g. Wireless-G. User Guide. ADSL Gateway WIRELESS WAG54G. Model No.

A Division of Cisco Systems, Inc. GHz 2.4 802.11g. Wireless-G. User Guide. ADSL Gateway WIRELESS WAG54G. Model No. A Division of Cisco Systems, Inc. GHz 2.4 802.11g WIRELESS Wireless-G ADSL Gateway User Guide Model No. WAG54G Wireless-G ADSL Gateway Copyright and Trademarks Specifications are subject to change without


Burkhard Stiller, Placi Flury, Jan Gerke, Hasan, Peter Reichl (Edt.) Internet-Economics 1

Burkhard Stiller, Placi Flury, Jan Gerke, Hasan, Peter Reichl (Edt.) Internet-Economics 1 Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Burkhard Stiller, Placi Flury, Jan Gerke, Hasan, Peter Reichl (Edt.) Internet-Economics 1 TIK-Report Nr. 105, Februayr