Aktuelle SE Praktiken für das WWW

Größe: px
Ab Seite anzeigen:

Download "Aktuelle SE Praktiken für das WWW"

Transkript

1 Aktuelle SE Praktiken für das WWW SQL vs. NoSQL W. Mark Kubacki

2 Gliederung Zusammenfassung Entstehungsgeschichte SQL vs. NoSQL Systemarchitekturen und Wachstumsmuster SQL NoSQL Überblick und Einsatzbeispiele Verteilte Datenbanken SE Praktiken W. Mark Kubacki: SQL vs. NoSQL

3 Zusammenfassung SQL vs. NoSQL ist eine Bewegung Unzufriedener Ignoranten? Kritik an SQL und an relationalen DBMS die Datenbank gibt es nicht aber mehr Auswahl spezielle Einsatzgebiete DB für eine Datenstruktur wählen, nicht umgekehrt. W. Mark Kubacki: SQL vs. NoSQL

4 Entstehungsgeschichte NoSQL ist nicht neu, SQL ist es 90 er: SQL vs. Objektorientierte dedizierte Datenbanken Schlüssel/Wert Speicher 1979: dbm, sdbm, BerkeleyDB neu: hauptspeicherbasierte DBs verteilte DBs W. Mark Kubacki: SQL vs. NoSQL

5 Entstehungsgeschichte Webanwendungen große Datenmengen heiße Daten response time (günstige) Skalierbarkeit einfache Einbindung Cloud Computing Grenzen von MySQL, PostgreSQL und Co. Rackspace 2009: Was machen wir? W. Mark Kubacki: SQL vs. NoSQL

6 Systemarchitekturen Skalierbarkeit Skalabilität Horizontale Vertikale W. Mark Kubacki: SQL vs. NoSQL

7 Systemarchitekturen - 1:1 Anwendungsserver Datenbank Frontend Backend W. Mark Kubacki: SQL vs. NoSQL

8 Systemarchitekturen n:1 Datenbank W. Mark Kubacki: SQL vs. NoSQL

9 Systemarchitekturen n:m(1) Master 3 Spiegel (nur Lesen) W. Mark Kubacki: SQL vs. NoSQL

10 Systemarchitekturen - Verbesserungsideen Daten aufteilen Partitionieren Sharding Verteilte Datenbank nutzen Backend von Frontend entkoppeln Lastkurve glätten W. Mark Kubacki: SQL vs. NoSQL

11 Partitionierung Server A Server B Vertikale ~ ID Name Alter Abteilung 1 Alpha 25 A 2 Beta 26 A 3 Gamma 27 B 4 Delta 28 A 5 Epsilon 29 B 6 Zeta 30 B ID muss ergänzt werden Horizontale ~ ID Name Alter Abteilung 1 Alpha 25 A 2 Beta 26 A 3 Gamma 27 B 4 Delta 28 A 5 Epsilon 29 B 6 Zeta 30 B W. Mark Kubacki: SQL vs. NoSQL

12 Datenaufteilung Horizontale Partitionierung Sharding SQL so nicht mehr möglich Datenverwaltung in Anwendung Weiteres Wachstum? Mehr DB-Server? Schemaänderungen? Konfigurationen? W. Mark Kubacki: SQL vs. NoSQL

13 Systemarchitekturen Warum nicht gleich eine bessere Lösung? W. Mark Kubacki: SQL vs. NoSQL

14 SQL Relationale Datenbanken SQL Verwaltung Abfrage Transformation Programme in PL/SQL etwa PostgreSQL: andere Sprachen W. Mark Kubacki: SQL vs. NoSQL

15 SQL SQL ist kompliziert eine zusätzliche Sprache Wir brauchen keine Transaktionen. Funktioniert jetzt nicht mehr. JOIN, JOIN, LEFT JOIN was mit wem? Sowieso nicht einheitlich, Sprache X schon. W. Mark Kubacki: SQL vs. NoSQL

16 RDBMS sind langsam? Datenorganisation festes Schema Speicherung in Zeilen (?) Row-./. Column(ar)-./. Correlation-Stores Person Name Abteilung 100 Alpha A 101 Beta A OID 1 2 Person OID Name OID Abteilung Alpha 1 A Beta 2 A W. Mark Kubacki: SQL vs. NoSQL

17 RDBMS sind unflexibel? Schemaänderungen bei Columnar schnell DBMS = DB + Management System Storage kann getauscht werden SQL bleibt RDBMS bedeutet nicht zwingen auch SQL! MonetDB: SQL, MAL, MIL, Xpath W. Mark Kubacki: SQL vs. NoSQL

18 Eigene Erfahrungen Amazon Xlarge, MySQL: Zeilen/s 50ms mindestens pro Leseoperation mit Schlüssel/Wert Speicher (Tokyo Cabinet): SQL in die Anwendung schieben Zeilen/s <<1ms pro Leseoperation Komprimierung möglich W. Mark Kubacki: SQL vs. NoSQL

19 NoSQL W. Mark Kubacki: SQL vs. NoSQL

20 NoSQL Datenstruktur? O(1), O(log N), O(N²)? Verteilt? Schema-Äquivalenz? Foreign Keys, Trigger? Abfragesprache? Schnittstellen zur primären Sprache? W. Mark Kubacki: SQL vs. NoSQL

21 NoSQL Demo: Datenstrukturen W. Mark Kubacki: SQL vs. NoSQL

22 NoSQL - Datentransformation Mitarbeiter ID Name Alter 1 Alpha 25 2 Beta 26 3 Gamma 27 4 Delta 28 Mitarbeiter_1:Name Mitarbeiter_2:Name Mitarbeiter_3:Name Mitarbeiter_4:Name Alpha Beta Gamma Delta Mitarbeiter_1 Name Alpha Mitarbeiter_2 Name Beta Mitarbeiter_3 Name Gamma Mitarbeiter_4 Name Delta W. Mark Kubacki: SQL vs. NoSQL

23 NoSQL Einsatzbeispiele (1) A1 A2 A3 A4 Nginx Q1 Queue GET Redis oder MySQL Q2 Q3 Kommentar-Handler Kommentar-Prozessor(en) A Kommentare werden mit einem konstanten Text beantwortet. Q Sie werden in die Queue geschrieben, aus der sich die Prozessoren bedienen. Q3 Im Erfolgsfall wird die Seite ergänzt, gerendert und in die DB geschrieben. GET Nginx bedient sich bei Lesezugriffen direkt aus der Datenbank. W. Mark Kubacki: SQL vs. NoSQL

24 NoSQL Einsatzbeispiele (2) Static Cache / Memcachedb / Redis / Terracota Ehcache gewöhnliches Backend W. Mark Kubacki: SQL vs. NoSQL

25 NoSQL Einsatzbeispiele (2) Nginx 4 Anwendung 3 Redis oder MySQL ,9 Nginx 5 Redis oder MySQL 8 Schritte 5-10 nur wenn 3 keine Seite. Schritt 10 liegt außerhalb des kritischen Pfades. Anwendung 10 1 Anfrage 2 Anfrage weitergereicht 3 Anwendung an DB 4 Rohdaten 5 gerenderte Seite 6 Antwort auf Anfrage 1 Anfrage 2 Nginx liest Redis 3 gerenderte Seite direkt aus Redis 4 Antwort auf Anfrage 5 Anfrage weitergereicht 6-7 (nicht abgebildet) Anwendung kommuniziert mit Datenbank 8 gerenderte Seite 9 Antwort auf Anfrage 10 gerenderte Seite wird in Redis gespeichert W. Mark Kubacki: SQL vs. NoSQL

26 NoSQL Einsatzbeispiele (2) Datenstrukturen: Queue Schlüssel/Wert Hashliste Effizienz: Zugriff in O(1) statt O(log N) Kapazität Frontends KVS W. Mark Kubacki: SQL vs. NoSQL

27 NoSQL Verteilte Datenbanken Es gibt auch verteilte RDBMS mit SQL! eigentliche Verteilung Föderation Man zahlt pro CPU oder Rechner. W. Mark Kubacki: SQL vs. NoSQL

28 NoSQL Verteilte Datenbanken Brewer s Cap Theorem: Consistency, Availability, Tolerance to network Partitions. Theorem: You can have at most two of these properties for any shared-data system. W. Mark Kubacki: SQL vs. NoSQL

29 NoSQL Verteilte Datenbanken Consistency Partition Tolerance Availability Nicht: System Sondern: Algorithmus! W. Mark Kubacki: SQL vs. NoSQL

30 NoSQL Verteilte Datenbanken W. Mark Kubacki: SQL vs. NoSQL

31 SE Praktiken Objekt-Relational Mapper Model strikt von anderem trennen strikt! Mehr als eine DB/DBMS? Wo liegt die Hauptlast? Kritischer Pfad! W. Mark Kubacki: SQL vs. NoSQL

32 SE Praktiken Requirements Engineering: Was erfordern die Geschäftsprozesse des Kunden? Eventual Consistent Business? W. Mark Kubacki: SQL vs. NoSQL

33 SE Praktiken W. Mark Kubacki: SQL vs. NoSQL

34 SQL vs. NoSQL Webanwendungen Last, Interaktivität SQL langsam?, kann viel, RDBMS NoSQL Datenstrukturen, Optimierungen mehr Aufwand in der Anwendung leichter einfache Operationen umzusetzen Programmierer Ausbildung, Fähigkeiten W. Mark Kubacki: SQL vs. NoSQL

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg

NoSQL. Was Architekten beachten sollten. Dr. Halil-Cem Gürsoy adesso AG. Architekturtag @ SEACON 2012 Hamburg NoSQL Was Architekten beachten sollten Dr. Halil-Cem Gürsoy adesso AG Architekturtag @ SEACON 2012 Hamburg 06.06.2012 Agenda Ein Blick in die Welt der RDBMS Klassifizierung von NoSQL-Datenbanken Gemeinsamkeiten

Mehr

Persönlichkeiten bei bluehands

Persönlichkeiten bei bluehands Persönlichkeiten bei Technologien bei Skalierbare Anwendungen mit Windows Azure GmbH & co.mmunication KG am@.de; posts..de/am 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit

Mehr

Einführung in CouchDB

Einführung in CouchDB Einführung in CouchDB Zurücklehnen und entspannen! http://slog.io Thomas Schrader (@slogmen) 12/2010 Übersicht Bestandsaufnahme Ansatz Geschichte Technologien Features Skalierbarkeit Kurz & Gut Fazit Relationale

Mehr

Einführung. Kapitel 1 2 / 508

Einführung. Kapitel 1 2 / 508 Kapitel 1 Einführung 2 / 508 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern und Verwalten von Daten. Warum kein herkömmliches Dateisystem verwenden? Ausfallsicherheit und Skalierbarkeit

Mehr

Think Big. Skalierbare Anwendungen mit Azure. Aydin Mir Mohammadi Bluehands GmbH & co.mmunication KG

Think Big. Skalierbare Anwendungen mit Azure. Aydin Mir Mohammadi Bluehands GmbH & co.mmunication KG Skalierbare Anwendungen mit Azure Bluehands GmbH & co.mmunication KG 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit Skalierung http://www.flickr.com/photos/39901968@n04/4864698533/

Mehr

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1

NoSQL-Datenbanken. Kapitel 1: Einführung. Lars Kolb Sommersemester 2014. Universität Leipzig http://dbs.uni-leipzig.de 1-1 NoSQL-Datenbanken Kapitel 1: Einführung Lars Kolb Sommersemester 2014 Universität Leipzig http://dbs.uni-leipzig.de 1-1 Inhaltsverzeichnis NoSQL-Datenbanken Motivation und Definition Kategorisierung, Eigenschaften

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

ISBN: 978-3-8428-0679-5 Herstellung: Diplomica Verlag GmbH, Hamburg, 2011

ISBN: 978-3-8428-0679-5 Herstellung: Diplomica Verlag GmbH, Hamburg, 2011 Nils Petersohn Vergleich und Evaluation zwischen modernen und traditionellen Datenbankkonzepten unter den Gesichtspunkten Skalierung, Abfragemöglichkeit und Konsistenz Diplomica Verlag Nils Petersohn Vergleich

Mehr

Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra)

Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra) 1 Rein relationale DB in Prod? Datenbanken in produktiven Einsatz? 2 SQL + NoSQL DB in Prod? (MongoDB, Redis, CouchDB, Cassandra) 3 DB-Cluster in der Cloud? NoSQL?!? SQL Normalformen Come as you are Warum

Mehr

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011

Eine Einführung in Apache CouchDB. Java-Forum Stuttgart 2011 Eine Einführung in Apache CouchDB Java-Forum Stuttgart 2011 Johannes Schneider, cedarsoft GmbH js@cedarsoft.com http://blog.cedarsoft.com http://cedarsoft.com Vielen Dank CouchDB The VERY Basics Vorerfahrung?

Mehr

Soziotechnische Informationssysteme

Soziotechnische Informationssysteme Soziotechnische Informationssysteme 8. NoSQL Relationale Datenbank NoSQL Datenbank Relationale Datenbank? NoSQL Datenbank RDBM 2 Warum? Skalierbarkeit Riesige Datenmengen Performanz und Elastizität Auslastung

Mehr

PostgreSQL im praktischen Einsatz. Stefan Schumacher

PostgreSQL im praktischen Einsatz. Stefan Schumacher PostgreSQL im praktischen Einsatz 2. Brandenburger Linux Infotag 2005 Stefan Schumacher , PGP Key http:/// $Header: /home/daten/cvs/postgresql/folien.tex,v 1.11 2005/04/25

Mehr

SQL Azure Technischer Überblick. Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk

SQL Azure Technischer Überblick. Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk SQL Azure Technischer Überblick Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk Haftungsausschluss Microsoft kann für die Richtigkeit und Vollständigkeit

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank

SimpleVOC-Yetanother. Bausteine für eine Key/Value- Datenbank SimpleVOC-Yetanother Memcached? Bausteine für eine Key/Value- Datenbank SimpleVOC Yet another memcached? Bausteine für eine Key/Value Datenbank. Theorie (Martin Schönert) Praxis (Frank Celler) Eine Weisheit

Mehr

NoSQL-Databases. Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de

NoSQL-Databases. Präsentation für Advanced Seminar Computer Engineering, Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de NoSQL-Databases Präsentation für Advanced Seminar "Computer Engineering", Matthias Hauck, matthias.hauck@stud.uni-heidelberg.de Klassische SQL-Datenbanken Anwendungsgebiet: Geschäftsanwendungen Behördenanwendungen

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Big Data Mythen und Fakten

Big Data Mythen und Fakten Big Data Mythen und Fakten Mario Meir-Huber Research Analyst, IDC Copyright IDC. Reproduction is forbidden unless authorized. All rights reserved. About me Research Analyst @ IDC Author verschiedener IT-Fachbücher

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

SQL- & NoSQL-Datenbanken. Speichern und Analysen von großen Datenmengen

SQL- & NoSQL-Datenbanken. Speichern und Analysen von großen Datenmengen SQL- & NoSQL-Datenbanken Speichern und Analysen von großen Datenmengen 1 04.07.14 Zitat von Eric Schmidt (Google CEO): There was 5 exabytes of information created between the dawn of civilization through

Mehr

GoGrid Hochschule Mannheim

GoGrid Hochschule Mannheim Christoph Eikermann GoGrid Hochschule Mannheim WS0910 1/25 GoGrid Hochschule Mannheim Christoph Eikermann Fakultät für Informatik Hochschule Mannheim c.eikermann@googlemail.com 11.12.2009 Christoph Eikermann

Mehr

Carl-Christian Kanne. Einführung in Datenbanken p.1/513

Carl-Christian Kanne. Einführung in Datenbanken p.1/513 Einführung in Datenbanken Carl-Christian Kanne Einführung in Datenbanken p.1/513 Kapitel 1 Einführung Einführung in Datenbanken p.2/513 Einführung Was ist ein Datenbanksystem (DBS)? Ein System zum Speichern

Mehr

DATENBANK LÖSUNGEN. mit Azure. Peter Schneider Trainer und Consultant. Lernen und Entwickeln. www.egos.co.at

DATENBANK LÖSUNGEN. mit Azure. Peter Schneider Trainer und Consultant. Lernen und Entwickeln. www.egos.co.at DATENBANK LÖSUNGEN mit Azure Peter Schneider Trainer und Consultant Agenda Cloud Services, Data Platform, Azure Portal Datenbanken in Virtuelle Maschinen Azure SQL Datenbanken und Elastic Database Pools

Mehr

Datenbanken (WS 2015/2016)

Datenbanken (WS 2015/2016) Datenbanken (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Allgemeines zu Datenbanken

Allgemeines zu Datenbanken Allgemeines zu Datenbanken Was ist eine Datenbank? Datensatz Zusammenfassung von Datenelementen mit fester Struktur Z.B.: Kunde Alois Müller, Hegenheimerstr. 28, Basel Datenbank Sammlung von strukturierten,

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

Big Data Management Thema 14: Cassandra

Big Data Management Thema 14: Cassandra Thema 14: Cassandra Jan Kristof Nidzwetzki Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read

Mehr

Karl Glatz Oktober 2009. Vorstellung der verteilten NoSQL Datenbank CouchDB

Karl Glatz Oktober 2009. Vorstellung der verteilten NoSQL Datenbank CouchDB Karl Glatz Oktober 2009 Vorstellung der verteilten NoSQL Datenbank CouchDB Web Awendung (AJAX) MySQL SQL Web Server PHP HTTP (HTML) ORM (Framework) JSON API (AJAX) Web Browser Java Script HTTP RESTful

Mehr

Windows Azure für Java Architekten. Holger Sirtl Microsoft Deutschland GmbH

Windows Azure für Java Architekten. Holger Sirtl Microsoft Deutschland GmbH Windows Azure für Java Architekten Holger Sirtl Microsoft Deutschland GmbH Agenda Schichten des Cloud Computings Überblick über die Windows Azure Platform Einsatzmöglichkeiten für Java-Architekten Ausführung

Mehr

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

NoSQL & Big Data. NoSQL Databases and Big Data. NoSQL vs SQL DBs. NoSQL DBs - Überblick. Datenorientierte Systemanalyse. Gerhard Wohlgenannt NoSQL & Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

NoSQL Databases and Big Data

NoSQL Databases and Big Data Datenorientierte Systemanalyse NoSQL Databases and Big Data Gerhard Wohlgenannt NoSQL & Big Data Die besprochenen Systeme haben nicht den Anspruch und das Ziel DBS zu ersetzen, sondern für gewisse Anwendungsfälle

Mehr

Datenbanken. Proseminar Objektorientiertes Programmieren mit.net und C# Sebastian Pintea. Institut für Informatik Software & Systems Engineering

Datenbanken. Proseminar Objektorientiertes Programmieren mit.net und C# Sebastian Pintea. Institut für Informatik Software & Systems Engineering Datenbanken Proseminar Objektorientiertes Programmieren mit.net und C# Sebastian Pintea Institut für Informatik Software & Systems Engineering Agenda 1. Datenbanken 2. SQL 3. ADO.NET DataProvider (providerabhängig)

Mehr

Skalierbare Webanwendungen mit Python und Google App Engine

Skalierbare Webanwendungen mit Python und Google App Engine Skalierbare Webanwendungen mit Python und Google App Engine Oliver Albers 03. Juli 2008 1/32 Einführung Worum geht es? Pro und Contra Technik Genereller Aufbau Anwendungskonfiguration Verarbeitung von

Mehr

Prüfungsberatungs-Stunde Datenbanksysteme 1 (Dbs1)

Prüfungsberatungs-Stunde Datenbanksysteme 1 (Dbs1) Prüfungsberatungs-Stunde Datenbanksysteme 1 (Dbs1) Herbstsemester 2013/14 Prof. S. Keller Informatik HSR Januar 2014, HS13/14 Dbs1 - Prüfungsvorbereitung 1 Dbs1 Ziele Grundlagenwissen in folgenden Gebieten

Mehr

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010 NoSQL Einblick in die Welt nicht-relationaler Datenbanken Christoph Föhrdes UnFUG, SS10 17.06.2010 About me Christoph Föhrdes AIB Semester 7 IRC: cfo #unfug@irc.ghb.fh-furtwangen.de netblox GbR (http://netblox.de)

Mehr

NoSQL in transaktionalen Enterprisesystemen

NoSQL in transaktionalen Enterprisesystemen NoSQL in transaktionalen Enterprisesystemen Version: 1.1 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Wir haben hier nur ein paar Java Clients vor einem Host, wir

Mehr

UG Ingolstadt. Auf die Cloud, Fertig, Los MS Azure Die Microsoft Cloud. 21. Februar 2012.NET Usergroup München. Robert Eichenseer

UG Ingolstadt. Auf die Cloud, Fertig, Los MS Azure Die Microsoft Cloud. 21. Februar 2012.NET Usergroup München. Robert Eichenseer UG Ingolstadt Auf die Cloud, Fertig, Los MS Azure Die Microsoft Cloud 21. Februar 2012.NET Usergroup München Robert Eichenseer Solution Architect robert.eichenseer@conplement.de conplement AG Südwestpark

Mehr

Scaling Rails. Jonathan Weiss, 02.09.2009 Peritor GmbH

Scaling Rails. Jonathan Weiss, 02.09.2009 Peritor GmbH Scaling Rails Jonathan Weiss, 02.09.2009 Peritor GmbH Scaling Rails 2 Scaling Rails 3 Rails 4 Performance Wikipedia: Das Wort Leistung (engl. Performance) wird in der Informatik verwendet, um das Vermögen

Mehr

Datenbanksystem Datenbankmanagementsystem Datenbank Inhaltsverzeichnis Geschichte

Datenbanksystem Datenbankmanagementsystem Datenbank Inhaltsverzeichnis Geschichte Ein Datenbanksystem (DBS) ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS ist es, große Datenmengen effizient, widerspruchsfrei und dauerhaft zu speichern und benötigte

Mehr

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT Version: 1.1 Wir haben hier nur ein in Java implementierte Frontends vor einer hostbasierten Businesslogic, wir profitieren nicht von NoSQL in

Mehr

Charakteristika und Vergleich von SQL- und NoSQL- Datenbanken

Charakteristika und Vergleich von SQL- und NoSQL- Datenbanken Universität Leipzig Fakultät für Mathematik und Informatik Abteilung Datenbanken Dozent: Prof. Dr. Erhard Rahm Betreuer: Stefan Endrullis Problemseminar NoSQL-Datenbanken Semester: WS 11/12 Charakteristika

Mehr

Überblick und Vergleich von NoSQL. Datenbanksystemen

Überblick und Vergleich von NoSQL. Datenbanksystemen Fakultät Informatik Hauptseminar Technische Informationssysteme Überblick und Vergleich von NoSQL Christian Oelsner Dresden, 20. Mai 2011 1 1. Einführung 2. Historisches & Definition 3. Kategorien von

Mehr

Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends. Cloud-Datenbanken. Franz Anders 02.07.2015

Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends. Cloud-Datenbanken. Franz Anders 02.07.2015 Extended Abstract Obserseminar: Datenbanksysteme - Aktuelle Trends Cloud-Datenbanken Franz Anders 02.07.2015 Dies ist das erweiterte Abstract zum Vortrag Cloud-Datenbanken für das Oberseminar Datenbanksysteme

Mehr

Einführung in Datenbanken

Einführung in Datenbanken Grundlagen der Programmierung 2 Einführung in Datenbanken Grundlagen der Programmierung 2 I-1 Inhalt Einführung Entity-Relationship-Diagramm Relationales Modell Entity-Relationship-Diagramm ins Relationales

Mehr

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT

NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT NoSQL-Einsatzszenarien in der transaktionalen Enterprise-IT Version: 1.1 Wir haben hier nur ein in Java implementierte Frontends vor einer hostbasierten Businesslogic, wir profitieren nicht von NoSQL in

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme

Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Kapitel 4 Teil 2 NoSQL-Datenbanksysteme Inhalt: CAP (Consistency/Availability/Partition-Tolerance); BASE (Basically Available, Soft State, Eventually Consistent); Datenmodelle: Key-Value-Stores, Spaltenbasierte

Mehr

Die Analyse großer Datensätze mittels freier Datenbanksysteme Dr Dirk Meusel meusel@iat.uni-leipzig.de

Die Analyse großer Datensätze mittels freier Datenbanksysteme Dr Dirk Meusel meusel@iat.uni-leipzig.de Institut für Angewandte Trainingswissenschaft Leipzig ein Institut des Trägervereins IAT / FES des DOSB e.v. Die Analyse großer Datensätze mittels freier Datenbanksysteme Dr Dirk Meusel meusel@iat.uni-leipzig.de

Mehr

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz 1 2 Dies ist ein Vortrag über Zeit in verteilten Anwendungen Wir betrachten die diskrete "Anwendungszeit" in der nebenläufige Aktivitäten auftreten Aktivitäten in einer hochgradig skalierbaren (verteilten)

Mehr

NoSQL-Einsatzszenarien. NoSQL in transaktionalen Enterprisesystemen

NoSQL-Einsatzszenarien. NoSQL in transaktionalen Enterprisesystemen NoSQL-Einsatzszenarien in transaktionalen Enterprise-Systemen Version: 1.1 Orientation in Objects GmbH Weinheimer Str. 68 68309 Mannheim www.oio.de info@oio.de Wir haben hier nur ein paar Java-Clients

Mehr

Gliederung. Was ist Cloud Computing Charakteristiken Virtualisierung Cloud Service Modelle Sicherheit Amazon EC2 OnLive Vorteile und Kritik

Gliederung. Was ist Cloud Computing Charakteristiken Virtualisierung Cloud Service Modelle Sicherheit Amazon EC2 OnLive Vorteile und Kritik Cloud Computing Gliederung Was ist Cloud Computing Charakteristiken Virtualisierung Cloud Service Modelle Sicherheit Amazon EC2 OnLive Vorteile und Kritik 2 Bisher Programme und Daten sind lokal beim Anwender

Mehr

Persistenz. Workplace Solutions. Persistenz. ÿ RDBMS und OO ÿ Strukturkonflikt ÿ Object-RDBMS-Mapping. Abbildung Objekte auf RDBMS

Persistenz. Workplace Solutions. Persistenz. ÿ RDBMS und OO ÿ Strukturkonflikt ÿ Object-RDBMS-Mapping. Abbildung Objekte auf RDBMS Persistenz ÿ RDBMS und OO ÿ Strukturkonflikt ÿ Object-RDBMS-Mapping APCON Abbildung Objekte auf RDBMS Der Strukturkonflikt Basisklassen und Domänen Klassen zur Kapselung der relationalen Datenbank Abbildung

Mehr

Analyse und Bewertung von relationalen Datenbanken gegenüber NoSQL Datenbanken

Analyse und Bewertung von relationalen Datenbanken gegenüber NoSQL Datenbanken FOM - Hochschule für Oekonomie & Management Essen in Kooperation mit der FH Dortmund Studienfach: IT-Management 2. Semester Wintersemester 2011 Betreuer: Prof. Dr. Gregor Sandhaus Analyse und Bewertung

Mehr

Datenbanksysteme Kapitel 6: Neue Konzepte der Datenbanktechnologie

Datenbanksysteme Kapitel 6: Neue Konzepte der Datenbanktechnologie Datenbanksysteme Kapitel 6: Neue Konzepte der Datenbanktechnologie Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter

Mehr

Datenbanksysteme. Thomas Neumann 1 / 31

Datenbanksysteme. Thomas Neumann 1 / 31 Datenbanksysteme Thomas Neumann 1 / 31 Skript Alfons Kemper und Andre Eickler Datenbanksysteme Eine Einführung 9. Auflage Oldenbourg Verlag, München (ca 40 Euro) http: //www-db.in.tum.de/research/publications/books/dbmseinf

Mehr

Zabbix Performance Tuning

Zabbix Performance Tuning Zabbix Performance Tuning Getting most out of your hardware 1/31 Zabbix Webinar Inhalte des Webinars Übersicht über Zabbix Performance Faktoren Step 1. Identifizieren und Beheben von Problemen Step 2.

Mehr

Technische Basis für den Betrieb von ONTRAM

Technische Basis für den Betrieb von ONTRAM Technische Basis für den Betrieb von ONTRAM hello system Technische Basis für den Betrieb von ONTRAM Bestandteile von ONTRAM ONTRAM setzt sich aus mehreren Komponenten zusammen, die ebenso auf mehrere

Mehr

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1)

Datenbanken und SQL. Kapitel 1. Übersicht über Datenbanken. Edwin Schicker: Datenbanken und SQL (1) Datenbanken und SQL Kapitel 1 Übersicht über Datenbanken Übersicht über Datenbanken Vergleich: Datenorganisation versus Datenbank Definition einer Datenbank Bierdepot: Eine Mini-Beispiel-Datenbank Anforderungen

Mehr

Datenbanksysteme 1. Organisation. Prof. Stefan F. Keller. Ausgabe 2005. Copyright 2005 HSR SS 2005

Datenbanksysteme 1. Organisation. Prof. Stefan F. Keller. Ausgabe 2005. Copyright 2005 HSR SS 2005 Datenbanksysteme 1 Organisation Ausgabe 2005 Prof. Stefan F. Keller SS 2005 Copyright 2005 HSR Inhalt Einführung Relationales Datenmodell, Datenmodellierung DB-Entwurf, Normalisierung SQL-Data Definition

Mehr

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER

Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer. NoSQL. Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Stefan Edlich Achim Friedland Jens Rampe Benjamin Brauer NoSQL Einstieg in die Welt nichtrelationaler Web 2.0 Datenbanken HANSER Geleitwort 1 Vorwort 1 1 Einführung 1 1.1 Historie 1 1.2 Definition und

Mehr

The R(E)volution of Data Stores

The R(E)volution of Data Stores The R(E)volution of Data Stores Willkommen Schön, dass sie in diese Session kommen, ich bin Dominik Wagenknecht NoSQL Initiative Lead Technology Architect Accenture Wien Mobil: +43 676 8720 33921 dominik.wagenknecht@accenture.com

Mehr

Datenverwaltung in der Cloud. Überblick. Google File System. Anforderungen der Anwendungen an das Dateisystem

Datenverwaltung in der Cloud. Überblick. Google File System. Anforderungen der Anwendungen an das Dateisystem Überblick Datenverwaltung in der Cloud Datenverwaltung in der Cloud Motivation Windows Azure Storage: Zusammenfassung CAP-Theorem nach [Brewer] In einem verteilten System ist es nicht möglich gleichzeitig

Mehr

Institut für Verteilte Systeme

Institut für Verteilte Systeme Institut für Verteilte Systeme Prof. Dr. Franz Hauck Seminar: Multimedia- und Internetsysteme, Wintersemester 2010/11 Betreuer: Jörg Domaschka Bericht zur Seminarssitzung am 2011-01-31 Bearbeitet von :

Mehr

MongoDB Big Data mit Open Source

MongoDB Big Data mit Open Source MongoDB Big Data mit Open Source CommitterConf Essen 2014 29. Oktober 2014 Tilman Beitter Linux Consultant & Trainer B1 Systems GmbH beitter@b1-systems.de B1 Systems GmbH - Linux/Open Source Consulting,

Mehr

NHibernate vs. Entity Framework

NHibernate vs. Entity Framework Manfred Steyer CAMPUS 02 softwarearchitekt.at NHibernate vs. Entity Framework Ziele NHibernate und Entity Framework sowie deren Unterschiede kennen lernen 1 Agenda Kriterien Beispiel mit EF Beispiel mit

Mehr

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de Configuration Management mit Verbosy 17.04.2013 OSDC 2013 Eric Lippmann Kurzvorstellung NETWAYS Expertise OPEN SOURCE SYSTEMS MANAGEMENT OPEN SOURCE DATA CENTER Monitoring & Reporting Configuration Management

Mehr

Datenbank und Informationssysteme

Datenbank und Informationssysteme Datenbank und Informationssysteme Inhaltsverzeichnis 1 Programmierung von Datenbankzugriffen 3 1.1 Architektur des SQL/CLI am Beispiel JDBC................... 4 1.2 Anfragen und Ergebnismengen in JDBC......................

Mehr

whitepaper CLOUD-ENTWICKLUNG: BESTE METHODEN UND SUPPORT-ANWENDUNGEN

whitepaper CLOUD-ENTWICKLUNG: BESTE METHODEN UND SUPPORT-ANWENDUNGEN whitepaper CLOUD-ENTWICKLUNG: BESTE METHODEN UND SUPPORT-ANWENDUNGEN CLOUD-ENTWICKLUNG: BESTE METHODEN 1 Cloud-basierte Lösungen sind auf dem IT-Markt immer weiter verbreitet und werden von immer mehr

Mehr

fbi h_da Datenbanken Kapitel 1: Einführung Schestag Datenbanken (Bachelor) Kapitel 1-1

fbi h_da Datenbanken Kapitel 1: Einführung Schestag Datenbanken (Bachelor) Kapitel 1-1 Datenbanken Kapitel 1: Einführung Schestag Datenbanken (Bachelor) Kapitel 1-1 Einführung Inhalte des Kapitels Einsatzgebiete von Datenbanken Datenbank Datenbanksystem Datenbankmanagementsystem Historische

Mehr

Datenbanken und Informationssysteme II

Datenbanken und Informationssysteme II Datenbanken und Informationssysteme II SS 2015 Dr. Christian Senger Einführung 1 mitarbeiter_fehltage abteilung_id mitarbeiter_id fehltage 3 2 2 1 1 1 2 4 5 4 5 3 2 6 10 4 3 3 1 8 1 2 7 5 3 9 1 Ausgabe:

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Teil VI. Datenbanken

Teil VI. Datenbanken Teil VI Datenbanken Überblick 1 Grundlegende Begriffe Motivation 2 Relationale Datenbanksysteme Das Relationale Datenmodell SQL 3 Entwurf von Datenbanken Das Enity Relationship (ER) Modell Abbildung von

Mehr

Überblick über Oracle Technologie im Bereich Hochverfügbarkeit. Tage der Datenbanken FH Köln Campus Gummersbach 20. Juni 2013 Dierk Lenz

Überblick über Oracle Technologie im Bereich Hochverfügbarkeit. Tage der Datenbanken FH Köln Campus Gummersbach 20. Juni 2013 Dierk Lenz Überblick über Oracle Technologie im Bereich Hochverfügbarkeit Tage der Datenbanken FH Köln Campus Gummersbach 20. Juni 2013 Dierk Lenz Herrmann & Lenz Services GmbH Erfolgreich seit 1996 am Markt Firmensitz:

Mehr

Caching. Hintergründe, Patterns &" Best Practices" für Business Anwendungen

Caching. Hintergründe, Patterns & Best Practices für Business Anwendungen Caching Hintergründe, Patterns &" Best Practices" für Business Anwendungen Michael Plöd" Senacor Technologies AG @bitboss Business-Anwendung!= Twitter / Facebook & co. " / kæʃ /" bezeichnet in der EDV

Mehr

Die gesamte Verwaltung der Dokumente und darüber hinaus auch Administrative Aufgaben sind sehr einfach mit dem WWW Client zu erledigen.

Die gesamte Verwaltung der Dokumente und darüber hinaus auch Administrative Aufgaben sind sehr einfach mit dem WWW Client zu erledigen. tri-doc 1. tri-doc tri-doc ist eine Entwicklung der Tri-W-Data GmbH. Aufgabe von Tri-doc ist, die strukturierte Verwaltung und Ablage von Dokumenten im Intraoder Internet durch konsequente Nutzung der

Mehr

Übersicht über Datenbanken

Übersicht über Datenbanken Übersicht über Datenbanken Vergleich zwischen normaler Datenorganisation und Datenbanken Definition einer Datenbank Beispiel (inkl. Zugriff) Der Datenbankadministrator Relationale Datenbanken Transaktionen

Mehr

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien 1.1 Definition Datenbank Ein Datenbanksystem (DBS) ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS

Mehr

Vorlesung 30.03.2009 1) Einführung

Vorlesung 30.03.2009 1) Einführung Vorlesung 30.03.2009 1) Einführung Was versteht man unter dem Begriff Datenbank? - Eine Datenbank ist eine Struktur zur Speicherung von Daten mit lesendem und schreibendem Zugriff - Allgemein meint man

Mehr

PostgreSQL und memcached

PostgreSQL und memcached Building a Query Cache imos GmbH 11.11.2011 / PGconf.DE Outline Einführung 1 Einführung 2 3 Szenario Einführung Webapplikation Pro Request viele, größtenteils einfache, Queries Einteilung von Caches Tradeoff

Mehr

Cloud! dotnet Usergroup Berlin. Sein oder nicht sein!?! Robert Eichenseer robert.eichenseer@conplement.de

Cloud! dotnet Usergroup Berlin. Sein oder nicht sein!?! Robert Eichenseer robert.eichenseer@conplement.de dotnet Usergroup Berlin Cloud! Sein oder nicht sein!?! Robert Eichenseer robert.eichenseer@conplement.de conplement AG Südwestpark 92 90449 Nürnberg http://www.conplement.de/roberteichenseer.html 1 conplement

Mehr

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II SS 2015. NoSQL. http://www.w3resource.com/mongodb/nosql.php. Dr. Christian Senger.

Fakultät für Informatik & Wirtschaftsinformatik DB & IS II SS 2015. NoSQL. http://www.w3resource.com/mongodb/nosql.php. Dr. Christian Senger. NoSQL http://www.w3resource.com/mongodb/nosql.php NoSQL 1 Short History of Databases 1960s - Navigational DBs CODEASYL (COBOL) IMS (IBM) 1980s to 1990s - Object Oriented DBs Object DB's Object-Relational-

Mehr

NoSQL mit Postgres 15. Juni 2015

NoSQL mit Postgres 15. Juni 2015 Tag der Datenbanken 15. Juni 2015 Dipl.-Wirt.-Inform. Agenda l Vorstellung l Marktübersicht l Warum PostgreSQL? l Warum NoSQL? l Beispielanwendung Seite: 2 Vorstellung Dipl.-Wirt.-Inform. [1990] Erste

Mehr

Konzeption und Entwicklung einer an YouTube orientierten Lösung für Video-Streaming auf Basis von Cloud Computing-Diensten

Konzeption und Entwicklung einer an YouTube orientierten Lösung für Video-Streaming auf Basis von Cloud Computing-Diensten Konzeption und Entwicklung einer an YouTube orientierten Lösung für Video-Streaming auf Basis von Cloud Computing-Diensten Sufian Abu-Rab 22 April 2011 Agenda 1. Probleme bei der Nutzung von Video-Portalen

Mehr

Tobias Joch inovex. Ready to start (up)? Skalierende Architekturen für Web-2.0-Start-ups

Tobias Joch inovex. Ready to start (up)? Skalierende Architekturen für Web-2.0-Start-ups Konferenz Tobias Joch inovex Ready to start (up)? Skalierende Architekturen für Web-2.0-Start-ups Pattern #2: KISS Pattern #2: KISS Keep it simple, stupid Keep it small and simple Keep it sweet and simple

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Institut für Unternehmensinformatik SeDiCo Towards a Framework for a Secure and Distributed Data Store in Clouds

Institut für Unternehmensinformatik SeDiCo Towards a Framework for a Secure and Distributed Data Store in Clouds Institut für Unternehmensinformatik SeDiCo Towards a Framework for a Secure and Distributed Data Store in Clouds IHK Frankfurt Jens Kohler Frankfurt, 03.07.2014 Hochschule Mannheim University of Applied

Mehr

Vorlesung Datenbankmanagementsysteme. Vorlesung Datenbankmanagementsysteme Überblick M. Lange, S. Weise Folie #0-1

Vorlesung Datenbankmanagementsysteme. Vorlesung Datenbankmanagementsysteme Überblick M. Lange, S. Weise Folie #0-1 Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme Überblick M. Lange, S. Weise Folie #0-1 Vorlesung Datenbankmanagementsysteme Überblick M. Lange, S. Weise Folie #0-2 Bioinformatik:

Mehr

2.1 Definition und Aufgaben. 2.2 Datenbank-Grundsätze

2.1 Definition und Aufgaben. 2.2 Datenbank-Grundsätze 2 Allgemeines über Datenbanken Dieses Kapitel dient als Einstieg in die Datenbanken. Es wird beschrieben, welche Funktionen zu einer Datenbank gehören und welche Werkzeuge eine Datenbank aufweisen sollte.

Mehr

Was darf das Grid kosten?

Was darf das Grid kosten? Was darf das Grid kosten? Dr. Marcel Kunze Steinbuch Centre for Computing Abteilung Integration und Virtualisierung Die Kooperation von Darf das Grid was kosten? Infrastruktur: Geschäftsmodell oder Sponsoring?

Mehr

Ruben Deyhle 11.02.2011 Proseminar Konzepte für Daten- und Prozess-Management. Cloud Computing mit Windows Azure

Ruben Deyhle 11.02.2011 Proseminar Konzepte für Daten- und Prozess-Management. Cloud Computing mit Windows Azure Ruben Deyhle 11.02.2011 Proseminar Konzepte für Daten- und Prozess-Management Cloud Computing mit Windows Azure 2 Ablauf Charakterisierung Aufbau von Windows Azure Compute-, Storage- und Datenbank-Dienst

Mehr

Vorlesung. Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Email: Hans.Czap@uni-trier.de

Vorlesung. Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Email: Hans.Czap@uni-trier.de Vorlesung Grundlagen betrieblicher Informationssysteme Prof. Dr. Hans Czap Email: Hans.Czap@uni-trier.de - II - 1 - Inhalt Kap. 1 Ziele der Datenbanktheorie Kap. 2 Datenmodellierung und Datenbankentwurf

Mehr

cpakademie MS Azure Die Microsoft Cloud Wolkig (?) mit Sonnenschein (?) 20. August 2011 Seesharp Party Robert Eichenseer

cpakademie MS Azure Die Microsoft Cloud Wolkig (?) mit Sonnenschein (?) 20. August 2011 Seesharp Party Robert Eichenseer cpakademie MS Azure Die Microsoft Cloud Wolkig (?) mit Sonnenschein (?) 20. August 2011 Seesharp Party Robert Eichenseer robert.eichenseer@conplement.de conplement AG Südwestpark 92 90449 Nürnberg www.conplement.de

Mehr

200 Millionen Messwerte pro Tag. App-Monitoring bei RTLs wer-kennt-wen.de

200 Millionen Messwerte pro Tag. App-Monitoring bei RTLs wer-kennt-wen.de 200 Millionen Messwerte pro Tag App-Monitoring bei RTLs wer-kennt-wen.de Agenda Vorstellung Historische Betrachtung Klassisches Monitoring Die Evolution des Monitoring Realtime Monitoring Zusammenfassung

Mehr

Informatik II Datenorganisation Datenbanken

Informatik II Datenorganisation Datenbanken Informatik II Datenorganisation Datenbanken Studiengang Wirtschaftsingenieurwesen (2. Semester) Prof. Dr. Sabine Kühn Tel. (0351) 462 2490 Fachbereich Informatik/Mathematik skuehn@informatik.htw-dresden.de

Mehr

E Mail/Archivierung/Quota. Upgrade Planung Exchange 2007 Roland Dietlicher/ID Basisdienste

E Mail/Archivierung/Quota. Upgrade Planung Exchange 2007 Roland Dietlicher/ID Basisdienste E Mail/Archivierung/Quota Upgrade Planung Exchange 2007 Roland Dietlicher/ID Basisdienste 25.02.2009 Mail Migration auf Exchange 2007 Vorbereitungsarbeiten seit anfangs 2008 Verzögerungen Windows Server

Mehr

SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen

SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen SQL- & NoSQL-Datenbanken - Speichern und Analysen von großen Datenmengen Lennart Leist Inhaltsverzeichnis 1 Einführung 2 1.1 Aufgaben einer Datenbank...................... 2 1.2 Geschichtliche Entwicklung

Mehr

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori

Häufige Item-Mengen: die Schlüssel-Idee. Vorlesungsplan. Apriori Algorithmus. Methoden zur Verbessung der Effizienz von Apriori Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr