Declarative Data Cleaning

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Declarative Data Cleaning"

Transkript

1 Declarative Data Cleaning Vortragsgrundlage: Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, Cristian Augustin Saita: Declarative Data Cleaning: Language, Model, and Algorithms, in VLDB '01: Proceedings of the 27th International Conference on Very Large Data Bases, 2001 Original Version: Extended Version: ftp://ftp.inria.fr/inria/publication/publi pdf/rr/rr 4149.pdf

2 Declarative Data Cleaning: Language, Model, and Algorithms Seminar: Digital Information Curation Sebastian Rexhausen

3 Inhalt Einführung Problemstellung Declarative Data Cleaning Konzept Specification Language User Interaction

4 Data Cleaning Nur auf Grund von verlässlichen Daten können verlässliche Entscheidungen getroffen werden. Aufgabe Data Cleaning: Auch data cleansing, data scrubbing oder Datenbereinigung Erkennen von Inkonsistenzen und Fehlern in Datenbeständen und anschließendes Entfernen bzw. Korrigieren der Daten.

5 Data Cleaning Nachfrage nach Data Cleaning: Anomalien in einer Datensammlung Überführung von unstrukturierte/teilstrukturierten Daten in strukturierte Daten Kombination von Daten aus mehreren Quellen

6 Probleme Referenz aus Paper1: [QGMW96]Dallan Quass, Ashish Gupta, Inderphal Singh Mumick, and Jennifer Widom. Making Views Self Maintainable for Data Warehousing. In Proceedings of the Conference on Parallel and Distributed Information Systems. Miami Beach, Florida, USA, Available via WWW at www db.stanford.edu as pub/papers/self maint.ps. Referenz aus Paper2: [12] D. Quass, A. Gupta, I. Mumick, and J. Widom: Making views selfmaintanable for data, PDIS'95

7 Probleme Referenz aus Paper1: [QGMW96]Dallan Quass, Ashish Gupta, Inderphal Singh Mumick, and Jennifer Widom. Making Views Self Maintainable for Data Warehousing. In Proceedings of the Conference on Parallel and Distributed Information Systems. Miami Beach, Florida, USA, Available via WWW at www db.stanford.edu as pub/papers/self maint.ps. Referenz aus Paper2: [12] D. Quass, A. Gupta, I. Mumick, and J. Widom: Making views selfmaintanable for data, PDIS'95 1. universelle ID

8 Probleme Referenz aus Paper1: [QGMW96]Dallan Quass, Ashish Gupta, Inderphal Singh Mumick, and Jennifer Widom. Making Views Self Maintainable for Data Warehousing. In Proceedings of the Conference on Parallel and Distributed Information Systems. Miami Beach, Florida, USA, Available via WWW at www db.stanford.edu as pub/papers/self maint.ps. Referenz aus Paper2: [12] D. Quass, A. Gupta, I. Mumick, and J. Widom: Making views selfmaintanable for data, PDIS'95 1. universelle ID 2. Syntax & Formatierung

9 Probleme Referenz aus Paper1: [QGMW96]Dallan Quass, Ashish Gupta, Inderphal Singh Mumick, and Jennifer Widom. Making Views Self Maintainable for Data Warehousing. In Proceedings of the Conference on Parallel and Distributed Information Systems. Miami Beach, Florida, USA, Available via WWW at www db.stanford.edu as pub/papers/self maint.ps. Referenz aus Paper2: [12] D. Quass, A. Gupta, I. Mumick, and J. Widom: Making views selfmaintanable for data, PDIS'95 1. universelle ID 2. Syntax & Formatierung

10 Probleme Referenz aus Paper1: [QGMW96]Dallan Quass, Ashish Gupta, Inderphal Singh Mumick, and Jennifer Widom. Making Views Self Maintainable for Data Warehousing. In Proceedings of the Conference on Parallel and Distributed Information Systems. Miami Beach, Florida, USA, Available via WWW at www db.stanford.edu as pub/papers/self maint.ps. Referenz aus Paper2: [12] D. Quass, A. Gupta, I. Mumick, and J. Widom: Making views selfmaintanable for data, PDIS'95 1. universelle ID 2. Syntax & Formatierung 3. Konsistenz der Daten

11 Probleme Referenz aus Paper1: [QGMW96]Dallan Quass, Ashish Gupta, Inderphal Singh Mumick, and Jennifer Widom. Making Views Self Maintainable for Data Warehousing. In Proceedings of the Conference on Parallel and Distributed Information Systems. Miami Beach, Florida, USA, Available via WWW at www db.stanford.edu as pub/papers/self maint.ps. Referenz aus Paper2: [12] D. Quass, A. Gupta, I. Mumick, and J. Widom: Making views selfmaintanable for data, PDIS'95 1. universelle ID 2. Syntax & Formatierung 3. Konsistenz der Daten 4. Fehlerhaftigkeit der Daten

12 Probleme Referenz aus Paper1: [QGMW96]Dallan Quass, Ashish Gupta, Inderphal Singh Mumick, and Jennifer Widom. Making Views Self Maintainable for Data Warehousing. In Proceedings of the Conference on Parallel and Distributed Information Systems. Miami Beach, Florida, USA, Available via WWW at www db.stanford.edu as pub/papers/self maint.ps. Referenz aus Paper2: [12] D. Quass, A. Gupta, I. Mumick, and J. Widom: Making views selfmaintanable for data, PDIS'95 1. universelle ID 2. Syntax & Formatierung 3. Konsistenz der Daten 4. Fehlerhaftigkeit der Daten 5. Unterschiedliche Informationen

13 Declarative Data Cleaning Ergebnisse der existierenden Verfahren unzureichend Declarative Data Cleaning Hauptsächlich: klare Trennung von logischer Spezifikation und physischer Implementierung Framework (Projekt AJAX) Einbeziehung des Nutzers während des ganzen Analyseprozesses

14 Trennung logische/physische Ebene Logische Ebene: Datenflussdiagramm welches die zur Bereinigung der Daten benötigten Transformationen spezifiziert Physische Ebene: Implementierung und Optimierung der Daten Transformationen

15 Framework für bibliographische Daten

16 Logische Ebene erweitertes SQL eigene Datenquellen

17 Physische Ebene Optimierungsmöglichkeiten: Optimierung der gewählten Funktion Wahl einer optimalen Funktion (+ evtl. Implementierung)

18 Specification Language Operatoren Mapping Matching Clustering Merging (View)

19 Mapping Operator arbeitet die Daten für die weitere Verarbeitung auf falls kein Unique Key vorhanden ist hinzufügen, ansonsten übernehmen CREATE MAPPING <operation name> FROM <predicate name> [<alias variable>] [LET <let clause>] [WHERE <where clause>] <select into clause>

20 Mapping Operator CREATE MAPPING AddKeytoDirtyData FROM DirtyData LET Key = generatekey(dirtydata.paper) {SELECT Key.gernerateKey AS paperkey, DirtyData.paper AS paper INTO KeyDirtyData}

21 Matching Operator sucht nach Einträgen, die wahrscheinlich das gleiche Objekt beschreiben Übereinstimmungskriterium kann ein oder mehrere Einträge sein CREATE MATCHING <operation name> FROM (<predicate name> [<alias variable>])+ [LET <let clause>] [WHERE <where clause>] INTO <predicate name>

22 Matching Operator CREATE MATCHING MatchDirtyAuthors FROM DirtyAuthors a1, DirtyAuthors a2 LET distance = editdistanceauthors(a1.name, a2.name) WHERE distance < maxdist(a1.name, a2.name, 15) INTO MatchAuthors

23 Clustering Operator gruppiert Einträge, deren Ähnlichkeitswert einen vorgegebenen Schwellenwert übersteigt CREATE CLUSTERING <operation name> FROM <predicate name> [<alias variable>] BY METHOD <method name> WITH PARAMETERS <parameter name> [{<parameter name}] INTO <predicate name>

24 Clustering Operator CREATE CLUSTERING clusterauthorsbytransitiveclosure FROM MatchAuthors BY METHOD transitive closure WITH PARAMETERS authorkey1, authorkey2 INTO clusterauthors

25 Merging Operator fügt die durch den Clusteralgorithmus berechneten Gruppen zu jeweils einem Eintrag zusammen CREATE MERGING <operation name> USING <predicate name> [<alias variable>] LET <let clause> [WHERE <where clause>] <select into clause>

26 Merging Operator CREATE MERGING MergeAuthors USING clusterauthors(cluster_id) ca LET name = getlongestauthorname(dirtyauthors(ca).name) key = generatekey() {SELECT key AS authorkey, name AS name INTO Authors}

27 View Operator arbeitet die Inhalte aus verschiedenen Relationen zu einer neuen Relation so auf, dass sie einem gewünschten Ausgabeformat entsprechen CREATE VIEW <operation name> FROM (<predicate name> [<alias variable>])+ [WHERE <where clause>] {<select into clause>}

28 View Operator CREATE VIEW viewpublications FROM DirtyPubs p, Titles t WHERE p.pubkey AS pubkey {SELECT p.pubkey AS pubkey, t.title AS title, t.eventkey AS eventkey, p.volume AS volume, p.number AS number, p.country AS country, p.city AS city, p.pages AS pages,... INTO Publications CONSTRAINT NOT NULL title}

29 User Interaction Explizite Nutzer Interaktion während des ganzen Prozesses schrittweise Verfeinerung der Anfragen Zurückverfolgung der Anfragen Exceptions

30 Ende

Hausarbeit zum Seminar: Digital Information Curation WS 2005/2006. Dozenten: Prof. Dr. Marc Scholl, Dr. André Seifert. Language, Model, and Algorithms

Hausarbeit zum Seminar: Digital Information Curation WS 2005/2006. Dozenten: Prof. Dr. Marc Scholl, Dr. André Seifert. Language, Model, and Algorithms Universität Konstanz Hausarbeit zum Seminar: Digital Information Curation WS 2005/2006 Dozenten: Prof. Dr. Marc Scholl, Dr. André Seifert Declarative Data Cleaning: Language, Model, and Algorithms Sebastian

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Big Data Management Thema 14: Cassandra

Big Data Management Thema 14: Cassandra Thema 14: Cassandra Jan Kristof Nidzwetzki Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read

Mehr

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling 30. Juni 2006 - Technische Universität Kaiserslautern Paul R. Schilling ! " #$% & '( ( ) *+, - '. / 0 1 2("$ DATEN SIND ALLGEGENWÄRTIG Bill Inmon, father of data warehousing Unternehmen In einer vollkommenen

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

PostgreSQL unter Debian Linux

PostgreSQL unter Debian Linux Einführung für PostgreSQL 7.4 unter Debian Linux (Stand 30.04.2008) von Moczon T. und Schönfeld A. Inhalt 1. Installation... 2 2. Anmelden als Benutzer postgres... 2 2.1 Anlegen eines neuen Benutzers...

Mehr

ORM & OLAP. Object-oriented Enterprise Application Programming Model for In-Memory Databases. Sebastian Oergel

ORM & OLAP. Object-oriented Enterprise Application Programming Model for In-Memory Databases. Sebastian Oergel ORM & OLAP Object-oriented Enterprise Application Programming Model for In-Memory Databases Sebastian Oergel Probleme 2 Datenbanken sind elementar für Business-Anwendungen Gängiges Datenbankparadigma:

Mehr

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3)

WS 2010/11 Datenbanksysteme Fr 15:15 16:45 R 1.008. Vorlesung #5. SQL (Teil 3) Vorlesung #5 SQL (Teil 3) Fahrplan Besprechung der Übungsaufgaben Rekursion Rekursion in SQL-92 Rekursion in DBMS- Dialekten (Oracle und DB2) Views (Sichten) - gespeicherte Abfragen Gewährleistung der

Mehr

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 6. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 Aufgabe 1: Rekursion Betrachten Sie die folgende Tabelle

Mehr

Ausgangspunkt. Datenintegration. Ziel. Konflikte. Architekturen. Transparenz

Ausgangspunkt. Datenintegration. Ziel. Konflikte. Architekturen. Transparenz Ausgangspunkt Datenintegration Web Informationssysteme Wintersemester 2002/2003 Donald Kossmann Daten liegen in verschiedenen Datenquellen (Extremfall: jede URL eigene Datenquelle) Mietautos bei www.hertz.com

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Detecting Near Duplicates for Web Crawling

Detecting Near Duplicates for Web Crawling Detecting Near Duplicates for Web Crawling Gurmeet Singh Manku et al., WWW 2007* * 16th international conference on World Wide Web Detecting Near Duplicates for Web Crawling Finde near duplicates in großen

Mehr

Allgemeines. veröffentlicht unter http://www.profv.de/uni/ lizensiert unter. Creative Commons BY-SA 3.0. XQuery in MS SQL Server 2005

Allgemeines. veröffentlicht unter http://www.profv.de/uni/ lizensiert unter. Creative Commons BY-SA 3.0. XQuery in MS SQL Server 2005 Volker Grabsch 14. Januar 2008 Allgemeines veröffentlicht unter http://www.profv.de/uni/ lizensiert unter Creative Commons BY-SA 3.0 Quelle Dieser Vortrag basiert auf dem Paper XQuery Implementation in

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management Integrating Knowledge Discovery into Knowledge Management Katharina Morik, Christian Hüppe, Klaus Unterstein Univ. Dortmund LS8 www-ai.cs.uni-dortmund.de Overview Integrating given data into a knowledge

Mehr

StructuredQueryLanguage(SQL)

StructuredQueryLanguage(SQL) StructuredQueryLanguage(SQL) Themen: ErstelenundÄndernvonTabelen AbfragenvonDaten Einfügen,ÄndernundLöschenvonDaten Erstelennutzerde niertersichten(views) 2012Claßen,Kempa,Morcinek 1/23 SQL Historie System

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

NoSQL mit Postgres 15. Juni 2015

NoSQL mit Postgres 15. Juni 2015 Tag der Datenbanken 15. Juni 2015 Dipl.-Wirt.-Inform. Agenda l Vorstellung l Marktübersicht l Warum PostgreSQL? l Warum NoSQL? l Beispielanwendung Seite: 2 Vorstellung Dipl.-Wirt.-Inform. [1990] Erste

Mehr

Techniken des Data Merging in Integrationssystemen

Techniken des Data Merging in Integrationssystemen Techniken des Data Merging in Integrationssystemen Jens Bleiholder Humboldt-Universität zu Berlin, Institut für Informatik bleiho@informatik.hu-berlin.de Zusammenfassung Die Integration von Daten aus heterogenen

Mehr

SQL. Fortgeschrittene Konzepte Auszug

SQL. Fortgeschrittene Konzepte Auszug SQL Fortgeschrittene Konzepte Auszug Levels SQL92 Unterteilung in 3 Levels Entry Level (i.w. SQL89) wird von nahezu allen DBS Herstellern unterstützt Intermediate Level Full Level SQL DML 2-2 SQL92 behebt

Mehr

XQuery Implementation in a Relational Database System

XQuery Implementation in a Relational Database System Humboldt Universität zu Berlin Institut für Informatik XQuery Implementation in a Relational Database System VL XML, XPath, XQuery: Neue Konzepte für Datenbanken Jörg Pohle, pohle@informatik.hu-berlin.de

Mehr

Oracle SQL Developer Data Modeling

Oracle SQL Developer Data Modeling Oracle SQL Developer Data Modeling DOAG Regio Rhein-Neckar Oracle Deutschland GmbH The following is intended to outline our general product direction. It is intended for information

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

Data Mining mit Microsoft SQL-Server 2005/2008

Data Mining mit Microsoft SQL-Server 2005/2008 Data Mining mit Microsoft SQL-Server 2005/2008 Marcel Winkel Hochschule für Technik, Wirtschaft und Kultur Leipzig Fachbereich Informatik, Mathematik und Naturwissenschaften 19. Mai 2010 1 2 Klassifikationsalgorithmen

Mehr

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme

Web-Technologien. Prof. Dr. rer. nat. Nane Kratzke SQL. Praktische Informatik und betriebliche Informationssysteme Handout zur Unit Web-Technologien SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: nane.kratzke@fh-luebeck.de (Praktische

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D.

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D. 1 Copyright 1996-1997 by Axel T. Schreiner. All Rights Reserved. 7 Datenbankzugriff Prinzip Dieser Abschnitt beschäftigt sich mit dem Paket java.sql, das eine SQL-Schnittstelle für Java verkapselt. Java-Programme

Mehr

Neugestaltung der Datenbank des Chemnitzer Studentennetzes

Neugestaltung der Datenbank des Chemnitzer Studentennetzes 12.12.2012 Neugestaltung der Datenbank des Chemnitzer Studentennetzes Verteidigung Bachelorarbeit Morris Jobke Prüfer: Dr. Frank Seifert Betreuer: Dipl.-Inf. Johannes Fliege Neugestaltung der Datenbank

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Indexing und Performance Tuning

Indexing und Performance Tuning Indexing und Performance Tuning Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig PostgreSQL Indexing - Jeder hat schon einmal ein Telefonbuch Benutzt - Jeder hat schon einmal Suchen durchgeführt CREATE

Mehr

3 Arbeiten mit geographischen Daten

3 Arbeiten mit geographischen Daten 3 Arbeiten mit geographischen Daten 3.1 Spatial Datatypes: Bisher wurden Koordinaten nur von GIS-Systemen verwendet. Es gibt immer mehr Applikationen, die geographische und/oder geometrische Daten verarbeiten.

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Ulrike Schwinn Dipl.-Math. Oracle Deutschland GmbH. Kultur und Informatik - Datenverwaltung 04.Juli 2007

Ulrike Schwinn Dipl.-Math. Oracle Deutschland GmbH. Kultur und Informatik - Datenverwaltung 04.Juli 2007 ,QVHUW3LFWXUH+HUH! 1LFKWUHODWLRQDOH'DWHQLQGHU2UDFOH'DWHQEDQN Ulrike Schwinn Dipl.-Math. Oracle Deutschland GmbH Kultur und Informatik - Datenverwaltung 04.Juli 2007 'DWHQRUJDQLVDWLRQ *HWUHQQWH'DWHQKDOWXQJ

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Die Structured Query Language SQL Prof. Dr. Nikolaus Wulff SQL Das E/R-Modell lässt sich eins zu eins auf ein Tabellenschema abbilden. Benötigt wird eine Syntax, um Tabellen

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme

DBSP. Vorlesung. Prof. Dr. rer. nat. Nane Kratzke. Unit. Praktische Informatik und betriebliche Informationssysteme Handout zur Vorlesung Vorlesung DBSP Unit Datenbanken SQL 1 Prof. Dr. rer. nat. Nane Kratzke Praktische Informatik und betriebliche Informationssysteme Raum: 17-0.10 Tel.: 0451 300 5549 Email: kratzke@fh-luebeck.de

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

Anfragen & Transformation

Anfragen & Transformation Anfragen & Transformation mit XQuery XML Proseminar Le Huan Stefan Tran I 21.06.2010 Reales Beispiel Alle Weltmeister und ihre Finalgegner worldchampions.xml 2006 italy

Mehr

Die Datenmanipulationssprache SQL

Die Datenmanipulationssprache SQL Die Datenmanipulationssprache SQL Daten eingeben Daten ändern Datenbank-Inhalte aus Dateien laden Seite 1 Data Manipulation Language A DML statement is executed when you Add new rows to a table Modify

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

AutoSPARQL. Let Users Query Your Knowledge Base

AutoSPARQL. Let Users Query Your Knowledge Base AutoSPARQL Let Users Query Your Knowledge Base Christian Olczak Seminar aus maschinellem Lernen WS 11/12 Fachgebiet Knowledge Engineering Dr. Heiko Paulheim / Frederik Janssen 07.02.2012 Fachbereich Informatik

Mehr

Entwicklung einer Informix- Administrationsdatenbank mit ERwin

Entwicklung einer Informix- Administrationsdatenbank mit ERwin Entwicklung einer Informix- Administrationsdatenbank mit ERwin Ausgangslage Ein oder mehrere Informix-Datenbankserver Mehrere Datenbanken Sehr viele Tabellen 21.10.1997 2 Problemstellung Fehlerprävention

Mehr

SQL,Teil 3: Unterabfragen, Views & Berechnungen

SQL,Teil 3: Unterabfragen, Views & Berechnungen SQL,Teil 3: Unterabfragen, Views & Berechnungen W. Spiegel Übersicht Hinweis... Unterabfragen (subqueries) Virtuelle Spalten: AS Logik Berechnungen: Aggregatfunktionen in SQL GROUP BY & HAVING Views (Sichten)

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin

Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin Datenbanken SQL Einführung Datenbank in MySQL einrichten mit PhpMyAdmin PhpMyAdmin = grafsches Tool zur Verwaltung von MySQL-Datenbanken Datenbanken erzeugen und löschen Tabellen und Spalten einfügen,

Mehr

Sructred Query Language

Sructred Query Language Sructred Query Language Michael Dienert 11. November 2010 Inhaltsverzeichnis 1 Ein kurzer Versionsüberblick 1 2 SQL-1 mit einigen Erweiterungen aus SQL-92 2 3 Eine Sprache zur Beschreibung anderer Sprachen

Mehr

Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation

Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Algorithmen zur Berechnung der Transitiven Hülle einer Datenbankrelation Daniel Reinhold Shenja Leiser 6. Februar 2006 2/28 Gliederung Einführung Transitive Hülle Definition Iterative Algorithmen 1. Naive

Mehr

Rails Ruby on Rails Ajax on Rails. Clemens H. Cap http://wwwiuk.informatik.uni-rostock.de http://www.internet-prof.de

Rails Ruby on Rails Ajax on Rails. Clemens H. Cap http://wwwiuk.informatik.uni-rostock.de http://www.internet-prof.de Rails Ruby on Rails Ajax on Rails Who is who? Rails Ziel: Framework für Web (2.0) Anwungen Beschleunigung der Entwicklung Konzept des Agilen Programmierens Ruby Interpretierte Sprache Rails Integrationen

Mehr

SQL and PL/SQL unleashed. Neuheiten bei Oracle 11g und Oracle 12c im Bereich SQL und PL/SQL

SQL and PL/SQL unleashed. Neuheiten bei Oracle 11g und Oracle 12c im Bereich SQL und PL/SQL . Neuheiten bei Oracle 11g und Oracle 12c im Bereich SQL und PL/SQL Johannes Gritsch Themenübersicht Neue Scheduler Job Typen SQL_SCRIPT und BACKUP_SCRIPT SQL RowLimit: PERCENT und TIES WITH-Klausel mit

Mehr

5. Datendefinition in SQL

5. Datendefinition in SQL Datendefinition 5. Datendefinition in SQL Schema, Datentypen, Domains Erzeugen von Tabellen (CREATE TABLE) Schemaevolution: Ändern/Löschen von Tabellen Sichtkonzept (Views) CREATE VIEW / DROP VIEW Problemfälle

Mehr

ColdFusion 8 PDF-Integration

ColdFusion 8 PDF-Integration ColdFusion 8 PDF-Integration Sven Ramuschkat SRamuschkat@herrlich-ramuschkat.de München & Zürich, März 2009 PDF Funktionalitäten 1. Auslesen und Befüllen von PDF-Formularen 2. Umwandlung von HTML-Seiten

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

Daten, Datenbanken, Datenbankmanagmentsysteme

Daten, Datenbanken, Datenbankmanagmentsysteme banken bankmanagmentsysteme Wikipedia sagt Bspe.: : sind zum Zweck der Verarbeitung zusammengefasste Zeichen, die aufgrund bekannter oder unterstellter Abmachungen Informationen tragen. 15.03.2012 als

Mehr

Relationentheorie grundlegende Elemente

Relationentheorie grundlegende Elemente Relationentheorie grundlegende Elemente Symbol Bedeutung Entsprechung in SQL π AAAA Projektion SELECT σ F Selektion WHERE ρ Umbenennung RENAME; AS Natural Join NATURAL JOIN (nicht in MS SQL Server verwendbar)

Mehr

Kopplung Verteilter Datenbanksysteme. Eric Ndengang

Kopplung Verteilter Datenbanksysteme. Eric Ndengang Kopplung Verteilter Datenbanksysteme Eric Ndengang 21.06.2004 Seminar SS 2004 Universität Karlsruhe Babel 21.06.2004 Seminar SS 2004 2 Übersicht Einleitung Problematik Wrapper / Mediator-basierte Architekturen

Mehr

Extracting Business Rules from PL/SQL-Code

Extracting Business Rules from PL/SQL-Code Extracting Business Rules from PL/SQL-Code Version 7, 13.07.03 Michael Rabben Knowledge Engineer Semantec GmbH, Germany Why? Where are the business rules? Business Rules are already hidden as logic in

Mehr

Datenbanksysteme Kapitel: SQL Data Definition Language

Datenbanksysteme Kapitel: SQL Data Definition Language Datenbanksysteme Kapitel: SQL Data Definition Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni - Prof.

Mehr

Ermittlung der übereinstimmenden Variablen (-Namen) zweier Datasets

Ermittlung der übereinstimmenden Variablen (-Namen) zweier Datasets News Artikel Foren Projekte Links Über Redscope Join List Random Previous Next Startseite Foren ETL & Base SAS Ermittlung der übereinstimmenden Variablen (-Namen) zweier Datasets 29 November, 2006-16:52

Mehr

7. Übung - Datenbanken

7. Übung - Datenbanken 7. Übung - Datenbanken Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: DBS a Was ist die Kernaufgabe von Datenbanksystemen? b Beschreiben Sie kurz die Abstraktionsebenen

Mehr

Entfernung von Duplikaten in Data Warehouses

Entfernung von Duplikaten in Data Warehouses Entfernung von Duplikaten in Data Warehouses Daniel Martens 11.09.2015, Informationsintegration, Seminar 1/41 Gliederung Problem & Motivation Domänen-unabhängige Verfahren Domänen-abhängige Verfahren DELPHI

Mehr

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join Parsen der Anfrage (SQL) Transformation in eine Standardform (Relationenalgebra) Logische Optimierung Transformation in alternative Zugriffspläne, Physische Optimierung Ausführung des gewählten Zugriffsplans

Mehr

Whitepaper. Produkt: combit Relationship Manager. Einbindung externer FiBu-/Warenwirtschaftsdaten. combit GmbH Untere Laube 30 78462 Konstanz

Whitepaper. Produkt: combit Relationship Manager. Einbindung externer FiBu-/Warenwirtschaftsdaten. combit GmbH Untere Laube 30 78462 Konstanz combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager Einbindung externer FiBu-/Warenwirtschaftsdaten Einbindung externer FiBu-/Warenwirtschaftsdaten - 2 - Inhalt Ausgangssituation

Mehr

Version 1.2.0. smart.finder SDI. What's New?

Version 1.2.0. smart.finder SDI. What's New? Version 1.2.0 smart.finder SDI What's New? 1 Neue Funktionen in Version 1.2.0 3 2 Neue Funktionen in Version 1.1 3 Neue Funktionen in Version 1.2.0 Neue Funktionen Unterstützung von Java 8 Die aktuelle

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 7 Einige interessante SQL und PL/SQL Erweiterungen für Administratoren Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 19 Seite

Mehr

zwei verschiedene Darstellungsformen derselben Abfrage.

zwei verschiedene Darstellungsformen derselben Abfrage. SQL Sprache Die strukturierte Abfragesprache SQL (englisch: Structured Query Language) bildet einen Standard zur Formulierung von Abfragen. Das SQL und das Abfragefenster bilden zwei verschiedene Darstellungsformen

Mehr

Datenmanagement in Android-Apps. 16. Mai 2013

Datenmanagement in Android-Apps. 16. Mai 2013 Datenmanagement in Android-Apps 16. Mai 2013 Überblick Strukturierung von datenorientierten Android-Apps Schichtenarchitektur Möglichkeiten der Datenhaltung: in Dateien, die auf der SDCard liegen in einer

Mehr

Dipl. Inf. Eric Winter. PostgreSQLals HugeData Storage Ein Erfahrungsbericht

Dipl. Inf. Eric Winter. PostgreSQLals HugeData Storage Ein Erfahrungsbericht Dipl. Inf. Eric Winter Entwicklungsleiter PTC GPS-Services GmbH PostgreSQLals HugeData Storage Ein Erfahrungsbericht Inhalt 1. Problembeschreibung 2. Partielle Indexierung 3. Partitionierung 1. Vererbung

Mehr

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen

Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Workshop Aktuelle Entwicklungen bei der Auswertung von Fernerkundungsdaten für forstliche Aufgabenstellungen Schätzung von Holzvorräten und Baumartenanteilen mittels Wahrscheinlichkeitsmodellen Haruth

Mehr

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien

Kapitel 5 Dr. Jérôme Kunegis. SQL: Grundlagen. WeST Institut für Web Science & Technologien Kapitel 5 Dr. Jérôme Kunegis SQL: Grundlagen WeST Institut für Web Science & Technologien Lernziele Kenntnis der Grundkonzepte von SQL Fähigkeit zur praktischen Anwendung von einfachen SQL-Anweisungen

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services

27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services 531 27 Transact-SQL-Erweiterungen in Bezug auf Analysis Services Im zweiten Teil dieses Buches haben wir die Eigenschaften der Transact-SQL- Sprache in Bezug auf die Bearbeitung von operativen Daten gezeigt.

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Wesentliche Eigenschaften von Hibernate Transparente Persistenz Transitive Persistenz (Persistenz

Mehr

Inhalt der Vorlesung. 1 Datenmodellierung (Entity-Relationship Modell) 2 Das relationale Modell. 3 Relationenalgebra. 4 Datenbanksprache (SQL)

Inhalt der Vorlesung. 1 Datenmodellierung (Entity-Relationship Modell) 2 Das relationale Modell. 3 Relationenalgebra. 4 Datenbanksprache (SQL) Inhalt der Vorlesung 1 Datenmodellierung (Entity-Relationship Modell) 2 Das relationale Modell 3 Relationenalgebra 4 Datenbanksprache (SQL) 5 Normalisierung 6 Vom ERM zum Datenbankschema 7 Routinen und

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. XMLType. Christian Senger/Andreas Schmidt XMLType 1/32

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. XMLType. Christian Senger/Andreas Schmidt XMLType 1/32 XMLType Christian Senger/Andreas Schmidt XMLType 1/32 XMLType von Oracle vordefinierter Typ zur Speicherung von nativen XML-Dokumenten unterstützt verschiedene Speichermodelle für XML structured storage

Mehr

Grundzüge und Vorteile von XML-Datenbanken am Beispiel der Oracle XML DB

Grundzüge und Vorteile von XML-Datenbanken am Beispiel der Oracle XML DB Grundzüge und Vorteile von XML-Datenbanken am Beispiel der Oracle XML DB Jörg Liedtke, Oracle Consulting Vortrag zum Praxis-Seminar B bei der KIS-Fachtagung 2007, Ludwigshafen Agenda

Mehr

Grails. Weiterführende Themen zu Internet- und WWW-Technologien. Matthias Springer. 06. Juni 2011

Grails. Weiterführende Themen zu Internet- und WWW-Technologien. Matthias Springer. 06. Juni 2011 Weiterführende Themen zu Internet- und WWW-Technologien 06. Juni 2011 Übersicht 1 Was ist? 2 Übersicht über 3 MVC-Konzept 4 Groovy Beispiele 5 Tutorial: Kleiner Notizblock Web Application Framework Übersicht

Mehr

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99

SQL. SQL: Structured Query Language. Früherer Name: SEQUEL. Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL Früherer Name: SEQUEL SQL: Structured Query Language Standardisierte Anfragesprache für relationale DBMS: SQL-89, SQL-92, SQL-99 SQL ist eine deklarative Anfragesprache Teile von SQL Vier große Teile:

Mehr

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 3 Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 PL/SQL Programmierung Anwendung des Cursor Konzepts und Stored Procedures Und Trigger

Mehr

Logische Optimierung. Im Allgemeinen wird keine optimale Lösung erzielt, sondern nur eine Verbesserung. Logische Optimierung

Logische Optimierung. Im Allgemeinen wird keine optimale Lösung erzielt, sondern nur eine Verbesserung. Logische Optimierung Logische Optimierung Höhere, nichtprozedurale Abfragesprachen (SQL, QBE,...) verlangen keine Kenntnisse des Benutzers über die Implementierung, müssen aber in prozedurale Form (z. B. Relationenalgebra)

Mehr

SAS Metadatenmanagement Reporting und Analyse

SAS Metadatenmanagement Reporting und Analyse SAS Metadatenmanagement Reporting und Analyse Melanie Hinz mayato GmbH Am Borsigturm 9 Berlin melanie.hinz@mayato.com Zusammenfassung Metadaten sind seit Version 9 ein wichtiger Bestandteil von SAS. Neben

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II - SS 2015. Metadaten Fakultät für Informatik & Wirtschaftsinformatik Metadaten Metadaten sind Daten über Daten Data-Dictionary speichert Informationen über die Struktur der Daten, z.b.: Tabellen, Spalten, Datentypen Primär-

Mehr

sm-client Projekt Aktualisierungsinstruktionen von R2.x auf R3.0 Finale Version SSK / BSV eahv/iv

sm-client Projekt Aktualisierungsinstruktionen von R2.x auf R3.0 Finale Version SSK / BSV eahv/iv Aktualisierungsinstruktionen von R2.x auf R3.0 SSK / BSV eahv/iv Version: 1.0 Publication Date: 08. April 2011 Akutalisierung Instruktionen für 3.0 Draft Version COPYRIGHT Copyright - 2011 Cambridge Technology

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr

Uni Duisburg-Essen Fachgebiet Informationssysteme Prof. Dr. N. Fuhr Raum: LF 230 Nächste Sitzung: 19./22. Januar 2004 Die Dokumentation zu DB2 steht online zur Verfügung. Eine lokale Installation der Dokumentation findet sich unter der Adresse http://salz.is.informatik.uni-duisburg.de/db2doc/de_de/index.htm.

Mehr

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt

DBS ::: SERIE 5. Join Right Semi- Join Left Semi-Join Projektion Selektion Fremdschlüssel. Kreuzprodukt DBS ::: SERIE 5 Die Relation produkt enthält Hersteller, Modellnummer und Produktgattung (pc, laptop oder drucker aller Produkte. Die Modellnummer ist (der Einfachheit halber eindeutig für alle Hersteller

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Blatt Nr. 7 Übung zur Vorlesung Grundlagen: Datenbanken im WS13/14 Henrik Mühe (muehe@in.tum.de) http://www-db.in.tum.de/teaching/ws1314/dbsys/exercises/

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

Der SAS DataStep und die Prozedur SQL. 2014 Cellent Finance Solutions GmbH 05.06.2014 Seite: 1

Der SAS DataStep und die Prozedur SQL. 2014 Cellent Finance Solutions GmbH 05.06.2014 Seite: 1 Der SAS DataStep und die Prozedur SQL 2014 Cellent Finance Solutions GmbH 05.06.2014 Seite: 1 Zahlen und Fakten auf einen Blick Firmensitz: Geschäftsstellen: Branchenerfahrung: Umsatz: Anzahl Mitarbeiter:

Mehr

Jens Kupferschmidt Universitätsrechenzentrum

Jens Kupferschmidt Universitätsrechenzentrum Einordnung der Metadaten im MyCoRe Projekt Connection to other databases Data presentations MyCoResearch over instances Classifications Metadate and search Derivate User and access rights GUI Workflow

Mehr