Big Data Management Thema 14: Cassandra

Größe: px
Ab Seite anzeigen:

Download "Big Data Management Thema 14: Cassandra"

Transkript

1 Thema 14: Cassandra Jan Kristof Nidzwetzki

2 Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read Repair 3 Cassandra im Einsatz CQL Cassandra Query Language Performancevergleich 4 Zusammenfassung

3 Thema 14: Cassandra 2 / 25 Grundlagen Überblick Was ist Cassandra? Cassandra in 50 Worten Apache Cassandra is an open source, distributed, decentralized, elastically scalable, highly available, fault tolerant, tuneably consistent, column-oriented database that bases its distribution design on Amazon s Dynamo and its data model on Google s Bigtable. Created at Facebook, it is now used at some of the most popular sites on the Web. 1 1 Quelle: Eben Hewitt, Cassandra: The Definitive Guide, O Reilly Media, 2010, S. 14

4 Thema 14: Cassandra 3 / 25 Grundlagen Geschichte Geschichte von Cassandra Cassandra wurde 2008 von entwickelt... ist in Java geschrieben... wird von der Apache Software Foundation betreut... steht unter der Apache License 2.0

5 Thema 14: Cassandra 4 / 25 Grundlagen Geschichte Wer setzt Cassandra ein? Wo kommt Cassandra zum Einsatz? 2 CERN: Legt Messdaten in Cassandra ab ebay: Betreibt einen hochverfügbaren Cassandra Cluster verteilt über mehrere Rechenzentren HP: Speichert Metadaten für einen Musik Streaming Dienst in Cassandra IBM: Nutzt Cassandra als Backend in einem Webmail-Client Twitter: Verwendet Cassandra zum speichern von Analysen 2 Quelle:

6 Thema 14: Cassandra 5 / 25 Grundlagen Geschichte Familie Architektur Datenmodel

7 Thema 14: Cassandra 6 / 25 Grundlagen Datenmodel Datenmodel Spaltenfamilie 1 Spalte 1 Spalte 2 Spalte 3 Zeilenschlüssel 2 Wert 1 Wert 2 Wert 3 Spaltenfamilie 1 Spalte 1 Spalte 4 Zeilenschlüssel 1 Wert 1 Wert 4 Schlüsselraum 1

8 Thema 14: Cassandra 7 / 25 Grundlagen Datenmodel Datenmodel - Beispiel Person Vorname Nachname Alter user4711 Jörg Zeitstempel: 3 Hansen Zeitstempel: 3 27 Zeitstempel: 3 Person Vorname user0815 Otto Zeitstempel: 56 Zeitstempel: 45 Schlüsselraum 1

9 Thema 14: Cassandra 7 / 25 Grundlagen Datenmodel Datenmodel - Beispiel Person Vorname Nachname Alter user4711 Jörg Zeitstempel: 3 Hansen Zeitstempel: 3 27 Zeitstempel: 3 Person Vorname user0815 Otto Zeitstempel: 56 Zeitstempel: 45 Schlüsselraum 1

10 Thema 14: Cassandra 7 / 25 Grundlagen Datenmodel Datenmodel - Beispiel Person Vorname Nachname Alter user4711 Jörg Zeitstempel: 3 Hansen Zeitstempel: 3 28 Zeitstempel: 65 Person Vorname user0815 Otto Zeitstempel: 56 Zeitstempel: 45 Schlüsselraum 1

11 Thema 14: Cassandra 8 / 25 Architektur Der logische Ring Begriffe Knoten: Ein Server auf dem Cassandra installiert ist Replikationsfaktor: Anzahl der Replikate einer Zeile Partitionierer: Berechnet den Ablageort einer Zeile Platzierungsstategie für Replikate: Bestimmt auf welchen Knoten Replikate abgelegt werden

12 Thema 14: Cassandra 9 / 25 Architektur Der logische Ring Der logische Ring Replikationsfaktor: N = 3 G 1 0 A F E B D C

13 Thema 14: Cassandra 9 / 25 Architektur Der logische Ring Der logische Ring Replikationsfaktor: N = 3 G 1 0 A F E B h(zeilenschlüssel1) D C

14 Thema 14: Cassandra 9 / 25 Architektur Der logische Ring Der logische Ring Replikationsfaktor: N = 3 G 1 0 A F E B h(zeilenschlüssel1) D C

15 Thema 14: Cassandra 9 / 25 Architektur Der logische Ring Der logische Ring Replikationsfaktor: N = 3 G 1 0 A F E B h(zeilenschlüssel1) D C

16 Thema 14: Cassandra 10 / 25 Architektur Der logische Ring Der logische Ring Logischer Ring mit einer Node /root/cassandra/bin/nodetool ring Datacenter: datacenter1 ========== Address Rack Status State Load Owns Token node1 rack1 Up Normal KB %

17 Thema 14: Cassandra 11 / 25 Architektur Der logische Ring Der logische Ring Logischer Ring mit zwei Nodes /root/cassandra/bin/nodetool ring Datacenter: datacenter1 ========== Address Rack Status State Load Owns Token node1 rack1 Up Normal KB 30.07% node2 rack1 Up Normal 1.55 MB 69.93%

18 Thema 14: Cassandra 12 / 25 Architektur Der logische Ring Der logische Ring Logischer Ring mit drei Nodes /root/cassandra/bin/nodetool ring Datacenter: datacenter1 ========== Address Rack Status State Load Owns Token node1 rack1 Up Normal KB 30.07% node3 rack1 Up Normal KB 44.34% node2 rack1 Up Normal 1.51 MB 25.59%

19 Thema 14: Cassandra 13 / 25 Architektur Persistenz der Daten Persistenz der Daten Schreibzugriff Memory Disk

20 Thema 14: Cassandra 13 / 25 Architektur Persistenz der Daten Persistenz der Daten Schreibzugriff 1. Vermerken des Schreibzugriffs im Commit-Log Memory Disk Commit-Log

21 Thema 14: Cassandra 13 / 25 Architektur Persistenz der Daten Persistenz der Daten Schreibzugriff 2. Vermerken des Schreibzugriffs in der Memtable 1. Vermerken des Schreibzugriffs im Commit-Log Memory Disk Memtable Commit-Log

22 Thema 14: Cassandra 13 / 25 Architektur Persistenz der Daten Persistenz der Daten Schreibzugriff 2. Vermerken des Schreibzugriffs in der Memtable 1. Vermerken des Schreibzugriffs im Commit-Log Memory Memtable Disk SSTables Commit-Log Flush

23 Thema 14: Cassandra 13 / 25 Architektur Persistenz der Daten Persistenz der Daten Schreibzugriff 2. Vermerken des Schreibzugriffs in der Memtable 1. Vermerken des Schreibzugriffs im Commit-Log Memory Disk Memtable SSTables SSTable Commit-Log Flush Compact

24 Thema 14: Cassandra 14 / 25 Architektur Tunable Consistency Lesen Tunable Consistency Konsistenz-Level ONE QUORUM ALL Bedeutung Es werden die Zeilen von dem Knoten zurückgeliefert, welcher als erstes antwortet. Haben ( Replikationsfaktor + 1) Knoten geantwortet, werden die Zeilen mit dem neuesten Zeitstempel an den 2 Client ausgeliefert. Verhält sich wie QUORUM, jedoch wird mit dem Ausliefern der Zeilen gewartet, bis die Zeilen von allen Knoten vorliegen.

25 Thema 14: Cassandra 15 / 25 Architektur Tunable Consistency Tunable Consistency Lesen F 1 0 A Client E B Replikationsfaktor: N = 3 D C

26 Thema 14: Cassandra 15 / 25 Architektur Tunable Consistency Tunable Consistency Lesen F 1 0 A Client E B Replikationsfaktor: N = 3 D C

27 Thema 14: Cassandra 15 / 25 Architektur Tunable Consistency Tunable Consistency Lesen F 1 0 A Konsistenz: ONE Client E B Replikationsfaktor: N = 3 D C

28 Thema 14: Cassandra 15 / 25 Architektur Tunable Consistency Tunable Consistency Lesen F 1 0 A Konsistenz: QUORUM Client E B Replikationsfaktor: N = 3 D C

29 Thema 14: Cassandra 15 / 25 Architektur Tunable Consistency Tunable Consistency Lesen F 1 0 A Konsistenz: ALL Client E B Replikationsfaktor: N = 3 D C

30 Thema 14: Cassandra 16 / 25 Architektur Tunable Consistency Tunable Consistency Schreiben Konsistenz-Level ZERO ANY ONE QUORUM ALL Bedeutung Die Schreiboperation wird asynchron bearbeitet. Auftretende Fehler werden ignoriert. Die Schreiboperation muss auf mindestens einem Knoten durchgeführt worden sein. Hinted Handoffs sind erlaubt. Die Schreiboperation muss auf mindestens einem Knoten durchgeführt worden sein. Es müssen mindestens ( Replikationsfaktor +1) Knoten die 2 Schreiboperation bestätigen. Die Schreiboperation muss von allen Knoten bestätigt worden sein, welche für die Daten zuständig sind.

31 Thema 14: Cassandra 17 / 25 Architektur Read Repair Read Repair F 1 0 A Konsistenz: ONE Client E B Replikationsfaktor: N = 3 D C

32 Read Repair Thema 14: Cassandra 17 / 25 Architektur Read Repair Konsistenz: ONE F 1 <1,100000> 0 A Client E B Replikationsfaktor: N = 3 <1,100000>: Wert = 1, geschrieben bei Zeitstempel D C

33 Read Repair Thema 14: Cassandra 17 / 25 Architektur Read Repair F 1 <1,100000> 0 A E <3,100020> B <3,100020> Replikationsfaktor: N = 3 <1,100000>: Wert = 1, geschrieben bei Zeitstempel D C

34 Read Repair Thema 14: Cassandra 17 / 25 Architektur Read Repair F 1 <3,100020> 0 A E B Replikationsfaktor: N = 3 <1,100000>: Wert = 1, geschrieben bei Zeitstempel D C

35 Cassandra im Einsatz Thema 14: Cassandra 18 / 25 CQL Cassandra Query Language CQL Cassandra Query Language CQL ist eine Abfragesprache ähnlich SQL

36 Cassandra im Einsatz Thema 14: Cassandra 18 / 25 CQL Cassandra Query Language CQL Cassandra Query Language CQL ist eine Abfragesprache ähnlich SQL... ist an die Syntax von SQL angelehnt

37 Cassandra im Einsatz Thema 14: Cassandra 18 / 25 CQL Cassandra Query Language CQL Cassandra Query Language CQL ist eine Abfragesprache ähnlich SQL... ist an die Syntax von SQL angelehnt... bietet eine stabile Schnittstelle zu Cassandra (JDBC-Treiber verfügbar)

38 Cassandra im Einsatz Thema 14: Cassandra 18 / 25 CQL Cassandra Query Language CQL Cassandra Query Language CQL ist eine Abfragesprache ähnlich SQL... ist an die Syntax von SQL angelehnt... bietet eine stabile Schnittstelle zu Cassandra (JDBC-Treiber verfügbar)... enthält keine Anweisungen für Joins, etc.

39 Cassandra im Einsatz Thema 14: Cassandra 19 / 25 CQL Cassandra Query Language CQL am Beispiel Abfrage einer Zeile Casandra CLI und CQL # CLI get People[ 21 ]; # CQL SELECT * from People WHERE key = 21;

40 Cassandra im Einsatz Thema 14: Cassandra 20 / 25 CQL Cassandra Query Language CQL am Beispiel Anlegen einer Zeile Casandra CLI und CQL # CLI set users[ jsmith ][firstname] = John ; set users[ jsmith ][lastname] = Smith ; set users[ jsmith ][age] = 22 ; # CQL INSERT INTO users (KEY, firstname, lastname, age) VALUES ( jsmith, John, Smith, 22 );

41 Cassandra im Einsatz Thema 14: Cassandra 21 / 25 CQL Cassandra Query Language CQL am Beispiel Anlegen einer Zeile unter Angabe eines Konsistenz-Levels # CLI consistencylevel as QUORUM; set users[ jsmith ][firstname] = John ; set users[ jsmith ][lastname] = Smith ; set users[ jsmith ][age] = 22 ; # CQL INSERT INTO users (KEY, firstname, lastname, age) VALUES ( jsmith, John, Smith, 22 ) USING CONSISTENCY QUORUM;

42 Cassandra im Einsatz Thema 14: Cassandra 22 / 25 Performancevergleich Performance Paper: Solving big data challenges for enterprise application performance management, 2012 Throughput (Operations/sec) Cassandra HBase Number of Nodes Voldemort VoltDB Redis MySQL Abbildung: 5% schreibende Zugriffe, 95% lesende Zugriffe.

43 Cassandra im Einsatz Thema 14: Cassandra 23 / 25 Performancevergleich Performance Paper: Solving big data challenges for enterprise application performance management, Throughput (Ops/sec) Cassandra HBase Number of Nodes Voldemort VoltDB Redis MySQL Abbildung: 50% schreibende Zugriffe, 50% lesende Zugriffe.

44 Thema 14: Cassandra 24 / 25 Zusammenfassung Zusammenfassung Ist ein spaltenorientiertes Datenbankmanagementsystem

45 Thema 14: Cassandra 24 / 25 Zusammenfassung Zusammenfassung Ist ein spaltenorientiertes Datenbankmanagementsystem Datenmodel von Google Bigtale

46 Thema 14: Cassandra 24 / 25 Zusammenfassung Zusammenfassung Ist ein spaltenorientiertes Datenbankmanagementsystem Datenmodel von Google Bigtale Architektur von Amazon Dynamo

47 Thema 14: Cassandra 24 / 25 Zusammenfassung Zusammenfassung Ist ein spaltenorientiertes Datenbankmanagementsystem Datenmodel von Google Bigtale Architektur von Amazon Dynamo Setzt auf Tunable Consistency

48 Thema 14: Cassandra 24 / 25 Zusammenfassung Zusammenfassung Ist ein spaltenorientiertes Datenbankmanagementsystem Datenmodel von Google Bigtale Architektur von Amazon Dynamo Setzt auf Tunable Consistency Inkonsistenzen werden u. A. mittels Read Repair behoben

49 Thema 14: Cassandra 24 / 25 Zusammenfassung Zusammenfassung Ist ein spaltenorientiertes Datenbankmanagementsystem Datenmodel von Google Bigtale Architektur von Amazon Dynamo Setzt auf Tunable Consistency Inkonsistenzen werden u. A. mittels Read Repair behoben Skaliert gut über mehrere Knoten

50 Thema 14: Cassandra 25 / 25 Zusammenfassung Vielen Dank für Ihre Aufmerksamkeit

FernUniversität in Hagen - Seminar 01912 im Sommersemester 2013. Big Data Management

FernUniversität in Hagen - Seminar 01912 im Sommersemester 2013. Big Data Management FernUniversität in Hagen - Seminar 01912 im Sommersemester 2013 Big Data Management Thema 14 Cassandra Referent: Jan Kristof Nidzwetzki 2 Jan Kristof Nidzwetzki, Thema 14: Cassandra Inhaltsverzeichnis

Mehr

NoSQL Deep Dive mit Cassandra. Kai Spichale

NoSQL Deep Dive mit Cassandra. Kai Spichale NoSQL Deep Dive mit Cassandra Kai Spichale 13.04.2011 1 NoSQL 13.04.2011 2 BerlinExpertDays NoSQL Wide Column Stores / Column Families Document Stores Graph Databases Key Value / Tupe Stores 13.04.2011

Mehr

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012 Wide Column Stores Felix Bruckner Mannheim, 15.06.2012 Agenda Einführung Motivation Grundlagen NoSQL Grundlagen Wide Column Stores Anwendungsfälle Datenmodell Technik Wide Column Stores & Cloud Computing

Mehr

Architektur von Cassandra

Architektur von Cassandra Seminar: NoSQL Wintersemester 201/2014 Cassandra Zwischenpräsentation 1 Ablauf Replica Partitioners Snitches Besteht aus mehrere Knoten Jeder Knoten kann (Lesen, Schreib. oder Löschen) Verwendet Hash Algorithm

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr

NoSQL-Databases. Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de

NoSQL-Databases. Präsentation für Advanced Seminar Computer Engineering, Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de NoSQL-Databases Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de Klassische SQL-Datenbanken Anwendungsgebiet: Geschäftsanwendungen Behördenanwendungen

Mehr

!"#$"%&'()*$+()',!-+.'/',

!#$%&'()*$+()',!-+.'/', Soziotechnische Informationssysteme 5. Facebook, Google+ u.ä. Inhalte Historisches Relevanz Relevante Technologien Anwendungsarchitekturen 4(5,12316,7'.'0,!.80/6,9*$:'0+$.;.,&0$'0, 3, Historisches Facebook

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

Einführung in CouchDB

Einführung in CouchDB Einführung in CouchDB Zurücklehnen und entspannen! http://slog.io Thomas Schrader (@slogmen) 12/2010 Übersicht Bestandsaufnahme Ansatz Geschichte Technologien Features Skalierbarkeit Kurz & Gut Fazit Relationale

Mehr

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg NoSQL Was Architekten beachten sollten Dr. Halil-Cem Gürsoy adesso AG Architekturtag @ SEACON 2012 Hamburg 06.06.2012 Agenda Ein Blick in die Welt der RDBMS Klassifizierung von NoSQL-Datenbanken Gemeinsamkeiten

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1 NoSQL-Datenbanken Kapitel 1: Einführung Lars Kolb Sommersemester 2014 Universität Leipzig http://dbs.uni-leipzig.de 1-1 Inhaltsverzeichnis NoSQL-Datenbanken Motivation und Definition Kategorisierung, Eigenschaften

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt NoSQL & Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

NoSQL Databases and Big Data

NoSQL Databases and Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt NoSQL & Big Data Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

Open Source Data Center Virtualisierung mit OpenNebula. 05.03.2013 CeBIT 2013. Bernd Erk www.netways.de

Open Source Data Center Virtualisierung mit OpenNebula. 05.03.2013 CeBIT 2013. Bernd Erk www.netways.de Open Source Data Center Virtualisierung mit OpenNebula 05.03.2013 CeBIT 2013 Bernd Erk VORSTELLUNG NETWAYS NETWAYS! Firmengründung 1995! GmbH seit 2001! Open Source seit 1997! 35 Mitarbeiter! Spezialisierung

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

Performance Tuning & Scale-Out mit MySQL

Performance Tuning & Scale-Out mit MySQL Performance Tuning & Scale-Out mit MySQL Erfa-Gruppe Internet Briefing 2. März 2010 Oli Sennhauser Senior MySQL Consultant, FromDual oli.sennhauser@fromdual.com www.fromdual.com 1 Inhalt Allgemeines zu

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Open Source Data Center Virtualisierung mit OpenNebula. 22.05.2013 LinuxTag Berlin. Bernd Erk www.netways.de

Open Source Data Center Virtualisierung mit OpenNebula. 22.05.2013 LinuxTag Berlin. Bernd Erk www.netways.de Open Source Data Center Virtualisierung mit OpenNebula 22.05.2013 LinuxTag Berlin Bernd Erk VORSTELLUNG NETWAYS NETWAYS! Firmengründung 1995! GmbH seit 2001! Open Source seit 1997! 38 Mitarbeiter! Spezialisierung

Mehr

NoSQL für Anwendungen

NoSQL für Anwendungen NoSQL für Anwendungen Hochschule Mannheim Fakultät für Informatik Cluster Grid Computing Seminar SS 2012 Lemmy Tauer (729400) lemmy.coldlemonade.tauer@gmail.com NoSQL CAP / ACID / Kompromisse Key-Value

Mehr

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de

Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de NoSQL für Java-Entwickler Java Forum Stuttgart 2013 Kai.Spichale@adesso.de twitter.com/kspichale spichale.blogspot.de 23.06.2013 Agenda Datengröße Key-value Stores 1. Wide Column 2. Cassandra Document

Mehr

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer NoSQL Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Geleitwort 1 Vorwort 1 1 Einführung 1 1.1 Historie 1 1.2 Definition und

Mehr

NoSQL Datenbanken. Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel

NoSQL Datenbanken. Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel NoSQL Datenbanken Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel 17. Juni 2010 Gliederung Der Begriff NoSQL Wichtige Konzepte NoSQL-Arten Cassandra

Mehr

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010 NoSQL Einblick in die Welt nicht-relationaler Datenbanken Christoph Föhrdes UnFUG, SS10 17.06.2010 About me Christoph Föhrdes AIB Semester 7 IRC: cfo #unfug@irc.ghb.fh-furtwangen.de netblox GbR (http://netblox.de)

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

NoSQL mit Postgres 15. Juni 2015

NoSQL mit Postgres 15. Juni 2015 Tag der Datenbanken 15. Juni 2015 Dipl.-Wirt.-Inform. Agenda l Vorstellung l Marktübersicht l Warum PostgreSQL? l Warum NoSQL? l Beispielanwendung Seite: 2 Vorstellung Dipl.-Wirt.-Inform. [1990] Erste

Mehr

SQL, MySQL und FileMaker

SQL, MySQL und FileMaker SQL, MySQL und FileMaker Eine kurze Einführung in SQL Vorstellung von MySQL & phpmyadmin Datenimport von MySQL in FileMaker Autor: Hans Peter Schläpfer Was ist SQL? «Structured Query Language» Sprache

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Inhalt: CAP (Consistency/Availability/Partition-Tolerance); BASE (Basically Available, Soft State, Eventually Consistent); Datenmodelle: Key-Value-Stores, Spaltenbasierte

Mehr

Multimedia im Netz. Übung zur Vorlesung. Ludwig-Maximilians-Universität Wintersemester 2010/2011

Multimedia im Netz. Übung zur Vorlesung. Ludwig-Maximilians-Universität Wintersemester 2010/2011 Übung zur Vorlesung Multimedia im Netz Ludwig-Maximilians-Universität Wintersemester 2010/2011 Ludwig-Maximilians-Universität München Multimedia im Netz - Übung - 2-1 Übungsblatt - 2 Thema: HTML, PHP und

Mehr

ACCESS SQL ACCESS SQL

ACCESS SQL ACCESS SQL ACCESS SQL Datenbankabfragen mit der Query-Language ACCESS SQL Datenbankpraxis mit Access 34 Was ist SQL Structured Query Language Bestehend aus Datendefinitionssprache (DDL) Datenmanipulationssprache

Mehr

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de Configuration Management mit Verbosy 17.04.2013 OSDC 2013 Eric Lippmann Kurzvorstellung NETWAYS Expertise OPEN SOURCE SYSTEMS MANAGEMENT OPEN SOURCE DATA CENTER Monitoring & Reporting Configuration Management

Mehr

MySQL Cluster und MySQL Proxy

MySQL Cluster und MySQL Proxy MySQL Cluster und MySQL Proxy Alles Online Diese Slides gibt es auch unter: http://rt.fm/s4p Agenda (Don't) Panic Web- und MySQL-Server MySQL Master-Master Cluster MySQL Proxy und Cluster MySQL Master-Slave/Master

Mehr

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2 5 Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn 7 7. Datenbank-Zugriff Zum Beispiel aus PHP-Skripten: Client 7-2 Struktur einer Datenbank 7-3 Erzeugen von Datenbanken

Mehr

SQL- & NoSQL-Datenbanken. Speichern und Analysen von großen Datenmengen

SQL- & NoSQL-Datenbanken. Speichern und Analysen von großen Datenmengen SQL- & NoSQL-Datenbanken Speichern und Analysen von großen Datenmengen 1 04.07.14 Zitat von Eric Schmidt (Google CEO): There was 5 exabytes of information created between the dawn of civilization through

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Tuning des Weblogic /Oracle Fusion Middleware 11g. Jan-Peter Timmermann Principal Consultant PITSS

Tuning des Weblogic /Oracle Fusion Middleware 11g. Jan-Peter Timmermann Principal Consultant PITSS Tuning des Weblogic /Oracle Fusion Middleware 11g Jan-Peter Timmermann Principal Consultant PITSS 1 Agenda Bei jeder Installation wiederkehrende Fragen WievielForms Server braucheich Agenda WievielRAM

Mehr

MySQL Installation. AnPr

MySQL Installation. AnPr Name Klasse Datum 1 Allgemeiner Aufbau Relationale Datenbank Management Systeme (RDBMS) werden im Regelfall als Service installiert. Der Zugriff kann über mehrere Kanäle durchgeführt werden, wobei im Regelfall

Mehr

Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra)

Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra) 1 Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? 2 SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra) 3 DB-Cluster in der Cloud? NoSQL?!? SQL Normalformen Come as you are Warum

Mehr

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1)

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1) Datenbanken und SQL Kapitel 1 Übersicht über Datenbanken Übersicht über Datenbanken Vergleich: Datenorganisation versus Datenbank Definition einer Datenbank Bierdepot: Eine Mini-Beispiel-Datenbank Anforderungen

Mehr

Web Technologien NoSQL Datenbanken

Web Technologien NoSQL Datenbanken Web Technologien NoSQL Datenbanken Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4

Mehr

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D.

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D. 1 Copyright 1996-1997 by Axel T. Schreiner. All Rights Reserved. 7 Datenbankzugriff Prinzip Dieser Abschnitt beschäftigt sich mit dem Paket java.sql, das eine SQL-Schnittstelle für Java verkapselt. Java-Programme

Mehr

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien 1.1 Definition Datenbank Ein Datenbanksystem (DBS) ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

PHP + MySQL. Die MySQL-Datenbank. Hochschule Karlsruhe Technik & Wirtschaft Internet-Technologien T3B250 SS2014 Prof. Dipl.-Ing.

PHP + MySQL. Die MySQL-Datenbank. Hochschule Karlsruhe Technik & Wirtschaft Internet-Technologien T3B250 SS2014 Prof. Dipl.-Ing. PHP + MySQL Die MySQL-Datenbank Zusammenspiel Apache, PHP, PHPMyAdmin und MySQL PHPMyAdmin Verwaltungstool Nutzer Datei.php oder Datei.pl Apache HTTP-Server PHP Scriptsprache Perl Scriptsprache MySQL Datenbank

Mehr

Technologietag SharePoint 2010

Technologietag SharePoint 2010 Technologietag SharePoint 2010 Business Applications in SharePoint 2010 Marco Leithold, Thomas Lorenz conplement AG 2 conplement AG 2010. All Rights Reserved. Agenda Einführung Business Applications mit

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Jürgen Vester Oracle Deutschland B.V. & Co KG Um was geht es bei Big Data? Bei Big Data sprechen wir eine Klasse von Daten an, die in der

Mehr

Datenbankentwicklung mit PureBasic

Datenbankentwicklung mit PureBasic Datenbankentwicklung mit PureBasic Datenbanken stellen heutzutage wichtige Informationsquellen für viele Bereiche der Wirtschaft, Verwaltung aber auch im eigenen Haushalt dar. In Datenbanken werden Daten

Mehr

BigTable. 11.12.2012 Else

BigTable. 11.12.2012 Else BigTable 11.12.2012 Else Einführung Distributed Storage System im Einsatz bei Google (2006) speichert strukturierte Daten petabyte-scale, > 1000 Nodes nicht relational, NoSQL setzt auf GFS auf 11.12.2012

Mehr

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner NoSQL Einstieg in die Web 2.0 Datenbanken 2., akutalisierte und erweiterte Auflage HANSER Geleitwort Vorwort Vorwort zur 2. Auflage

Mehr

Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3

Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3 Dominik Wagenknecht Accenture Der No Frills Big Data Workshop -Teil3 Der no frills BigData Workshop JAX 2012, 16.4.2012, Mainz Teil 3 Google ist ein Pionier von BigData und hat mit MapReduce und BigTable

Mehr

105.3 SQL-Datenverwaltung

105.3 SQL-Datenverwaltung LPI-Zertifizierung 105.3 SQL-Datenverwaltung Copyright ( ) 2009 by Dr. W. Kicherer. This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 2.0 Germany License. To view a

Mehr

Markus Weise. Parallele Cloud-DBS: Aufbau und Implementierung. Parallele Cloud-DBS. Abteilung Datenbanken am Institut für Informatik

Markus Weise. Parallele Cloud-DBS: Aufbau und Implementierung. Parallele Cloud-DBS. Abteilung Datenbanken am Institut für Informatik : Aufbau und Implementierung Markus Weise Markus Weise, Universität Leipzig Folie 1 Inhalt: 1. Einleitung 2. Google s Bigtable 3. Yahoo! s PNUTS 4. Zusammenfassung 5. Quellen Markus Weise, Universität

Mehr

Aktuelle SE Praktiken für das WWW

Aktuelle SE Praktiken für das WWW Aktuelle SE Praktiken für das WWW SQL vs. NoSQL W. Mark Kubacki 23.06.2010 Gliederung Zusammenfassung Entstehungsgeschichte SQL vs. NoSQL Systemarchitekturen und Wachstumsmuster SQL NoSQL Überblick und

Mehr

Multimedia im Netz Wintersemester 2013/14. Übung 03 (Nebenfach)

Multimedia im Netz Wintersemester 2013/14. Übung 03 (Nebenfach) Multimedia im Netz Wintersemester 2013/14 Übung 03 (Nebenfach) Ludwig-Maximilians-Universität München Multimedia im Netz WS 2013/14 - Übung 3-1 Datenbanken und SQL Mit Hilfe von Datenbanken kann man Daten

Mehr

Dokumentenorientierte Datenbanken - MongoDB

Dokumentenorientierte Datenbanken - MongoDB Dokumentenorientierte Datenbanken - MongoDB Jan Hentschel Ultra Tendency UG Übersicht Dokumente sind unabhängige Einheiten Bessere Performance (zusammengehörige Daten werden gemeinsam gelesen) Objektmodell

Mehr

nav@night Microsoft Dynamics NAV 2013 SOAP und OData Webservices mit.net nutzen Dipl.-Inf. (FH) Ingo Jansen

nav@night Microsoft Dynamics NAV 2013 SOAP und OData Webservices mit.net nutzen Dipl.-Inf. (FH) Ingo Jansen nav@night Microsoft Dynamics NAV 2013 SOAP und OData Webservices mit.net nutzen Agenda Microsoft Dynamics NAV 2013 Infrastruktur Konfiguration der Instanzen Zugriff auf Microsoft Dynamics NAV 2013 SOAP

Mehr

IDS Lizenzierung für IDS und HDR. Primärserver IDS Lizenz HDR Lizenz

IDS Lizenzierung für IDS und HDR. Primärserver IDS Lizenz HDR Lizenz IDS Lizenzierung für IDS und HDR Primärserver IDS Lizenz HDR Lizenz Workgroup V7.3x oder V9.x Required Not Available Primärserver Express V10.0 Workgroup V10.0 Enterprise V7.3x, V9.x or V10.0 IDS Lizenz

Mehr

EHCache und Terracotta. Jochen Wiedmann, Software AG

EHCache und Terracotta. Jochen Wiedmann, Software AG EH und Terracotta Jochen Wiedmann, Software AG Autor Perl-Contributor DBD::mySQL 2, DBI::Proxy, DBI::Shell, DBD::CSV, Net::Daemon, RPC::Pl(Client Server) (Autor) DBI (Developer) ASF-Member (Apache Software

Mehr

The R(E)volution of Data Stores

The R(E)volution of Data Stores The R(E)volution of Data Stores Willkommen Schön, dass sie in diese Session kommen, ich bin Dominik Wagenknecht NoSQL Initiative Lead Technology Architect Accenture Wien Mobil: +43 676 8720 33921 dominik.wagenknecht@accenture.com

Mehr

Declarative Data Cleaning

Declarative Data Cleaning Declarative Data Cleaning Vortragsgrundlage: Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, Cristian Augustin Saita: Declarative Data Cleaning: Language, Model, and Algorithms, in VLDB

Mehr

User Stories in agilen Projekten. Deutschland 8,50. RESTful JSF » 92. Ein Widerspruch? Java Web Services SOAP mit JAX-WS » 69. Cassandra und Hector

User Stories in agilen Projekten. Deutschland 8,50. RESTful JSF » 92. Ein Widerspruch? Java Web Services SOAP mit JAX-WS » 69. Cassandra und Hector inkl. Java Magazin 8.2011 JAVA Mag CD User Stories in agilen Projekten Deutschland 8,50 Österreich 9,80 Schweiz sfr 16,80 Atlassian-Entwicklungstools RESTful JSF IPHONE 4 JAVA DEVELOPERS Video von der

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Solaris Cluster. Dipl. Inform. Torsten Kasch 8. Januar 2008

Solaris Cluster. Dipl. Inform. Torsten Kasch <tk@cebitec.uni Bielefeld.DE> 8. Januar 2008 Dipl. Inform. Torsten Kasch 8. Januar 2008 Agenda Übersicht Cluster Hardware Cluster Software Konzepte: Data Services, Resources, Quorum Solaris Cluster am CeBiTec: HA Datenbank

Mehr

GridMate The Grid Matlab Extension

GridMate The Grid Matlab Extension GridMate The Grid Matlab Extension Forschungszentrum Karlsruhe, Institute for Data Processing and Electronics T. Jejkal, R. Stotzka, M. Sutter, H. Gemmeke 1 What is the Motivation? Graphical development

Mehr

NoSQL Datenbanken am Beispiel von CouchDB

NoSQL Datenbanken am Beispiel von CouchDB NoSQL Datenbanken am Beispiel von CouchDB OIO - Hauskonferenz 2011 Version: 1.0 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Ihr Sprecher Thomas Bayer Programmierer

Mehr

BlackBerry Mobile Fusion Universal Device Service. Thomas Dingfelder, Senior Technical Account Manager ubitexx a Subsidiary of Research In Motion

BlackBerry Mobile Fusion Universal Device Service. Thomas Dingfelder, Senior Technical Account Manager ubitexx a Subsidiary of Research In Motion BlackBerry Mobile Fusion Universal Device Service Stefan Mennecke, Director Stefan Mennecke, Director Thomas Dingfelder, Senior Technical Account Manager ubitexx a Subsidiary of Research In Motion RIM

Mehr

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part II) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Hadoop. Simon Prewo. Simon Prewo

Hadoop. Simon Prewo. Simon Prewo Hadoop Simon Prewo Simon Prewo 1 Warum Hadoop? SQL: DB2, Oracle Hadoop? Innerhalb der letzten zwei Jahre hat sich die Datenmenge ca. verzehnfacht Die Klassiker wie DB2, Oracle usw. sind anders konzeptioniert

Mehr

E-Commerce: IT-Werkzeuge. Web-Programmierung. Kapitel 6: Datenbankabfragen mit SQL und PHP. Stand: 24.11.2014. Übung WS 2014/2015

E-Commerce: IT-Werkzeuge. Web-Programmierung. Kapitel 6: Datenbankabfragen mit SQL und PHP. Stand: 24.11.2014. Übung WS 2014/2015 Übung WS 2014/2015 E-Commerce: IT-Werkzeuge Web-Programmierung Kapitel 6: Datenbankabfragen mit SQL und PHP Stand: 24.11.2014 Benedikt Schumm M.Sc. Lehrstuhl für ABWL und Wirtschaftsinformatik Katholische

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

Mobile Backend in der

Mobile Backend in der Mobile Backend in der Cloud Azure Mobile Services / Websites / Active Directory / Kontext Auth Back-Office Mobile Users Push Data Website DevOps Social Networks Logic Others TFS online Windows Azure Mobile

Mehr

Web Technologien Klassische Datenbanken am Beispiel von MySQL

Web Technologien Klassische Datenbanken am Beispiel von MySQL Web Technologien Klassische Datenbanken am Beispiel von MySQL Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung

Inhalt. Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle. Daten und Tabellen - ein Beispiel. Daten und Tabellen - Normalisierung Inhalt Ein Einführung in die Nutzung von SQL-Datenbanken am Beispiel Oracle Daten und Tabellen Normalisierung, Beziehungen, Datenmodell SQL - Structured Query Language Anlegen von Tabellen Datentypen (Spalten,

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

Datenbanken. Ein DBS besteht aus zwei Teilen:

Datenbanken. Ein DBS besteht aus zwei Teilen: Datenbanken Wikipedia gibt unter http://de.wikipedia.org/wiki/datenbank einen kompakten Einblick in die Welt der Datenbanken, Datenbanksysteme, Datenbankmanagementsysteme & Co: Ein Datenbanksystem (DBS)

Mehr

Erweiterung des verteilten Datenspeichersystems Cassandra um eine Indexunterstützung

Erweiterung des verteilten Datenspeichersystems Cassandra um eine Indexunterstützung Leibniz Universität Hannover Fakultät für Elektrotechnik und Informatik Institut für Praktische Informatik Fachgebiet Datenbanken und Informationssysteme Erweiterung des verteilten Datenspeichersystems

Mehr

Datumsangaben, enthält mindestens Jahr, Monat, Tag

Datumsangaben, enthält mindestens Jahr, Monat, Tag Datenbanken mit SQL Informatik - Sprenger Häufig wird mit Tabellenkalkulationen gearbeitet, obwohl der Einsatz von Datenbanken sinnvoller ist. Tabellenkalkulationen wie Microsoft Excel oder LibreOffice

Mehr

OO Programmiersprache vs relationales Model. DBIS/Dr. Karsten Tolle

OO Programmiersprache vs relationales Model. DBIS/Dr. Karsten Tolle OO Programmiersprache vs relationales Model Vorgehen bisher Erstellen eines ER-Diagramms Übersetzen in das relationale Datenmodell Zugriff auf das relationale Datenmodell aus z.b. Java ER rel. Modell OO

Mehr

Event Stream Processing & Complex Event Processing. Dirk Bade

Event Stream Processing & Complex Event Processing. Dirk Bade Event Stream Processing & Complex Event Processing Dirk Bade Die Folien sind angelehnt an eine Präsentation der Orientation in Objects GmbH, 2009 Motivation Business Activity Monitoring Sammlung, Analyse

Mehr

Programmieren II. Beispiele für RDBMS. Relationale Datenbanken. Datenbanken SQL. Dr. Klaus Höppner JDBC. Hochschule Darmstadt SS 2008

Programmieren II. Beispiele für RDBMS. Relationale Datenbanken. Datenbanken SQL. Dr. Klaus Höppner JDBC. Hochschule Darmstadt SS 2008 Programmieren II Datenbanken Dr. Klaus Höppner SQL Hochschule Darmstadt SS 2008 JDBC 1 / 20 2 / 20 Relationale Datenbanken Beispiele für RDBMS Ein Datenbanksystem ist ein System zur Speicherung von (großen)

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

5. Programmierschnittstellen für XML

5. Programmierschnittstellen für XML 5. Programmierschnittstellen für Grundlagen Dr. E. Schön FH Erfurt Sommersemester 2015 Seite 135 Programmierschnittstelle Notwendigkeit: Zugriff auf -Daten durch Applikationen wiederverwendbare Schnittstellen

Mehr

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2 5 Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn 7 7. Datenbank-Zugriff Zum Beispiel aus PHP-Skripten: Client 7-2 Struktur einer Datenbank 7-3 Erzeugen von Datenbanken

Mehr

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011 Eine Einführung in Apache CouchDB Java-Forum Stuttgart 2011 Johannes Schneider, cedarsoft GmbH js@cedarsoft.com http://blog.cedarsoft.com http://cedarsoft.com Vielen Dank CouchDB The VERY Basics Vorerfahrung?

Mehr

AFS / OpenAFS. Bastian Steinert. Robert Schuppenies. Präsentiert von. Und

AFS / OpenAFS. Bastian Steinert. Robert Schuppenies. Präsentiert von. Und AFS / OpenAFS Präsentiert von Bastian Steinert Und obert Schuppenies Agenda AFS Verteilte Dateisysteme, allg. Aufbau Sicherheit und Zugriffsrechte Installation Demo Vergleich zu anderen DFs Diskussion

Mehr

1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. ileana.somesan@oracle.com

1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. ileana.somesan@oracle.com 1 Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle Datenbanken in der Oracle Public Cloud nutzen Ileana Someşan Systemberaterin ORACLE Deutschland The following is intended to

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

NoSQL-Datenbanken. Markus Kramer. deren Probleme herauszuarbeiten und andere Grundlagen zu erläutern.

NoSQL-Datenbanken. Markus Kramer. deren Probleme herauszuarbeiten und andere Grundlagen zu erläutern. 1 NoSQL-Datenbanken Markus Kramer Zusammenfassung NoSQL-Datenbanken sind zu einer interessanten Alternative zu herkömmlichen Datenbanken geworden. In dieser Arbeit werden die dahinter liegenden Konzepte

Mehr

Softwareschnittstellen

Softwareschnittstellen P4.1. Gliederung Rechnerpraktikum zu Kapitel 4 Softwareschnittstellen Einleitung, Component Object Model (COM) Zugriff auf Microsoft Excel Zugriff auf MATLAB Zugriff auf CATIA Folie 1 P4.2. Einleitung

Mehr

OpenVMS und OpenSource Ein Widerspruch? peter ranisch openvms@ranisch.at

OpenVMS und OpenSource Ein Widerspruch? peter ranisch openvms@ranisch.at OpenVMS und OpenSource Ein Widerspruch? peter ranisch openvms@ranisch.at Perens' principles Under Perens' definition, open source describes a broad general type of software license that makes source code

Mehr

Übung 3. Interaktive Abfragen auf eine SQL-Datenbank. Prof. Dr. Andreas Schmietendorf. Wirtschaftsinformatik

Übung 3. Interaktive Abfragen auf eine SQL-Datenbank. Prof. Dr. Andreas Schmietendorf. Wirtschaftsinformatik Übung 3 Interaktive Abfragen auf eine SQL-Datenbank 1 Umgang mit der IBOConsole 2 Umgang mit der IBOConsole Zugriff auf Datenbanken - Interbase (Borland) - Firebird (Open Source) Funktionsumfang - Datenbanken

Mehr

Einstieg in das SQL- und Datenbanktuning 14.01.2009. Loblied auf den Tabellen-Index!

Einstieg in das SQL- und Datenbanktuning 14.01.2009. Loblied auf den Tabellen-Index! 1/40 PHP-User-Group Stuttgart 14.01.2009 Warum Datenbanken einen Hals bekommen und was sich dagegen tun lässt. Tuning und Performancesteigerung ohne zusätzliche Hardware. Ein. Loblied auf den Tabellen-Index!

Mehr

ein verteiltes und repliziertes Dateisystem XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576

ein verteiltes und repliziertes Dateisystem XtreemOS IP project is funded by the European Commission under contract IST-FP6-033576 ein verteiltes und repliziertes Dateisystem is funded by the European Commission XtreemOS IPunder project contract IST-FP6-033576 1 Das XtreemOS Projekt Europäisches Forschungsprojekt gefördert von der

Mehr