Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Größe: px
Ab Seite anzeigen:

Download "Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes"

Transkript

1 Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes

2 Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte) Open Source Projekt der Apache Software Foundation In Java entwickelt Wachsender C++ Teil zur Geschwindigkeitsoptimierung Modulares System, bestehend aus (unabhängigen) Komponenten Philipp Kemkes 2

3 Hadoop Komponenten Hadoop Common Hadoop Distributed File System MapReduce HBase Hive Philipp Kemkes 3

4 Hadoop Common Serialisierung Datentypen Dateisystemschnittstelle Lokales Dateisystem HDFS (GFS) Amazon S3 CloudStore (GFS) FTP / HTTP create(path f) delete(path f) exists(path f) liststatus(path f) mkdirs(path f) open(path f) rename(path src, Path dst) Philipp Kemkes 4

5 Hadoop Komponenten Hadoop Common Hadoop Distributed File System MapReduce HBase Hive Philipp Kemkes 5

6 Hadoop Distributed File System Verteiltes Dateisystem Inspiriert durch Google File System Gewappnet gegen Hardwareausfälle Skalierbar Einsatzbereich: TByte bis PByte Philipp Kemkes 6

7 HDFS Architektur NameNode Inhaltsverzeichnis DataNode Eigentlicher Speicher Secondary NameNode Backup des NameNode Philipp Kemkes 7

8 HDFS Beispiel Configuration conf = new Configuration(); FileSystem hdfs = FileSystem.get(conf); FileSystem local = FileSystem.getLocal(conf); Path infile = new Path( /home/user/alt.txt ); Path outfile = new Path( /home/user/neu.txt ); FSDataInputStream in = local.open(infile); FSDataOutputStream out = hdfs.create(outfile); IOUtils.copy(inFile, outfile); Philipp Kemkes 8

9 Hadoop Komponenten Hadoop Common Hadoop Distributed File System MapReduce HBase Hive Philipp Kemkes 9

10 Hadoop MapReduce Implementation des MapReduce-Modells Parallelisierung Skalierbarkeit Große Datenmengen Fehlertoleranz bei Hardwareausfällen Philipp Kemkes 10

11 MapReduce Architektur JobTracker Nimmt Job entgegen Startet TaskTracker Überwacht TaskTracker TaskTracker Führt eigentliche Berechnung durch Philipp Kemkes 11

12 MapReduce & HDFS JobTracker kommuniziert mit NameNode Bestimmt Position der zu verarbeitenden Daten Sucht freien TaskTracker nahe dem DataNode DataNode und TaskTracker auf selbem Rechner Philipp Kemkes 12

13 MapReduce Beispiel void map(longwritable key, Text value, Context context) { String line = value.tostring(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasmoretokens()) { Text word = new Text(tokenizer.nextToken()); context.write(word, new IntWritable(1)); } } Philipp Kemkes 13

14 MapReduce Beispiel void reduce(text key, Iterable<IntWritable> values, Context context) { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } Philipp Kemkes 14

15 MapReduce Programmieren Java C/C++ (durch Java Native Interface) Hadoop Streaming Python Bash Sonstige Shell Skripte MapReduce Jobs verketten (Chaining) Komplexere Probleme lösen Philipp Kemkes 15

16 Hadoop Komponenten Hadoop Common Hadoop Distributed File System HBase Hive MapReduce HBase HDFS MapReduce Hive Common Philipp Kemkes 16

17 HBase Inspiriert durch Googles BigTable Ausgelegt für große Datenmengen: Mehrere Milliarden Zeilen Mehrere Millionen Spalten Keine relationale Datenbank Keine Joins / Transaktionen / Updates (dafür Append) Nur Primärschlüssel, keine weiteren Indizes Philipp Kemkes 17

18 HBase Beispiel Configuration config = HbaseConfiguration.create(); HTable table = new HTable(config, "tabelle"); Put p = new Put(Bytes.toBytes("zeilen_id")); p.add(bytes.tobytes("spalten_familie"), Bytes.toBytes("spalte"), Bytes.toBytes("wert")); table.put(p); Philipp Kemkes 18

19 Hadoop Komponenten Hadoop Common Hadoop Distributed File System MapReduce HBase Hive Philipp Kemkes 19

20 Hive Abstrahiert von HDFS und MapReduce Entwickelt von Facebook, weil Programmierung von MapReduce Anwendungen zu aufwendig Unterstützt Untermenge des SQL-92 Standard + eigene Erweiterungen Einsatzgebiet: Datenanalsyse Keine Updates / Transaktionen Nur Primärschlüssel, keine weiteren Indizes (aber geplant) Philipp Kemkes 20

21 Hive Beispiel CREATE TABLE cite (citing INT, cited INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE; LOAD DATA LOCAL INPATH 'cite75_99.txt' OVERWRITE INTO TABLE cite; SELECT * FROM cite LIMIT 10; Philipp Kemkes 21

22 Fazit Hadoop ist enorm skalierbar und kann riesige Datenmengen verwalten Wird meist zur Datenanalyse eingesetzt Kein direkter Ersatz für RDBMS The right tool for the right job! Philipp Kemkes 22

Hadoop. Simon Prewo. Simon Prewo

Hadoop. Simon Prewo. Simon Prewo Hadoop Simon Prewo Simon Prewo 1 Warum Hadoop? SQL: DB2, Oracle Hadoop? Innerhalb der letzten zwei Jahre hat sich die Datenmenge ca. verzehnfacht Die Klassiker wie DB2, Oracle usw. sind anders konzeptioniert

Mehr

Map Reduce. Programmiermodell. Prof. Dr. Ingo Claÿen. Motivation. Modell. Verarbeitungsablauf. Algorithmen-Entwurf. Map-Reduce in Java

Map Reduce. Programmiermodell. Prof. Dr. Ingo Claÿen. Motivation. Modell. Verarbeitungsablauf. Algorithmen-Entwurf. Map-Reduce in Java Map Reduce Programmiermodell Prof. Dr. Ingo Claÿen Hochschule für Technik und Wirtschaft Berlin Motivation Modell Verarbeitungsablauf Algorithmen-Entwurf Map-Reduce in Java Motivation Was ist Map-Reduce

Mehr

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum

Mehr

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015 Hadoop & Spark Carsten Herbe 8. CC-Partner Fachtagung 2015 29.04.2015 Daten & Fakten 25 Jahre Erfahrung, Qualität & Serviceorientierung garantieren zufriedene Kunden & konstantes Wachstum 25 Jahre am Markt

Mehr

MapReduce in der Praxis

MapReduce in der Praxis MapReduce in der Praxis Rolf Daniel Seminar Multicore Programmierung 09.12.2010 1 / 53 Agenda Einleitung 1 Einleitung 2 3 Disco Hadoop BOOM 4 2 / 53 1 Einleitung 2 3 Disco Hadoop BOOM 4 3 / 53 Motivation

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER

APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER INHALT Das Hadoop Framework Hadoop s Distributed File System (HDFS) MapReduce Apache Pig Was ist Apache Pig & Pig Latin Anwendungsumgebungen Unterschied

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

Verteilte Systeme. Map Reduce. Secure Identity Research Group

Verteilte Systeme. Map Reduce. Secure Identity Research Group Verteilte Systeme Map Reduce Map Reduce Problem: Ein Rechen-Job (meist Datenanalyse/Data-Mining) soll auf einer riesigen Datenmenge ausgeführt werden. Teile der Aufgabe sind parallelisierbar, aber das

Mehr

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014 Hadoop in a Nutshell Einführung HDFS und MapReduce Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Spark das neue MapReduce?

Spark das neue MapReduce? Spark das neue MapReduce? Oracle Data Warehouse Konferenz 2015 Carsten Herbe Business Intelligence Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT Themenbereiche

Mehr

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012

Wide Column Stores. Felix Bruckner Mannheim, 15.06.2012 Wide Column Stores Felix Bruckner Mannheim, 15.06.2012 Agenda Einführung Motivation Grundlagen NoSQL Grundlagen Wide Column Stores Anwendungsfälle Datenmodell Technik Wide Column Stores & Cloud Computing

Mehr

MapReduce. www.kit.edu. Johann Volz. IPD Snelting, Lehrstuhl Programmierparadigmen

MapReduce. www.kit.edu. Johann Volz. IPD Snelting, Lehrstuhl Programmierparadigmen MapReduce Johann Volz IPD Snelting, Lehrstuhl Programmierparadigmen KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Wozu MapReduce?

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

Software Engineering Software Frameworks. am Beispiel Ruby on Rails Hendrik Volkmer WWI2010G

Software Engineering Software Frameworks. am Beispiel Ruby on Rails Hendrik Volkmer WWI2010G Software Engineering Software Frameworks am Beispiel Ruby on Rails Hendrik Volkmer WWI2010G Vorstellung Plan für heute Donnerstag Freitag Montag Softwareframeworks Wiederholung Wiederholung Webframeworks

Mehr

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH

Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel. Carsten Herbe metafinanz Informationssysteme GmbH Hadoop & SQL Oracle BI & DWH Konferenz 2013 19./20. März 2013, Kassel Carsten Herbe metafinanz Informationssysteme GmbH In unserer Business Line Business Intelligence & Risk gibt es fünf Bereiche: Risk,

Mehr

GPU-basierte Beschleunigung von MapReduce am Beispiel von OpenCL und Hadoop

GPU-basierte Beschleunigung von MapReduce am Beispiel von OpenCL und Hadoop am Beispiel von OpenCL und Masterseminar Hochschule für Technik, Wirtschaft und Kultur Leipzig Leipzig, 02.11.2011 Gliederung 1 Grundlagen 2 3 Gliederung 1 Grundlagen 2 3 Was ist? Clustersystem zur verteilten

Mehr

Spark das neue MapReduce?

Spark das neue MapReduce? Spark das neue MapReduce? Oracle Data Warehouse Konferenz 2015 Carsten Herbe Business Intelligence Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT Themenbereiche

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Cloud-Computing Seminar Hochschule Mannheim WS0910 1/23 Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Fakultät für Informatik Hochschule Mannheim tobnee@gmail.com

Mehr

Dateisysteme und Datenverwaltung in der Cloud

Dateisysteme und Datenverwaltung in der Cloud Dateisysteme und Datenverwaltung in der Cloud Sebastian Fischer Master-Seminar Cloud Computing - WS 2013/14 Institut für Telematik, Universität zu Lübeck Dateisysteme und Datenverwaltung in der Cloud 1

Mehr

BigTable. 11.12.2012 Else

BigTable. 11.12.2012 Else BigTable 11.12.2012 Else Einführung Distributed Storage System im Einsatz bei Google (2006) speichert strukturierte Daten petabyte-scale, > 1000 Nodes nicht relational, NoSQL setzt auf GFS auf 11.12.2012

Mehr

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting

Beratung. Results, no Excuses. Consulting. Lösungen. Grown from Experience. Ventum Consulting. SQL auf Hadoop Oliver Gehlert. 2014 Ventum Consulting Beratung Results, no Excuses. Consulting Lösungen Grown from Experience. Ventum Consulting SQL auf Hadoop Oliver Gehlert 1 Ventum Consulting Daten und Fakten Results, no excuses Fachwissen Branchenkenntnis

Mehr

Einführung in die Hadoop-Welt HDFS, MapReduce & Ökosystem. Big Data für Oracle Entwickler September 2014 Carsten Herbe

Einführung in die Hadoop-Welt HDFS, MapReduce & Ökosystem. Big Data für Oracle Entwickler September 2014 Carsten Herbe HDFS, MapReduce & Ökosystem Big Data für Oracle Entwickler September 2014 Carsten Herbe Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT. Business Intelligence

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

!"#$"%&'()*$+()',!-+.'/',

!#$%&'()*$+()',!-+.'/', Soziotechnische Informationssysteme 5. Facebook, Google+ u.ä. Inhalte Historisches Relevanz Relevante Technologien Anwendungsarchitekturen 4(5,12316,7'.'0,!.80/6,9*$:'0+$.;.,&0$'0, 3, Historisches Facebook

Mehr

HDFS als schneller und günstiger Storage?

HDFS als schneller und günstiger Storage? HDFS als schneller und günstiger Storage? Das Hadoop Distributed File System (HDFS) verwaltet spielend riesige Datenmengen, lässt sich im laufenden Betrieb bequem skalieren und ist komfortabel zu administrieren.

Mehr

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar!

Clouds. Erwartungen der Nutzer. Wolkig bis Heiter. (c) 2013, Peter Sturm, Universität Trier. Er ist verwöhnt! Er ist nicht dankbar! Clouds Wolkig bis Heiter Erwartungen der Nutzer Er ist verwöhnt! Verfügbarkeit Viele Anwendungen Intuitive Interfaces Hohe Leistung Er ist nicht dankbar! Mehr! Mehr! Mehr! Moore 1 Erwartungen der Entwickler

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011 High Performance Batches in der Cloud Folie 1 Alles geht in die Cloud Image: Chris Sharp / FreeDigitalPhotos.net Cloud und Batches passen zusammen Batches Cloud Pay-per-Use Nur zeitweise genutzt Hohe Rechenkapazitäten

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Datenbanktechnologien für Big Data

Datenbanktechnologien für Big Data Datenbanktechnologien für Big Data Oktober 2013 Prof. Dr. Uta Störl Hochschule Darmstadt Big Data Technologien Motivation Big Data Technologien NoSQL-Datenbanksysteme Spaltenorientierte Datenbanksysteme

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

MySQL Queries on "Nmap Results"

MySQL Queries on Nmap Results MySQL Queries on "Nmap Results" SQL Abfragen auf Nmap Ergebnisse Ivan Bütler 31. August 2009 Wer den Portscanner "NMAP" häufig benutzt weiss, dass die Auswertung von grossen Scans mit vielen C- oder sogar

Mehr

Neue Ansätze der Softwarequalitätssicherung

Neue Ansätze der Softwarequalitätssicherung Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik

Mehr

BIG DATA HYPE ODER CHANCE

BIG DATA HYPE ODER CHANCE BIG DATA HYPE ODER CHANCE 1 Fuchs Dominik 16.05.2014 Fahrplan 2 Begriff Big Data Die 3 V s Fallbeispiel Google Was? Wie? Womit? Fazit & Ausblick in die Zukunft Der Begriff Big Data 3 Datenmengen, die zu

Mehr

Semantik und konzeptionelle Modellierung

Semantik und konzeptionelle Modellierung Semantik und konzeptionelle Modellierung Verteilte Datenbanken Christoph Walesch Fachbereich MNI der FH Gieÿen-Friedberg 18.1.2011 1 / 40 Inhaltsverzeichnis 1 Verteiltes Rechnen MapReduce MapReduce Beispiel

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

MATERNA GmbH 2014 www.materna.de 1

MATERNA GmbH 2014 www.materna.de 1 MATERNA GmbH 2014 www.materna.de 1 Agenda Herausforderungen BigData Größeres Pferd oder Pferdegespann? Apache Hadoop Geschichte, Versionen, Ökosystem Produkte HDFS Daten speichern und verteilen Map/Reduce

Mehr

Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3

Dominik Wagenknecht Accenture. Der No Frills Big Data Workshop -Teil3 Dominik Wagenknecht Accenture Der No Frills Big Data Workshop -Teil3 Der no frills BigData Workshop JAX 2012, 16.4.2012, Mainz Teil 3 Google ist ein Pionier von BigData und hat mit MapReduce und BigTable

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

MapReduce mit Hadoop 08.11.12 1

MapReduce mit Hadoop 08.11.12 1 MapReduce mit Hadoop 08.11.12 1 Lernziele / Inhalt Wiederholung MapReduce Map in Hadoop Reduce in Hadoop Datenfluss Erste Schritte Alte vs. neue API Combiner Functions mehr als Java 08.11.12 2 Wiederholung

Mehr

Big Data und SQL - das passt! Philipp Loer ORDIX AG Paderborn

Big Data und SQL - das passt! Philipp Loer ORDIX AG Paderborn Schlüsselworte Hadoop, Hive, Sqoop, SQL Big Data und SQL - das passt! Philipp Loer ORDIX AG Paderborn Einleitung In diesem Vortrag werden, nach einer kurzen Einführung in Apache Hadoop, die beiden Werkzeuge

Mehr

NoSQL mit Postgres 15. Juni 2015

NoSQL mit Postgres 15. Juni 2015 Tag der Datenbanken 15. Juni 2015 Dipl.-Wirt.-Inform. Agenda l Vorstellung l Marktübersicht l Warum PostgreSQL? l Warum NoSQL? l Beispielanwendung Seite: 2 Vorstellung Dipl.-Wirt.-Inform. [1990] Erste

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Software Engineering für moderne, parallele Plattformen 10. MapReduce Dr. Victor Pankratius Agenda Motivation Der MapReduce-Ansatz Map- und

Mehr

Hadoop I/O. Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen. 14.02.2012 Prof. Dr. Christian Herta 1/29

Hadoop I/O. Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen. 14.02.2012 Prof. Dr. Christian Herta 1/29 Hadoop I/O Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen 14.02.2012 Prof. Dr. Christian Herta 1/29 Data I/O und Hadoop Allgemeine Techniken Data I/O Datenintegrität Kompression

Mehr

Big Data Management Thema 14: Cassandra

Big Data Management Thema 14: Cassandra Thema 14: Cassandra Jan Kristof Nidzwetzki Thema 14: Cassandra 1 / 25 Übersicht 1 Grundlagen Überblick Geschichte Datenmodel 2 Architektur Der logische Ring Persistenz der Daten Tunable Consistency Read

Mehr

MySQL Installation. AnPr

MySQL Installation. AnPr Name Klasse Datum 1 Allgemeiner Aufbau Relationale Datenbank Management Systeme (RDBMS) werden im Regelfall als Service installiert. Der Zugriff kann über mehrere Kanäle durchgeführt werden, wobei im Regelfall

Mehr

5.8 Bibliotheken für PostgreSQL

5.8 Bibliotheken für PostgreSQL 5.8 Bibliotheken für PostgreSQL Haskell/WASH: Modul Dbconnect PHP: pqsql-funktionen Java/JSP: JDBC Perl: DBI database interface modul Vorläufige Version 80 c 2004 Peter Thiemann, Matthias Neubauer 5.9

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Programmieren II. Beispiele für RDBMS. Relationale Datenbanken. Datenbanken SQL. Dr. Klaus Höppner JDBC. Hochschule Darmstadt SS 2008

Programmieren II. Beispiele für RDBMS. Relationale Datenbanken. Datenbanken SQL. Dr. Klaus Höppner JDBC. Hochschule Darmstadt SS 2008 Programmieren II Datenbanken Dr. Klaus Höppner SQL Hochschule Darmstadt SS 2008 JDBC 1 / 20 2 / 20 Relationale Datenbanken Beispiele für RDBMS Ein Datenbanksystem ist ein System zur Speicherung von (großen)

Mehr

Big Data Informationen neu gelebt

Big Data Informationen neu gelebt Seminarunterlage Version: 1.01 Copyright Version 1.01 vom 21. Mai 2015 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE

Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE Institut für Kartographie und Geoinformatik Leibniz Universität Hannover Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE Frank Thiemann, Thomas Globig Frank.Thiemann@ikg.uni-hannover.de

Mehr

DduP - Towards a Deduplication Framework utilising Apache Spark

DduP - Towards a Deduplication Framework utilising Apache Spark - Towards a Deduplication Framework utilising Apache Spark utilising Apache Spark Universität Hamburg, Fachbereich Informatik Gliederung 1 Duplikaterkennung 2 Apache Spark 3 - Interactive Big Data Deduplication

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de

Big Data in a Nutshell. Dr. Olaf Flebbe of ät oflebbe.de Big Data in a Nutshell Dr. Olaf Flebbe of ät oflebbe.de Zu mir Bigdata Projekt, benutzt Apache Bigtop Linux seit Anfang vor Minix/ATARI Linuxtag 2001? Promoviert in Computational Physics in Tü Seit Jan

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden Neue Beziehungen finden...

Mehr

Data Mining in der Cloud

Data Mining in der Cloud Data Mining in der Cloud von Jan-Christoph Meier Hamburg, 21.06.2012 1 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur 2 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur

Mehr

Foreign Data Wrappers

Foreign Data Wrappers -Angebot Foreign Data Wrappers Postgres ITos GmbH, CH-9642 Ebnat-Kappel Swiss Postgres Conference 26. Juni 2014 Foreign Data Wrapper Postgres -Angebot Foreign Data Wrapper? Transparente Einbindung (art-)fremder

Mehr

Bernd Fondermann brainlounge. Blaue oder rote Pille: SQL oder MapReduce?

Bernd Fondermann brainlounge. Blaue oder rote Pille: SQL oder MapReduce? Bernd Fondermann brainlounge Blaue oder rote Pille: SQL oder MapReduce? TODOs pills on all pages upd source code 1 Blaue oder rote Pille - SQL oder MapReduce? Bernd Fondermann, BigDataCon/JAX 2012 2 Rote

Mehr

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz

Whitepaper. Produkt: combit Relationship Manager. Datensatzhistorie mit dem SQL Server 2000 und 2005. combit GmbH Untere Laube 30 78462 Konstanz combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager Datensatzhistorie mit dem SQL Server 2000 und 2005 Datensatzhistorie mit dem SQL Server 2000 und 2005-2 - Inhalt

Mehr

Big Data. Hype oder Chance? Sebastian Kraubs

Big Data. Hype oder Chance? Sebastian Kraubs Big Data Hype oder Chance? Sebastian Kraubs Heute reden alle über Big Data Quellen: http://blogs.sybase.com/sybaseiq/2011/09/big-data-big-opportunity/ und McKinsey Studie 2011 Anwendungen Daten Technologien

Mehr

Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB. Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5.

Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB. Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5. Leseprobe: SQL mit MySQL - Band 4 Kompendium mit Online-Übungs-DB Kompendium zur schnellen Kurzinformation der Datenbanksprache SQL/MySQL 5.1 im Internet: www.datenbanken-programmierung.de... 3.0 SQL nach

Mehr

Die TravelTainment DataCollection

Die TravelTainment DataCollection Die TravelTainment DataCollection Seminararbeit im Studium Scientific Programming WS 2011/2012 Betreuer: Betreuer: Prof. Dr. Hans-Joachim Pflug Ibrahim Husseini Autor: Katharina Zacharias Matrikel-Nr:

Mehr

NoSQL-Datenbanksysteme: Revolution oder Evolution?

NoSQL-Datenbanksysteme: Revolution oder Evolution? NoSQL-Datenbanksysteme: Revolution oder Evolution? Kolloquium Institut für Informatik, Universität Rostock 24.01.2013 Prof. Dr. Uta Störl Hochschule Darmstadt uta.stoerl@h-da.de NoSQL: DAS aktuelle Datenbank-Buzzword

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

Datenanalyse mit Hadoop

Datenanalyse mit Hadoop Gideon Zenz Frankfurter Entwicklertag 2014 19.02.2014 Datenanalyse mit Hadoop Quelle: Apache Software Foundation Agenda Hadoop Intro Map/Reduce Parallelisierung des Datenflows Exkurs: M/R mit Java, Python,

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Big Data Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Agenda Was ist Big Data? Parallele Programmierung Map/Reduce Der Big Data Zoo 2 3Vs oder: Was ist Big Data? Deutsche Telekom:

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010

NoSQL. Einblick in die Welt nicht-relationaler Datenbanken. Christoph Föhrdes. UnFUG, SS10 17.06.2010 NoSQL Einblick in die Welt nicht-relationaler Datenbanken Christoph Föhrdes UnFUG, SS10 17.06.2010 About me Christoph Föhrdes AIB Semester 7 IRC: cfo #unfug@irc.ghb.fh-furtwangen.de netblox GbR (http://netblox.de)

Mehr

EXASOL Anwendertreffen 2012

EXASOL Anwendertreffen 2012 EXASOL Anwendertreffen 2012 EXAPowerlytics Feature-Architektur EXAPowerlytics In-Database Analytics Map / Reduce Algorithmen Skalare Fkt. Aggregats Fkt. Analytische Fkt. Hadoop Anbindung R LUA Python 2

Mehr

Überblick: Data at Scale

Überblick: Data at Scale Überblick: Data at Scale Proseminar Data Mining Quirin Stockinger Fakultät für Informatik Technische Universität München Email: q.stockinger@in.tum.de Kurzfassung Der exponentielle Anstieg von verfügbaren

Mehr

Hadoop Eine Erweiterung für die Oracle DB?

Hadoop Eine Erweiterung für die Oracle DB? Hadoop Eine Erweiterung für die Oracle DB? Nürnberg, 18.11.2015, Matthias Fuchs Sensitive Über mich 10+ Jahre Erfahrung mit Oracle Oracle Certified Professional Exadata Certified Oracle Engineered Systems

Mehr

NoSQL-Datenbanksysteme

NoSQL-Datenbanksysteme NoSQL-Datenbanksysteme Hochschule Harz 14.06.2013 Prof. Dr. Uta Störl Hochschule Darmstadt uta.stoerl@h-da.de NoSQL: DAS aktuelle Datenbank Buzzword Quelle: http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

Mehr

Web Technologien Klassische Datenbanken am Beispiel von MySQL

Web Technologien Klassische Datenbanken am Beispiel von MySQL Web Technologien Klassische Datenbanken am Beispiel von MySQL Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Teamprojekt & Projekt

Teamprojekt & Projekt 18. Oktober 2010 Teamprojekt & Projekt Veranstalter: Betreuer: Prof. Dr. Georg Lausen Thomas Hordnung, Alexander Schätzle, Martin Przjyaciel-Zablocki dbis Studienordnung Master: 16 ECTS 480 Semesterstunden

Mehr

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de

Big Data Analytics: Herausforderungen und Systemansätze. Prof. Dr. Erhard Rahm. http://dbs.uni-leipzig.de Big Data Analytics: Herausforderungen und Systemansätze Prof. Dr. Erhard Rahm http://dbs.uni-leipzig.de 2 Massives Wachstum an Daten Gartner: pro Tag werden 2.5 Exabytes an Daten generiert 90% aller Daten

Mehr

Big Data - Chancen für die Energiewirtschaft

Big Data - Chancen für die Energiewirtschaft Big Data - Chancen für die Energiewirtschaft Dr. Roger Knorr - Leader Business Development Big Data (Email: Roger.Knorr@de.ibm.com, Mobil: 0160 885 1584) Agenda Big Data und die Energiewende Big Data -

Mehr

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen

Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen DATA WAREHOUSE Oracle Data Warehouse Mit Big Data neue Horizonte für das Data Warehouse ermöglichen Alfred Schlaucher, Detlef Schroeder DATA WAREHOUSE Themen Big Data Buzz Word oder eine neue Dimension

Mehr

Suchen und Finden mit Lucene und Solr. Florian Hopf 04.07.2012

Suchen und Finden mit Lucene und Solr. Florian Hopf 04.07.2012 Suchen und Finden mit Lucene und Solr Florian Hopf 04.07.2012 http://techcrunch.com/2010/08/04/schmidt-data/ Suche Go Suche Go Ergebnis 1 In Ergebnis 1 taucht der Suchbegriff auf... Ergebnis 2 In Ergebnis

Mehr

Hadoop. Seminararbeit. Autor: Thomas Findling (Mat.-Nr. 1740842) Studiengang: Master Informatik (3. Semester)

Hadoop. Seminararbeit. Autor: Thomas Findling (Mat.-Nr. 1740842) Studiengang: Master Informatik (3. Semester) Universität Leipzig Institut für Informatik Abteilung Datenbanken Seminararbeit Hadoop Autor: Thomas Findling (Mat.-Nr. 1740842) Studiengang: Master Informatik (3. Semester) Betreuer: Gutachter: Lars Kolb

Mehr

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien

Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Wir unternehmen IT. Erfahrungsbericht: Umstieg von RDBMS auf Big Data-Technologien Karlsruhe, 30.09.2015 $id thgreiner Thorsten Greiner Teamleiter Software Development ConSol* Software GmbH, Düsseldorf

Mehr

Buildfrei skalieren für Big Data mit Z2

Buildfrei skalieren für Big Data mit Z2 Buildfrei skalieren für Big Data mit Z2 Henning Blohm ZFabrik Software KG 5.6.2013 1 Teil 1: Buildfrei entwickeln und skalieren Teil 2: Big Data, Cloud, und wie es zusammenpasst 2 1. Teil BUILDFREI ENTWICKELN

Mehr

Inhalt. Vorwort 11. Inhalt der Buch-CD 13. 1 Einführung 17

Inhalt. Vorwort 11. Inhalt der Buch-CD 13. 1 Einführung 17 Inhalt Vorwort 11 Inhalt der Buch-CD 13 1 Einführung 17 1.1 Was ist MySQL? 17 1.2 Die wichtigsten Eigenschaften von MySQL 20 1.3 Bezugsquellen und Versionen 23 1.4 MySQL im Vergleich zu anderen Datenbanken

Mehr

Erläuterung von Systemen zur Datenbearbeitung in der Cloud anhand von Apache Hadoop

Erläuterung von Systemen zur Datenbearbeitung in der Cloud anhand von Apache Hadoop Erläuterung von Systemen zur Datenbearbeitung in der Cloud anhand von Apache Hadoop Tobias Neef Fakultät für Informatik Hochschule Mannheim Paul-Wittsack-Straße 10 68163 Mannheim tobnee@gmail.com Zusammenfassung

Mehr

MICROSOFT WINDOWS AZURE

MICROSOFT WINDOWS AZURE Cloud Computing à la Microsoft MICROSOFT WINDOWS AZURE Karim El Jed netcreate OHG Agenda Was ist Cloud Computing? Anwendungsszenarien Windows Azure Platform Alternativen Was ist Cloud Computing? Was ist

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Inhaltsverzeichnis. jetzt lerne ich

Inhaltsverzeichnis. jetzt lerne ich Inhaltsverzeichnis jetzt lerne ich Einführung 15 1 Erste Schritte 21 1.1 Datenbanken und Datenbank-Managementsysteme 21 1.2 Zugriff auf Datenbanken 22 1.3 Was der Großvater noch wusste... 22 1.4 Einordnung

Mehr