NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester Universität Leipzig 1-1

Größe: px
Ab Seite anzeigen:

Download "NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1"

Transkript

1 NoSQL-Datenbanken Kapitel 1: Einführung Lars Kolb Sommersemester 2014 Universität Leipzig 1-1

2 Inhaltsverzeichnis NoSQL-Datenbanken Motivation und Definition Kategorisierung, Eigenschaften CAP-Theorem ACID-Eigenschaften BASE-Ansatz 1-2

3 Massives Datenwachstum Quelle: IBM (2012) Pro Tag werden 2,5 Exabytes an Daten generiert 90% aller Daten weltweit wurden in den letzten 2 Jahren erzeugt 1-3

4 Datenproduzenten Quelle: Einführungsveranstaltung Seminar New Trends in Big Data WS 2013/14 1-4

5 Big Data Challenges Quelle: 1-5

6 Parallele DBS? Anforderung: Effiziente Verarbeitung großer Datenmengen in einer preiswerten, verteilten (heterogenen) Infrastruktur mit konkurrierenden Schreib- und Lesezugriffen unter Berücksichtigung von Knoten- bzw. Netzwerkausfällen für beliebige Daten (unstrukturiert, semi-strukturiert, strukturiert) Parallele Datenbanksysteme ungeeignet... teure, homogene Infrastruktur geringe Fehlertoleranz (z.b. Query-Restart) nur für strukturierte Daten (statisches Schema) begrenzte Skalierbarkeit (ca. 100 Knoten)... dafür mächtige, einfache Anfragesprache ACID-Eigenschaften Datenunabhängigkeit 1-6

7 NoSQL-Datenbanken Keine standardisierte Definition Datenbanksystem, das eines oder mehrere der folgenden Kriterien aufweist Kein relationales Datenmodell Schemafrei oder schwache Schemarestriktionen Keine Joins / keine Normalisierung Verteiltes, auf horizontale Skalierbarkeit ausgelegtes System Commodity Hardware Kein SQL Zugriff mit einfacher API statt SQL Keine Transaktionen Konsistenzmodell BASE statt ACID 1-7

8 Motivation NoSQL-Datenbanken Relationales Schema zu starr für viele Webanwendungen Evolution: Änderung der Webanwendung führt meist zu Schemaänderung Datenstruktur: Heterogene Informationsarten führen zu großen, unübersichtlichen Schemas (u.a. einfache mengenwertige Attribute z.b. Tags) Impedence Mismatch Anfrage: Wartbarkeit komplexer SQL-Anfragen (viele Joins) Vorteile relationaler Modellierung spielen geringere Rolle Data Store meist nur für eine Anwendung, daher Datenunabhängigkeit kein Ziel Effiziente SQL-Ausführung (Optimierung) durch komplexe Anfragen begrenzt Fokus: Performanz und Verfügbarkeit begrenzte Skalierbarkeit paralleler Datenbanksysteme geringe Fehlertoleranz (z.b. Query-Restart) 1-8

9 Kategorisierung von NoSQL-Datenbanken Key-Value Stores ( Kapitel 2) Amazon Dynamo, MemCacheDB, Voldemort, Riak, Redis, Scalaris,... Speicherung eines Werts (z.b. BLOB) pro nutzer-definiertem Schlüssel Zugriff über Schlüssel, d.h. put (key, value) und get (key) -Methode Document Stores ( Kapitel 3) SimpleDB, CouchDB, MongoDB, Terrastore,... Speicherung semistrukturierter Daten als Dokument (z.b. JSON) Zugriff über Schlüssel oder einfache Anfragesprache Extensible Record Stores (Wide-column stores) ( Kapitel 5) BigTable / HBase, HyperTable, Cassandra,... Tabellen-basierte Speicherung mit flexibler Erweiterung um neue Attribute Zugriff über Schlüssel oder SQL-ähnliche Anfragesprache Scalable Relational Databases ( Kapitel 5) MySQL Cluster, MegaStore, VoltDB, Clustrix, ScaleDB, ScaleBase, NimbusDB,

10 Inhaltsverzeichnis NoSQL-Datenbanken Definition und Motivation Kategorisierung, Eigenschaften CAP-Theorem ACID-Eigenschaften BASE-Ansatz 1-10

11 Performantes, verteiltes Datenmanagement Annahmen ( Irrtümer ) der verteilten Datenverarbeitung Das Netzwerk ist ausfallsicher, sicher und homogen Die Latenzzeit ist gleich Null, der Datendurchsatz unendlich und die Kosten des Datentransports können mit Null angesetzt werden Die Netzwerktopologie ist unveränderlich Verteilte Datenverarbeitung erfordert Kommunikation zwischen Knoten u.a. Synchronisation und Replikation robust gegen Knotenausfälle, Nachrichtenverlust,... Tradeoff: Performanz vs. Datenkonsistenz Warten bis alle (relevanten) Knoten synchronisiert sind Vermeidung (oder Auflösung) von Mischkonflikten 1-11

12 CAP-Theorem [Bre00] [GL02] CAP = Consistency, Availability, Partitioning Tolerance Consistency (Konsistenz) System funktioniert entweder voll oder gar nicht ( ACID-Atomarität) Alternativ: Updates werden bei allen relevanten Knoten zur gleichen logischen Zeit durchgeführt, d.h. alle Knoten sehen zur selben Zeit die selben Daten. Availability (Verfügbarkeit) Jede Lese/Schreib-Anfrage an einen non-failing Knoten wird beantwortet Knotenausfälle beeinflussen nicht die Verfügbarkeit lebender Knoten Partioning tolerance (Partitionstoleranz) System funktioniert trotz Verlust von Nachrichten zwischen Knoten Netzwerk-Partitionierung = Knoten aus einer Partition können nicht mehr mit Knoten aus anderer Partition kommunizieren Theorem: Ein verteiltes System kann maximal zwei der drei Eigenschaften gleichzeitig erfüllen. 1-12

13 CAP-Fälle CA keine Partitionstoleranz (Relationale) Datenbank ermöglicht verteilte Transaktionen zur Konsistenzwahrung Voraussetzung: funktionierendes Netzwerk (kein Nachrichtenverlust) CP keine Verfügbarkeit im Falle von Netzwerkpartitionierung werden Transaktionen blockiert Vermeidung möglicher Konflikte bei Merge, dadurch Sicherstellung der Konsistenz AP keine Konsistenz Writes stets möglich auch wenn keine Kommunikation mit anderen Knoten möglich (z.b. Synchronisation) Notwendigkeit der Auflösung inkonsistenter Daten, d.h. verschiedene Versionen des selben Datums an verschiedenen Knoten 1-13

14 CAP-Theorem und Data Stores Availability (Verfügbarkeit): Alle Clients können stets lesen und schreiben. A nach: Nathas Hurst s Visual Guide to NoSQL Systems Parallele DBMS Dynamo/S3 (KV) CouchDB (Document) Cassandra (Record) Consistency (Konistenz): Alle Clients haben stets die gleiche Sicht auf die Daten. C Verteilte Datenbanken Azure Storage (KV) MongoDB (Document) BigTable/HBase (Record) P Partition Tolerance (Partitionstoleranz): Das System funktioniert trotz Netzwerk-Partitionierung weiter. 1-14

15 ACID RDBMS gewährleistet für Transaktionen ACID-Eigenschaften. Atomicity Alles oder Nichts -Eigenschaft (Fehlerisolierung) Consistency eine erfolgreiche Transaktion erhält die DB-Konsistenz (Gewährleistung der definierten Integritätsbedingungen) Isolation alle Aktionen innerhalb einer Transaktion müssen vor parallel ablaufenden Transaktionen verborgen werden ( logischer Einbenutzerbetrieb ) Durability Überleben von Änderungen erfolgreich beendeter Transaktionen trotz beliebiger (erwarteter) Fehler garantieren (Persistenz) 1-15 DBS1 VL Prof. Rahm, Uni Leipzig

16 ACID vs. BASE [Bre00] Aufgabe (strenger) Konsistenz und logischem Einbenutzerbetrieb für Verfügbarkeit und Performanz BASE = Basically Available, soft-state, eventual consistency Konsistenz Verfügbarkeit Prinzip Priorität Evolution ACID streng (stets aktuelle Daten pro Knoten) eingeschränkt (z.b. bei Ausfall des Koordinatorknotens bei 2PC) pessimistisch / konservativ Anwendung kann sich auf Datenqualität verlassen Transaktionen im logischen Einbenutzerbetrieb aufwändig (Schema) BASE 1-16

17 Inhalt der Vorlesung Techniken zum effizienten Management großer un-/semi-strukturierter Datenmengen Verteilte Architekturen zum Storage (Speicherung) Retrieval/Querying (Anfrageverarbeitung) Algorithmen zur Synchronisation (z.b. für Replikation) Realisierung von Transaktionen 1-17

18 Inhaltsverzeichnis (vorläufig) 1. Einführung NoSQL-Datenbanken CAP-Theorem 2. Key-Value Stores Microsoft Azure Storage Amaszon S3/Dynamo 3. Document Stores CouchDB MongoDB 5. Record Stores & RDMS in der Cloud BigTable/HBase, Cassandra Megastore H-Store/VoltDB Synchronisation Transaktionen 6. Graphdatenmanagement Graphmodell & -algorithmen Graphdatenbanken Parallele Graph-Algorithmen 4. Skalierbare Webanwendungen Design-Prinzipien Google App Engine 1-18

19 Literatur [Bre00] Brewer. Towards robust distributed systems. Proceedings of the Annual ACM Symposium on Principles of Distributed Computing (2000) [GL02] Gilbert and Lynch. Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services. ACM SIGACT News (2002) 1-19

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Inhalt: CAP (Consistency/Availability/Partition-Tolerance); BASE (Basically Available, Soft State, Eventually Consistent); Datenmodelle: Key-Value-Stores, Spaltenbasierte

Mehr

NoSQL-Databases. Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de

NoSQL-Databases. Präsentation für Advanced Seminar Computer Engineering, Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de NoSQL-Databases Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de Klassische SQL-Datenbanken Anwendungsgebiet: Geschäftsanwendungen Behördenanwendungen

Mehr

Cloud Data Management

Cloud Data Management Cloud Data Management Kapitel 3: Cloud Data Stores Dr. Andreas Thor Sommersemester 2011 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de 1 Inhaltsverzeichnis Datastores CAP-Theorem,

Mehr

Überblick und Vergleich von NoSQL. Datenbanksystemen

Überblick und Vergleich von NoSQL. Datenbanksystemen Fakultät Informatik Hauptseminar Technische Informationssysteme Überblick und Vergleich von NoSQL Christian Oelsner Dresden, 20. Mai 2011 1 1. Einführung 2. Historisches & Definition 3. Kategorien von

Mehr

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg NoSQL Was Architekten beachten sollten Dr. Halil-Cem Gürsoy adesso AG Architekturtag @ SEACON 2012 Hamburg 06.06.2012 Agenda Ein Blick in die Welt der RDBMS Klassifizierung von NoSQL-Datenbanken Gemeinsamkeiten

Mehr

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer NoSQL Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Geleitwort 1 Vorwort 1 1 Einführung 1 1.1 Historie 1 1.2 Definition und

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

Soziotechnische Informationssysteme

Soziotechnische Informationssysteme Soziotechnische Informationssysteme 8. NoSQL Relationale Datenbank NoSQL Datenbank Relationale Datenbank? NoSQL Datenbank RDBM 2 Warum? Skalierbarkeit Riesige Datenmengen Performanz und Elastizität Auslastung

Mehr

Charakteristika und Vergleich von SQL- und NoSQL- Datenbanken

Charakteristika und Vergleich von SQL- und NoSQL- Datenbanken Universität Leipzig Fakultät für Mathematik und Informatik Abteilung Datenbanken Dozent: Prof. Dr. Erhard Rahm Betreuer: Stefan Endrullis Problemseminar NoSQL-Datenbanken Semester: WS 11/12 Charakteristika

Mehr

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011 Eine Einführung in Apache CouchDB Java-Forum Stuttgart 2011 Johannes Schneider, cedarsoft GmbH js@cedarsoft.com http://blog.cedarsoft.com http://cedarsoft.com Vielen Dank CouchDB The VERY Basics Vorerfahrung?

Mehr

NoSQL Datenbanken. Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel

NoSQL Datenbanken. Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel NoSQL Datenbanken Seminar:Software as a Service, Cloud-Computing und aktuelle Entwicklungen Dozent: Dipl. Inf. Andreas Göbel 17. Juni 2010 Gliederung Der Begriff NoSQL Wichtige Konzepte NoSQL-Arten Cassandra

Mehr

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner

NoSQL HANSER. Einstieg in die Web 2.0 Datenbanken. Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner Stefan Edlich Achim Friedland Jens Hampe Benjamin Brauer Markus Brückner NoSQL Einstieg in die Web 2.0 Datenbanken 2., akutalisierte und erweiterte Auflage HANSER Geleitwort Vorwort Vorwort zur 2. Auflage

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

NoSQL. Hintergründe und Anwendungen. Andreas Winschu

NoSQL. Hintergründe und Anwendungen. Andreas Winschu NoSQL Hintergründe und Anwendungen Andreas Winschu 1 Inhalt 1. Motivation 2. RDBMS 3. CAP Theorem 4. NoSQL 5. NoSql Overview 6. NoSQl Praxis 7. Zusammenfassung und Ausblick 2 1.Motivation Datenbanken Permanente

Mehr

The R(E)volution of Data Stores

The R(E)volution of Data Stores The R(E)volution of Data Stores Willkommen Schön, dass sie in diese Session kommen, ich bin Dominik Wagenknecht NoSQL Initiative Lead Technology Architect Accenture Wien Mobil: +43 676 8720 33921 dominik.wagenknecht@accenture.com

Mehr

Aktuelle SE Praktiken für das WWW

Aktuelle SE Praktiken für das WWW Aktuelle SE Praktiken für das WWW SQL vs. NoSQL W. Mark Kubacki 23.06.2010 Gliederung Zusammenfassung Entstehungsgeschichte SQL vs. NoSQL Systemarchitekturen und Wachstumsmuster SQL NoSQL Überblick und

Mehr

Datenbanksysteme Kapitel 6: Neue Konzepte der Datenbanktechnologie

Datenbanksysteme Kapitel 6: Neue Konzepte der Datenbanktechnologie Datenbanksysteme Kapitel 6: Neue Konzepte der Datenbanktechnologie Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter

Mehr

Web Technologien NoSQL Datenbanken

Web Technologien NoSQL Datenbanken Web Technologien NoSQL Datenbanken Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II SS 2015. NoSQL. http://www.w3resource.com/mongodb/nosql.php. Dr. Christian Senger.

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II SS 2015. NoSQL. http://www.w3resource.com/mongodb/nosql.php. Dr. Christian Senger. NoSQL http://www.w3resource.com/mongodb/nosql.php NoSQL 1 Short History of Databases 1960s - Navigational DBs CODEASYL (COBOL) IMS (IBM) 1980s to 1990s - Object Oriented DBs Object DB's Object-Relational-

Mehr

SQL- & NoSQL-Datenbanken. Speichern und Analysen von großen Datenmengen

SQL- & NoSQL-Datenbanken. Speichern und Analysen von großen Datenmengen SQL- & NoSQL-Datenbanken Speichern und Analysen von großen Datenmengen 1 04.07.14 Zitat von Eric Schmidt (Google CEO): There was 5 exabytes of information created between the dawn of civilization through

Mehr

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt NoSQL & Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

NoSQL Databases and Big Data

NoSQL Databases and Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt NoSQL & Big Data Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Einführung in CouchDB

Einführung in CouchDB Einführung in CouchDB Zurücklehnen und entspannen! http://slog.io Thomas Schrader (@slogmen) 12/2010 Übersicht Bestandsaufnahme Ansatz Geschichte Technologien Features Skalierbarkeit Kurz & Gut Fazit Relationale

Mehr

Einführung. Kapitel 1 2 / 508

Einführung. Kapitel 1 2 / 508 Kapitel 1 Einführung 2 / 508 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern und Verwalten von Daten. Warum kein herkömmliches Dateisystem verwenden? Ausfallsicherheit und Skalierbarkeit

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

NoSQL in transaktionalen Enterprisesystemen

NoSQL in transaktionalen Enterprisesystemen NoSQL in transaktionalen Enterprisesystemen Version: 1.1 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Wir haben hier nur ein paar Java Clients vor einem Host, wir

Mehr

Big Data Management Thema 14: Cassandra

Big Data Management Thema 14: Cassandra Thema 14: Cassandra Jan Kristof Nidzwetzki Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read

Mehr

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT Version: 1.1 Wir haben hier nur ein in Java implementierte Frontends vor einer hostbasierten Businesslogic, wir profitieren nicht von NoSQL in

Mehr

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz 1 2 Dies ist ein Vortrag über Zeit in verteilten Anwendungen Wir betrachten die diskrete "Anwendungszeit" in der nebenläufige Aktivitäten auftreten Aktivitäten in einer hochgradig skalierbaren (verteilten)

Mehr

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT Version: 1.1 Wir haben hier nur ein in Java implementierte Frontends vor einer hostbasierten Businesslogic, wir profitieren nicht von NoSQL in

Mehr

Institut für Verteilte Systeme

Institut für Verteilte Systeme Institut für Verteilte Systeme Prof. Dr. Franz Hauck Seminar: Multimedia- und Internetsysteme, Wintersemester 2010/11 Betreuer: Jörg Domaschka Bericht zur Seminarssitzung am 2011-01-31 Bearbeitet von :

Mehr

Verteilte Systeme - 5. Übung

Verteilte Systeme - 5. Übung Verteilte Systeme - 5. Übung Dr. Jens Brandt Sommersemester 2011 Transaktionen a) Erläutere was Transaktionen sind und wofür diese benötigt werden. Folge von Operationen mit bestimmten Eigenschaften: Atomicity

Mehr

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010 NoSQL Einblick in die Welt nicht-relationaler Datenbanken Christoph Föhrdes UnFUG, SS10 17.06.2010 About me Christoph Föhrdes AIB Semester 7 IRC: cfo #unfug@irc.ghb.fh-furtwangen.de netblox GbR (http://netblox.de)

Mehr

Datenbanken. Prof. Dr. Bernhard Schiefer. bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer

Datenbanken. Prof. Dr. Bernhard Schiefer. bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Datenbanken Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Wesentliche Inhalte Begriff DBS Datenbankmodelle Datenbankentwurf konzeptionell, logisch und relational

Mehr

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse?

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Ein Beispiel Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Dipl.-Kfm. Claus Häberle WS 2015 /16 # 42 XML (vereinfacht) visa

Mehr

NoSQL-Datenbanken. Kapitel 2: Key-Value Stores. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 2-1

NoSQL-Datenbanken. Kapitel 2: Key-Value Stores. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 2-1 NoSQL-Datenbanken Kapitel 2: Key-Value Stores Lars Kolb Sommersemester 2014 Universität Leipzig http://dbs.uni-leipzig.de 2-1 Inhaltsverzeichnis Key-Value Stores File/Object Storage Services Beispiele:

Mehr

NoSQL-Einsatzszenarien. NoSQL in transaktionalen Enterprisesystemen

NoSQL-Einsatzszenarien. NoSQL in transaktionalen Enterprisesystemen NoSQL-Einsatzszenarien in transaktionalen Enterprise-Systemen Version: 1.1 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Wir haben hier nur ein paar Java-Clients

Mehr

EHCache und Terracotta. Jochen Wiedmann, Software AG

EHCache und Terracotta. Jochen Wiedmann, Software AG EH und Terracotta Jochen Wiedmann, Software AG Autor Perl-Contributor DBD::mySQL 2, DBI::Proxy, DBI::Shell, DBD::CSV, Net::Daemon, RPC::Pl(Client Server) (Autor) DBI (Developer) ASF-Member (Apache Software

Mehr

Kapitel 3: Eigenschaften von Integrationssystemen. Einordnung von Integrationssystemen bzgl. Kriterien zur Beschreibung von Integrationssystemen

Kapitel 3: Eigenschaften von Integrationssystemen. Einordnung von Integrationssystemen bzgl. Kriterien zur Beschreibung von Integrationssystemen Datenintegration Datenintegration Kapitel 3: Eigenschaften von Integrationssystemen Andreas Thor Sommersemester 2008 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de 1 Inhalt Einordnung

Mehr

Definition Informationssystem

Definition Informationssystem Definition Informationssystem Informationssysteme (IS) sind soziotechnische Systeme, die menschliche und maschinelle Komponenten umfassen. Sie unterstützen die Sammlung, Verarbeitung, Bereitstellung, Kommunikation

Mehr

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank SimpleVOC-Yetanother Memcached? Bausteine für eine Key/Value- Datenbank SimpleVOC Yet another memcached? Bausteine für eine Key/Value Datenbank. Theorie (Martin Schönert) Praxis (Frank Celler) Eine Weisheit

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr

Carl-Christian Kanne. Einführung in Datenbanken p.1/513

Carl-Christian Kanne. Einführung in Datenbanken p.1/513 Einführung in Datenbanken Carl-Christian Kanne Einführung in Datenbanken p.1/513 Kapitel 1 Einführung Einführung in Datenbanken p.2/513 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern

Mehr

Datenbanktechnologien für Big Data

Datenbanktechnologien für Big Data Datenbanktechnologien für Big Data Oktober 2013 Prof. Dr. Uta Störl Hochschule Darmstadt Big Data Technologien Motivation Big Data Technologien NoSQL-Datenbanksysteme Spaltenorientierte Datenbanksysteme

Mehr

8. Big Data und NoSQL-Datenbanken

8. Big Data und NoSQL-Datenbanken 8. Big Data und NoSQL-Datenbanken Motivation Big Data wachsende Mengen und Vielfalt an Daten Herausforderungen Einsatzbereiche Systemarchitekturen für Big Data Analytics Analyse-Pipeline, Hadoop, MapReduce

Mehr

Key-Value-Stores Am Beispiel von Scalaris

Key-Value-Stores Am Beispiel von Scalaris Key-Value-Stores Am Beispiel von Scalaris Natanael Arndt arndtn@gmail.com 15. April 2012 Inhaltsverzeichnis 1 Einführung 2 1.1 Key-Value-Stores................................ 2 1.2 CRUD Operationen statt

Mehr

Karl Glatz Oktober 2009. Vorstellung der verteilten NoSQL Datenbank CouchDB

Karl Glatz Oktober 2009. Vorstellung der verteilten NoSQL Datenbank CouchDB Karl Glatz Oktober 2009 Vorstellung der verteilten NoSQL Datenbank CouchDB Web Awendung (AJAX) MySQL SQL Web Server PHP HTTP (HTML) ORM (Framework) JSON API (AJAX) Web Browser Java Script HTTP RESTful

Mehr

SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen

SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen Lennart Leist Inhaltsverzeichnis 1 Einführung 2 1.1 Aufgaben einer Datenbank...................... 2 1.2 Geschichtliche Entwicklung

Mehr

Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra)

Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra) 1 Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? 2 SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra) 3 DB-Cluster in der Cloud? NoSQL?!? SQL Normalformen Come as you are Warum

Mehr

Software-Engineering und Datenbanken

Software-Engineering und Datenbanken Software-Engineering und Datenbanken Prof. Dr. Bernhard Schiefer bernhard.schiefer@fh-kl.de http://www.fh-kl.de/~schiefer Prof. Dr. Bernhard Schiefer 1-1 Wesentliche Inhalte Begriff DBS Datenbankmodelle

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

NoSQL Please! Wie Web2.0, Big Data und die Cloud neue Datenbanksysteme erfordern und hervorbringen. Datenbank-Stammtisch, 8.

NoSQL Please! Wie Web2.0, Big Data und die Cloud neue Datenbanksysteme erfordern und hervorbringen. Datenbank-Stammtisch, 8. A Database Administrator walks into a NoSQL bar, but turns and leaves because he cannot find a table. NoSQL Please! Wie Web2.0, Big Data und die Cloud neue Datenbanksysteme erfordern und hervorbringen.

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de MapReduce MapReduce - Veranschaulichung der Phasen Prof. Dr.-Ing. S. Michel TU Kaiserslautern

Mehr

Fragenkatalog zum Kurs 1666 (Datenbanken in Rechnernetzen) Kurstext von SS 96

Fragenkatalog zum Kurs 1666 (Datenbanken in Rechnernetzen) Kurstext von SS 96 Fragenkatalog zum Kurs 1666 (Datenbanken in Rechnernetzen) Kurstext von SS 96 Dieser Fragenkatalog wurde aufgrund das Basistextes und zum Teil aus den Prüfungsprotokollen erstellt, um sich auf mögliche

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Soziale Wissenschaft Wissenschaft als soziales Netzwerk

Soziale Wissenschaft Wissenschaft als soziales Netzwerk Seminar Technologie sozialer Netzwerke Prof. Dr. Krömker WS 13/14 Soziale Wissenschaft Wissenschaft als soziales Netzwerk Sven Köppel koeppel@cs.uni-frankfurt.de Professur für Graphische Datenverarbeitung

Mehr

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1)

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1) Datenbanken und SQL Kapitel 1 Übersicht über Datenbanken Übersicht über Datenbanken Vergleich: Datenorganisation versus Datenbank Definition einer Datenbank Bierdepot: Eine Mini-Beispiel-Datenbank Anforderungen

Mehr

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012 Wide Column Stores Felix Bruckner Mannheim, 15.06.2012 Agenda Einführung Motivation Grundlagen NoSQL Grundlagen Wide Column Stores Anwendungsfälle Datenmodell Technik Wide Column Stores & Cloud Computing

Mehr

Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung

Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung A. Göbel, Prof. K. Küspert Friedrich-Schiller-Universität Fakultät für Mathematik und Informatik Lehrstuhl für Datenbanken

Mehr

NoSQL Datenbanken am Beispiel von CouchDB

NoSQL Datenbanken am Beispiel von CouchDB NoSQL Datenbanken am Beispiel von CouchDB OIO - Hauskonferenz 2011 Version: 1.0 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Ihr Sprecher Thomas Bayer Programmierer

Mehr

whitepaper NoSQL Not only... but also SQL: Flexibilität und Vielfalt in der Persistenz

whitepaper NoSQL Not only... but also SQL: Flexibilität und Vielfalt in der Persistenz whitepaper NoSQL Not only... but also SQL: Flexibilität und Vielfalt in der Persistenz NoSQL Not only... but also SQL: Flexibilität und Vielfalt in der Persistenz Dieses Dokument soll die Technologien,

Mehr

DATENBANK LÖSUNGEN. mit Azure. Peter Schneider Trainer und Consultant. Lernen und Entwickeln. www.egos.co.at

DATENBANK LÖSUNGEN. mit Azure. Peter Schneider Trainer und Consultant. Lernen und Entwickeln. www.egos.co.at DATENBANK LÖSUNGEN mit Azure Peter Schneider Trainer und Consultant Agenda Cloud Services, Data Platform, Azure Portal Datenbanken in Virtuelle Maschinen Azure SQL Datenbanken und Elastic Database Pools

Mehr

Cloud-Plattform: Appscale Hochschule Mannheim

Cloud-Plattform: Appscale Hochschule Mannheim Florian Weispfenning Cloud-Computing Seminar Hochschule Mannheim WS0910 1/28 Cloud-Plattform: Appscale Hochschule Mannheim Florian Weispfenning Fakultät für Informatik Hochschule Mannheim florian.weispfenning@stud.hs-mannheim.de

Mehr

NoSQL für Anwendungen

NoSQL für Anwendungen NoSQL für Anwendungen Hochschule Mannheim Fakultät für Informatik Cluster Grid Computing Seminar SS 2012 Lemmy Tauer (729400) lemmy.coldlemonade.tauer@gmail.com NoSQL CAP / ACID / Kompromisse Key-Value

Mehr

Persönlichkeiten bei bluehands

Persönlichkeiten bei bluehands Persönlichkeiten bei Technologien bei Skalierbare Anwendungen mit Windows Azure GmbH & co.mmunication KG am@.de; posts..de/am 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit

Mehr

Einführung in Datenbanken

Einführung in Datenbanken Grundlagen der Programmierung 2 Einführung in Datenbanken Grundlagen der Programmierung 2 I-1 Inhalt Einführung Entity-Relationship-Diagramm Relationales Modell Entity-Relationship-Diagramm ins Relationales

Mehr

Markus Weise. Parallele Cloud-DBS: Aufbau und Implementierung. Parallele Cloud-DBS. Abteilung Datenbanken am Institut für Informatik

Markus Weise. Parallele Cloud-DBS: Aufbau und Implementierung. Parallele Cloud-DBS. Abteilung Datenbanken am Institut für Informatik : Aufbau und Implementierung Markus Weise Markus Weise, Universität Leipzig Folie 1 Inhalt: 1. Einleitung 2. Google s Bigtable 3. Yahoo! s PNUTS 4. Zusammenfassung 5. Quellen Markus Weise, Universität

Mehr

Kapitel 14 Verteilte DBMS

Kapitel 14 Verteilte DBMS Kapitel 14 Verteilte DBMS 14 Verteilte DBMS 14 Verteilte DBMS...1 14.1 Begriff, Architektur und Ziele verteilter Datenbanksysteme...2 14.2 Verteilungsarten...5 14.2.1 Verteilung der Daten...5 14.2.2 Verteilung

Mehr

Wide Column Stores. Felix Bruckner. Hochschule Mannheim Fakultät für Informatik Paul-Wittsack-Straße 10 68163 Mannheim felix.bruckner@gmail.

Wide Column Stores. Felix Bruckner. Hochschule Mannheim Fakultät für Informatik Paul-Wittsack-Straße 10 68163 Mannheim felix.bruckner@gmail. Wide Column Stores Felix Bruckner Hochschule Mannheim Fakultät für Informatik Paul-Wittsack-Straße 10 68163 Mannheim felix.bruckner@gmail.com Zusammenfassung Wide Column Stores sind verteilte nichtrelationale

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

7. Big Data und NoSQL-Datenbanken

7. Big Data und NoSQL-Datenbanken 7. Big Data und NoSQL-Datenbanken Motivation Big Data Herausforderungen Einsatzbereiche Systemarchitekturen für Big Data Analytics Analyse-Pipeline Hadoop, MapReduce, Spark/Flink NoSQL-Datenbanken Eigenschaften

Mehr

NoSQL-Datenbanksysteme: Revolution oder Evolution?

NoSQL-Datenbanksysteme: Revolution oder Evolution? NoSQL-Datenbanksysteme: Revolution oder Evolution? Kolloquium Institut für Informatik, Universität Rostock 24.01.2013 Prof. Dr. Uta Störl Hochschule Darmstadt uta.stoerl@h-da.de NoSQL: DAS aktuelle Datenbank-Buzzword

Mehr

ISBN: 978-3-8428-0679-5 Herstellung: Diplomica Verlag GmbH, Hamburg, 2011

ISBN: 978-3-8428-0679-5 Herstellung: Diplomica Verlag GmbH, Hamburg, 2011 Nils Petersohn Vergleich und Evaluation zwischen modernen und traditionellen Datenbankkonzepten unter den Gesichtspunkten Skalierung, Abfragemöglichkeit und Konsistenz Diplomica Verlag Nils Petersohn Vergleich

Mehr

Web & Datenbanken SoSe2013. Web & Datenbanken

Web & Datenbanken SoSe2013. Web & Datenbanken Web & Datenbanken Vorlesung Prof. Johann Christoph Freytag, Ph.D. Institut für Informatik, Humboldt-Universität zu Berlin Bitte Handys ausschalten! 1.1 Ziel des Vortrags Welche DBMS gibt es Welche ist

Mehr

Cloud Data Management

Cloud Data Management Cloud Data Management Kapitel 1: Einführung Dr. Michael Hartung Sommersemester 2012 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de 1 Cloud Computing: Hype Google Trends 2 Cloud Computing:

Mehr

Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends. Cloud-Datenbanken. Franz Anders 02.07.2015

Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends. Cloud-Datenbanken. Franz Anders 02.07.2015 Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends Cloud-Datenbanken Franz Anders 02.07.2015 Dies ist das erweiterte Abstract zum Vortrag Cloud-Datenbanken für das Oberseminar Datenbanksysteme

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

9. Cloud Data Management

9. Cloud Data Management 9. Cloud Data Management Einführung Verteilte Datenhaltung Dateisysteme (GFS) Hbase (Google Big Table) Amazon Dynamo MapReduce B 9-1 Cloud Computing Cloud computing is using the internet to access someone

Mehr

Datenverwaltung in der Cloud. Überblick. Google File System. Anforderungen der Anwendungen an das Dateisystem

Datenverwaltung in der Cloud. Überblick. Google File System. Anforderungen der Anwendungen an das Dateisystem Überblick Datenverwaltung in der Cloud Datenverwaltung in der Cloud Motivation Windows Azure Storage: Zusammenfassung CAP-Theorem nach [Brewer] In einem verteilten System ist es nicht möglich gleichzeitig

Mehr

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP Seminar WS 2012/13 S. Chaudhuri et al, CACM, Aug. 2011 Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP 2 Vorkonfigurierte, komplette Data Warehouse-Installation Mehrere Server,

Mehr

8. Big Data und NoSQL-Datenbanken

8. Big Data und NoSQL-Datenbanken 8. Big Data und NoSQL-Datenbanken Motivation Big Data Wachsende Mengen und Vielfalt an Daten Herausforderungen Systemarchitekturen für Big Data Analytics Analyse-Pipeline, Near-Real-Time Data Warehouses

Mehr

Cloud Computing: Der Anfang... Überblick. »We call it cloud computing (... ) « Cloud Computing: Zeitpunkt, Grundeigenschaften

Cloud Computing: Der Anfang... Überblick. »We call it cloud computing (... ) « Cloud Computing: Zeitpunkt, Grundeigenschaften Überblick Cloud Computing: Der Anfang... Cloud Computing Begriffsklärung Grundeigenschaften Technologie und Algorithmen Formen Vergleich: Timesharing-Systeme»We call it cloud computing (... ) «Eric Schmidt

Mehr

Überblick. Cloud Computing Begriffsklärung Grundeigenschaften Technologie und Algorithmen Formen Vergleich: Timesharing-Systeme

Überblick. Cloud Computing Begriffsklärung Grundeigenschaften Technologie und Algorithmen Formen Vergleich: Timesharing-Systeme Überblick Cloud Computing Begriffsklärung Grundeigenschaften Technologie und Algorithmen Formen Vergleich: Timesharing-Systeme Cloud-Computing-Systeme Amazon Web Services Twitter VS-Übung (SS13) Cloud

Mehr

NoSQL - schöne neue Datenbankwelt oder vorübergehender Hype?

NoSQL - schöne neue Datenbankwelt oder vorübergehender Hype? NoSQL - schöne neue Datenbankwelt oder vorübergehender Hype? Bis vor kurzem war die Frage, welche Datenbank man in seiner Applikation verwenden soll, normalerweise kein heiß diskutiertes Thema. Wo aus

Mehr

NoSQL-Datenbanksysteme

NoSQL-Datenbanksysteme NoSQL-Datenbanksysteme Hochschule Harz 14.06.2013 Prof. Dr. Uta Störl Hochschule Darmstadt uta.stoerl@h-da.de NoSQL: DAS aktuelle Datenbank Buzzword Quelle: http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

Mehr

Analyse und Bewertung von relationalen Datenbanken gegenüber NoSQL Datenbanken

Analyse und Bewertung von relationalen Datenbanken gegenüber NoSQL Datenbanken FOM - Hochschule für Oekonomie & Management Essen in Kooperation mit der FH Dortmund Studienfach: IT-Management 2. Semester Wintersemester 2011 Betreuer: Prof. Dr. Gregor Sandhaus Analyse und Bewertung

Mehr

NoSQL-Datenbanken. Markus Kramer. deren Probleme herauszuarbeiten und andere Grundlagen zu erläutern.

NoSQL-Datenbanken. Markus Kramer. deren Probleme herauszuarbeiten und andere Grundlagen zu erläutern. 1 NoSQL-Datenbanken Markus Kramer Zusammenfassung NoSQL-Datenbanken sind zu einer interessanten Alternative zu herkömmlichen Datenbanken geworden. In dieser Arbeit werden die dahinter liegenden Konzepte

Mehr

Teil VI. Datenbanken

Teil VI. Datenbanken Teil VI Datenbanken Überblick 1 Grundlegende Begriffe Motivation 2 Relationale Datenbanksysteme Das Relationale Datenmodell SQL 3 Entwurf von Datenbanken Das Enity Relationship (ER) Modell Abbildung von

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

VERSCHLÜSSELUNG MITTELS QUERY- REWRITING AUF DER CLOUD-DATENBANK AMAZON DYNAMODB

VERSCHLÜSSELUNG MITTELS QUERY- REWRITING AUF DER CLOUD-DATENBANK AMAZON DYNAMODB Eingereicht von Michaela Wakolbinger, MSc VERSCHLÜSSELUNG MITTELS QUERY- REWRITING AUF DER CLOUD-DATENBANK AMAZON DYNAMODB Angefertigt am Institut für Wirtschaftsinformatik - Data & Knowledge Engineering

Mehr

DBS 1 DBS1. Prof. Dr. E. Rahm. Lehrveranstaltungen zu Datenbanken (WS 09/10) Wintersemester 2009/2010. Universität Leipzig Institut für Informatik

DBS 1 DBS1. Prof. Dr. E. Rahm. Lehrveranstaltungen zu Datenbanken (WS 09/10) Wintersemester 2009/2010. Universität Leipzig Institut für Informatik Datenbanksysteme I Prof. Dr. E. Rahm Wintersemester 2009/2010 DBS 1 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de WS0910, Prof. Dr. E. Rahm 0-1 Lehrveranstaltungen zu Datenbanken

Mehr

Big Data und Oracle bringen die Logistik in Bewegung

Big Data und Oracle bringen die Logistik in Bewegung OPITZ CONSULTING Deutschland GmbH Dortmund, 07.05.2014 Bild-Quelle: Web-Seite von Pasta ZARA, Big Artikel Data So und entstehen Oracle bringen unsere die Nudeln Logistik in Bewegung http://de.pastazara.com/so-entstehen-unsere-nudeln

Mehr

Vorlesung 30.03.2009 1) Einführung

Vorlesung 30.03.2009 1) Einführung Vorlesung 30.03.2009 1) Einführung Was versteht man unter dem Begriff Datenbank? - Eine Datenbank ist eine Struktur zur Speicherung von Daten mit lesendem und schreibendem Zugriff - Allgemein meint man

Mehr

Eine kleine Reise durch NoSQL

Eine kleine Reise durch NoSQL JAVA Mag Apache Mahout: Massendaten mit Java und Scala verarbeiten 70 Deutschland 9,80 Österreich 10,80 Schweiz sfr 19,50 Luxemburg 11,15 magazin Java Architekturen Web Agile www.javamagazin.de Einstieg

Mehr

Datenbanken und Informationssysteme

Datenbanken und Informationssysteme Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012

Mehr

Was ist Windows Azure? (Stand Juni 2012)

Was ist Windows Azure? (Stand Juni 2012) Was ist Windows Azure? (Stand Juni 2012) Windows Azure Microsofts Cloud Plattform zu Erstellung, Betrieb und Skalierung eigener Cloud-basierter Anwendungen Cloud Services Laufzeitumgebung, Speicher, Datenbank,

Mehr