Übung Betriebssysteme 11

Größe: px
Ab Seite anzeigen:

Download "Übung Betriebssysteme 11"

Transkript

1 Übung Betriebssysteme 11 Christian Motika Christian-Albrechts-Universität zu Kiel Institut für Informatik AG Echtzeitsysteme / Eingebettete Systeme Kiel, Germany 29-JAN-2013 CAU - WS 2012/13 Übung Betriebssysteme 11 1 / 23

2 Übung Betriebssysteme 11 Übung Betriebssysteme 11 Christian Motika Christian-Albrechts-Universität zu Kiel Institut für Informatik AG Echtzeitsysteme / Eingebettete Systeme Kiel, Germany 29-JAN-2013

3 Monitore Monitore - Definition Mechanismus zur Datenabstraktion Gekapselte Representation eines abstrakten Objektes und Operationen (zur Manipulation des Objektes) Objekt-Zustand: Variablen Operationen: Monitor-Prozeduren Implicit Mutual Exclusion: Prozeduren im gleichen Monitor werden nicht-nebenläufig ausgeführt Condition Synchronization im Monitor mit Hilfe von Condition Variables (CV) Monitor wird geteilt von nebenläufig ausgeführten Prozessen CAU - WS 2012/13 Übung Betriebssysteme 11 2 / 23

4 Monitore Monitore - Eigenschaften Was gilt für Prozesse die einen Monitor benutzen (Monitor-Operationen aufrufen)? 1. Aufrufende Prozesse kann es egal sein wie der Monitor implementiert ist Was gilt für die Programmierung des Monitors? 2. Programmierer eines Monitors kann es egal sein wie/wo der Monitor benutzt wird 1. und 2.? Design eines Monitors und Prozessen die ihn benutzen ist relativ unabhängig! Verglichen mit Semaphoren? Monitore: higher level synchronization technique CAU - WS 2012/13 Übung Betriebssysteme 11 3 / 23

5 Monitore Condition Variables Verwendet zur Verzögerung von Prozessen (bis ein Monitor-Zustand einer bestimmten Bedingung genügt) Der Wert einer Condition Variable ist eine Warteschlange (von verzögerten Prozessen) Initialwert? Leere Warteschlange Sichtbarkeit? Nicht direkt sichtbar für den Programmierer Operationen auf Condition Variables? wait(cv): Ausführender Prozeß wird verzögert und an das Ende der Warteschlange angehängt signal(cv): Wenn die CV leer ist: kein Effekt. Sonst: Wecke einen Prozeß an der Spitze der Warteschlange auf! CAU - WS 2012/13 Übung Betriebssysteme 11 4 / 23

6 Monitore Resolving Monitor Paradoxon Aufwecken über signal(cv) führt zu einem Problem! Zwei Prozesse führen aus: 1. weckende Prozeß, 2. geweckte Prozeß Aber: In einem Monitor darf definitionsgemäß immer nur EIN Prozeß gleichzeitig ausführen (nicht-nebenläufige Ausführung) Abhilfe? Signaling Disciplines Signal and Continue Signal and Wait CAU - WS 2012/13 Übung Betriebssysteme 11 5 / 23

7 Monitore Signaling Disciplines - Signal & Continue Signalisierender Prozeß führt weiter aus Signalisierter Prozeß wartet (auf einen späteren Zeitpunkt, wenn der Monitor frei wird) Non-Preemptive (ausführender Prozeß gibt Kontrolle nicht ab und führt weiter aus) Verwendung in Linux, Java,... Einfacherer formale Semantik (als Signal & Wait) CAU - WS 2012/13 Übung Betriebssysteme 11 6 / 23

8 Monitore Signaling Disciplines - Signal & Wait Signalisierender Prozeß wartet (auf einen späteren Zeitpunkt, wenn der Monitor frei wird) Signalisierter Prozeß führt weiter aus Preemptive (ausführender Prozeß gibt Kontrolle an aufgeweckten ab) Erste Signaling Discipline, die für Monitore vorgeschlagen wurde CAU - WS 2012/13 Übung Betriebssysteme 11 7 / 23

9 Monitore Synchronisation in einem Monitor CAU - WS 2012/13 Übung Betriebssysteme 11 8 / 23

10 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 1 - Mutual Exclusion Eine einspurige Klappbrücke für Autos und Züge (ähnlich derjenigen in Lindaunis an der Schlei) soll modelliert werden. CAU - WS 2012/13 Übung Betriebssysteme 11 9 / 23

11 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 1 - Mutual Exclusion Die Lindaunis-Brücke kann von Autos von Norden nach Süden sowie in umgekehrter Richtung überquert werden. Autos, die in der gleichen Richtung unterwegs sind, dürfen gemeinsam auf der Brücke fahren. Autos in die andere Richtung dürfen dann nicht auf der Brücke sein. CAU - WS 2012/13 Übung Betriebssysteme / 23

12 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 1 - Mutual Exclusion Zusätzlich fährt gelegentlich ein Zug über die Brücke; in diesem Fall darf kein anderes Fahrzeug (auch kein zweiter Zug) auf die Brücke. Von Zeit zu Zeit wird die Brücke hoch geklappt, um wartende Segelboote passieren zu lassen. Es ist möglich, dass mehrere Boote zur gleichen Zeit die Brücke passieren und sich dabei auch auf Höhe der Brücke begegnen. Ist die Brücke hochgeklappt, so dürfen natürlich keine Züge und Autos die Brücke befahren. CAU - WS 2012/13 Übung Betriebssysteme / 23

13 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 1 - Mutual Exclusion Nutzen Sie als Vorlage für Ihre Lösung folgendes Gerüst 1 // TODO: Semaphore declarations. 2 3 void carnorthtosouth() { 4 // TODO: Critical section entry code. 5 usebridge(); 6 // TODO: Critical section exit code. 7 } 8 9 void carsouthtonorth() { 10 // TODO: Critical section entry code. 11 usebridge(); 12 // TODO: Critical section exit code. 13 } void train() { 16 // TODO: Critical section entry code. 17 usebridge(); 18 // TODO: Critical section exit code. 19 } void boat() { 22 // TODO: Critical section entry code. 23 usebridge(); 24 // TODO: Critical section exit code. 25 } CAU - WS 2012/13 Übung Betriebssysteme / 23

14 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 1 - Mutual Exclusion Pseudocode enthält Platzhalter für Semaphorendeklarationen: Hier sind ebenfalls zusätzliche Deklarationen anderer Variablen erlaubt. Modellieren Sie dieses Problem durch Critical Sections Nutzen Sie Semaphoren für gegenseitigen Ausschluss Gehen Sie dabei davon aus, dass Autos, Züge und Boote durch Threads modelliert sind, die eine der obigen Funktionen aufrufen. Jede dieser Funktionen kann dabei von beliebig vielen Threads gleichzeitig aufgerufen werden, d.h. Ihre Lösung soll für beliebig viele Autos, Züge und Segelboote korrekt funktionieren. CAU - WS 2012/13 Übung Betriebssysteme / 23

15 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 1 - Mutual Exclusion Ihre Lösung soll dabei den oben beschriebenen Anforderungen genügen, Busy Waiting vermeiden und insbesondere Deadlocks ausschließen. Ihre Lösung braucht aber Aspekte der Fairness nicht zu berücksichtigen. (siehe Aufgabe 3) Schreiben Sie Ihre Lösung in Pseudocode. Erläutern Sie Ihre Vorgehensweise und zeigen Sie dabei insbesondere, wie und wo die Anforderungen im Code umgesetzt werden. CAU - WS 2012/13 Übung Betriebssysteme / 23

16 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 2 - Priorisierung Da Züge bekannterweise einen Fahrplan einhalten müssen, sollen diese bevorzugt werden. Erweitern Sie daher Ihre Methoden aus Aufgabe 1 so, dass kein weiteres Auto bzw. Boot die Brücke passieren darf, wenn ein Zug an die Brücke kommt. Sobald die Brücke frei ist, ist dann der Zug an der Reihe, die Brücke zu überqueren. Diese Aufgabe darf, was den Pseudocode angeht, mit Aufgabe 1 kombiniert werden. Die Argumentation über die Korrektheit sollte davon getrennt geführt werden. Machen Sie im Pseudocode deutlich, wo und wie diese Anforderung umgesetzt wird. CAU - WS 2012/13 Übung Betriebssysteme / 23

17 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 3 - Eventual Entry/Fairness Ein fairer Brückencontroller gewährleistet, dass jedes Auto, jeder Zug und jedes Segelboot, welches die Brücke passieren will, dies auch in endlicher Zeit darf und zwar unabhängig davon ob der Scheduler (strongly) fair ist. D.h., Sie können dafür einen Scheduler voraussetzen, der garantiert, dass ein lauffähiger (d.h. nicht blockierter) Thread auch innerhalb endlicher Zeit an die Reihe kommt. Der Scheduler garantiert allerdings nicht, daß Prozesse sich nicht gegenseitig aushungern können. Solch ein Scheduler wird in der Literatur oft als weakly fair bezeichnet. Dies wird als Eventual Entry-Eigenschaft für die betrachtete Critical Section bezeichnet. CAU - WS 2012/13 Übung Betriebssysteme / 23

18 Aufgabe 1 Aufgabe 2 Aufgabe 3 Aufgabe 3 - Eventual Entry/Fairness Ein Prozess will die Brücke passieren, wenn er eine der oben angegebenen Funktionen aufruft. Erweitern Sie Ihre Funktionen aus Aufgabe 1 so, dass Eventual Entry sicher gestellt wird. Denken Sie außerdem daran, daß Autos (in einer Richtung), Schiffe und Züge ihresgleichen nicht gegenseitig überholen dürfen. Diese Aufgabe darf, was den Pseudocode angeht, mit Aufgabe 1 kombiniert werden. Die Argumentation über die Korrektheit sollte davon getrennt geführt werden. Machen Sie im Pseudocode deutlich, wo und wie diese Anforderung umgesetzt wird. CAU - WS 2012/13 Übung Betriebssysteme / 23

19 Aufgabe 1 - Sleeping Barber Aufgabe 2 - Banker s Algorithm Aufgabe 3 - Scheduling Aufgabe - Sleeping Barber In einem kleinen Dorf gibt es einen kleinen Friseusalon mit genau zwei Türen und ein paar Stühlen. Kunden kommen durch die eine Tür hinein und verlassen den Salon durch die andere. Da der Salon sehr klein ist, kann sich zu jeder Zeit entweder ein Kunde oder der Barbier bewegen, jedoch nie zwei Menschen gleichzeitig. Das Leben des Barbier besteht allein darin, Kunden zu frisieren. Wenn sich allerdings keine Kunden im Salon befinden, so schläft der Barbier in seinem Frisierstuhl. Wenn ein Kunden den Salon betritt und der Barbier gerade schäft, so weckt der Kunde den Barbier, nimmt im Frisierstuhl Platz und schläft dann solange der Barbier ihm die Haare frisiert. Wenn ein Kunde den Salon betritt während der Barbier noch mit einem anderen Kunden beschäftigt ist, so nimmt der neue Kunde auf einem der Wartestühle Platz und schläft dort. Nachdem der Barbier einem Kunden die Haare frisiert hat, öffnet er die Ausgangstüre für den frisierten Kunden und schließt diese, nachdem der Kunde den Salon verlassen hat. Falls es dann wartende (schlafende) andere Kunden gibt, so weckt der Barbier einen davon auf und wartet darauf, daß der Kunde im Frisierstuhl Platz genommen hat. Falls es keinen wartenden Kunden gibt, so nimmt der Barbier selbst dort Platz und wartet schlafend auf das Eintreffen eines neuen Kunden. CAU - WS 2012/13 Übung Betriebssysteme / 23

20 Aufgabe 1 - Sleeping Barber Aufgabe 2 - Banker s Algorithm Aufgabe 3 - Scheduling Aufgabe 1 - Sleeping Barber CAU - WS 2012/13 Übung Betriebssysteme / 23

21 Aufgabe 1 - Sleeping Barber Aufgabe 2 - Banker s Algorithm Aufgabe 3 - Scheduling Aufgabe 1 - Sleeping Barber 1 monitor Barber_Shop { 2 int barber = 0, chair = 0, open = 0; 3 cond barber_available # signaled when barber > 0 4 cond chair_occupied; # signaled when chair > 0 5 cond door_open; # signaled when open > 0 6 cond customer_left; # signaled when open == procedure get_haircut() { 9 while (barber == 0) wait(barber_available); 10 barber = barber - 1; 11 chair = chair + 1; signal(chair_occupied); 12 while (open == 0) wait(door_open); 13 open = open - 1; signal(customer_left); 14 } procedure get_next_customer() { 17 barber = barber + 1; signal(barber_available); 18 while (chair == 0) wait(chair_occupied); 19 chair = chair - 1; 20 } procedure finished_cut() { 23 open = open + 1; signal(door_open); 24 while (open > 0) wait(customer_left); 25 } } CAU - WS 2012/13 Übung Betriebssysteme / 23

22 Aufgabe 1 - Sleeping Barber Aufgabe 2 - Banker s Algorithm Aufgabe 3 - Scheduling Aufgabe 1 - Sleeping Barber (a) Einige der while-schleifen können durch if-abfragen ersetzt werden. Ändern Sie den Monitor an den entsprechenden Stellen und begründen Sie für die jeweilige Stelle warum die Ersetzung möglich ist. Nehme hierbei die Signal and Continue Discipline an. (b) Ist der Monitor, wie gegeben, korrekt unter Verwendung der Signal and Wait Discipline? Falls ja begründen Sie dies. Falls nein, ändern Sie den Monitor entsprechend. (c) Ist der Monitor, wie gegeben, korrekt unter Verwendung der Signal and Urgent Wait Discipline? Falls ja begründen Sie dies. Falls nein, ändern Sie den Monitor entsprechend. CAU - WS 2012/13 Übung Betriebssysteme / 23

23 Aufgabe 1 - Sleeping Barber Aufgabe 2 - Banker s Algorithm Aufgabe 3 - Scheduling Aufgabe 2 - Banker s Algorithm System mit vier verschiedene Typen von Ressourcen (R0-R3) nonpreemptive Vektor insgesamt im System vorhandener Instanzen der Ressourcen: (7, 9, 9, 6) Stellen Sie mit Hilfe des Banker s Algorithm fest, ob die folgenden beiden Systemzustände safe oder unsafe sind. 1 Prozess R0 R1 R2 R3 2 A 2 / 1 0 / 1 0 / 0 2 / 1 3 B 1 / 6 0 / 1 0 / 1 1 / 5 4 C 0 / 4 1 / 0 0 / 1 0 / 2 5 D 0 / 6 0 / 0 0 / 0 1 / 4 6 E 1 / 5 1 / 1 0 / 1 1 / 2 1 Prozess R0 R1 R2 R3 2 A 3 / 1 1 / 0 0 / 0 0 / 0 3 B 1 / 0 2 / 2 2 / 2 2 / 0 4 C 1 / 0 3 / 0 2 / 0 0 / 5 5 D 0 / 1 1 / 0 0 / 2 2 / 0 6 E 1 / 6 2 / 4 3 / 2 2 / 1 CAU - WS 2012/13 Übung Betriebssysteme / 23

24 Aufgabe 1 - Sleeping Barber Aufgabe 2 - Banker s Algorithm Aufgabe 3 - Scheduling Aufgabe 3 - Scheduling - BONUS In einem Monoprozessorsystem werden folgende Prozesse zu den angegebenen Zeitpunkten lauffähig: 1 Process Time of Arrival CPU Burst Time P0 10ms 20ms 4 P1 20ms 70ms 5 P2 30ms 60ms Simulieren Sie ein Scheduling nach den in den Teilaufgaben angegebenen Algorithmen (a) First-Come, First-Served (b) Shortest-Job-First (c) Round-Robin, mit Zeitquantum 20ms Geben Sie für jeden Prozess die Turnaround Time (Zeit von Lauffähigkeit bis Ende) an und berechnen Sie für jedes Schedulingverfahren dessen durchschnittliche Turnaround Time. CAU - WS 2012/13 Übung Betriebssysteme / 23

Klausur Nichtsequentielle Programmierung

Klausur Nichtsequentielle Programmierung Klausur Nichtsequentielle Programmierung Prof. Dr. Marcel Kyas 22. Juli 2009 Nachname: Bachelor Magister Vorname: Master Lehramt Diplom Hinweise zur Klausur Bitte überprüfen Sie, dass Sie alle Seiten dieser

Mehr

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen)

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) Betriebssysteme G: Parallele Prozesse (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) 1 Allgemeine Synchronisationsprobleme Wir verstehen ein BS als eine Menge von parallel

Mehr

Übung zu Grundlagen der Betriebssysteme. 10. Übung 18.12.2012

Übung zu Grundlagen der Betriebssysteme. 10. Übung 18.12.2012 Übung zu Grundlagen der Betriebssysteme 10. Übung 18.12.2012 Aufgabe 1 a) Was versteht man unter einem kritischen Abschnitt oder kritischen Gebiet (critical area)? b) Welche Aufgabe hat ein Semaphor? c)

Mehr

Monitore. Klicken bearbeiten

Monitore. Klicken bearbeiten Sascha Kretzschmann Institut für Informatik Monitore Formatvorlage und deren Umsetzung des Untertitelmasters durch Klicken bearbeiten Inhalt 1. Monitore und Concurrent Pascal 1.1 Warum Monitore? 1.2 Monitordefinition

Mehr

Proseminar Nichtsequentielle Programmiersprachen WS 2011/2012 Monitore

Proseminar Nichtsequentielle Programmiersprachen WS 2011/2012 Monitore Fachbereich Mathematik und Informatik Institut für Informatik Proseminar Nichtsequentielle Programmiersprachen WS 2011/2012 Monitore Sascha Kretzschmann 2. November 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

Prozesse und Prozessmanagement des BS. 1 Unterschied Prozess, Threads. 1.1 Prozess. 1.2 Threads

Prozesse und Prozessmanagement des BS. 1 Unterschied Prozess, Threads. 1.1 Prozess. 1.2 Threads Prozesse und Prozessmanagement des BS 1 Unterschied Prozess, Threads 1.1 Prozess Bei jedem Programm muss gespeichert werden, welche Betriebsmittel (Speicherplatz, CPU- Zeit, CPU-Inhalt,...) es benötigt.

Mehr

Leser-Schreiber-Realisierung mit Semaphoren

Leser-Schreiber-Realisierung mit Semaphoren Leser-Schreiber-Realisierung mit Semaphoren Reader: down(semwriter); down(semcounter); rcounter++; up(semwriter); read(); down(semcounter); rcounter--; Writer: Problem: down(semwriter); Busy Waiting siehe

Mehr

Informatik B. Vorlesung 8 Synchronisierung von Threads. Dr. Ralf Kunze

Informatik B. Vorlesung 8 Synchronisierung von Threads. Dr. Ralf Kunze Vorlesung 8 Synchronisierung von Threads 1 Rückblick Threads Erzeugen, Starten und Stoppen Fehler abfangen Gemeinsamer Zugriff auf Ressourcen Kritische Blöcke (Einleitung) 2 Kritische Blöcke Kritische

Mehr

Parallele Prozesse. Prozeß wartet

Parallele Prozesse. Prozeß wartet Parallele Prozesse B-66 Prozeß: Ausführung eines Programmes in seinem Adressraum (zugeordneter Speicher) Parallele Prozesse: gleichzeitig auf mehreren Prozessoren laufende Prozesse p1 p2 verzahnte Prozesse:

Mehr

Threads Einführung. Zustände von Threads

Threads Einführung. Zustände von Threads Threads Einführung Parallelität : Zerlegung von Problemstellungen in Teilaufgaben, die parallelel ausgeführt werden können (einfachere Strukturen, eventuell schneller, Voraussetzung für Mehrprozessorarchitekturen)

Mehr

Erstes Leser-Schreiber-Problem

Erstes Leser-Schreiber-Problem Erstes Leser-Schreiber-Problem Szenario: mehrere Leser und mehrere Schreiber gemeinsamer Datenbereich Schreiber haben exklusiven Zugriff Leser können parallel zugreifen (natürlich nur, wenn kein Schreiber

Mehr

Systeme 1. Kapitel 6. Nebenläufigkeit und wechselseitiger Ausschluss

Systeme 1. Kapitel 6. Nebenläufigkeit und wechselseitiger Ausschluss Systeme 1 Kapitel 6 Nebenläufigkeit und wechselseitiger Ausschluss Threads Die Adressräume verschiedener Prozesse sind getrennt und geschützt gegen den Zugriff anderer Prozesse. Threads sind leichtgewichtige

Mehr

Musterlösung Prüfung WS 01/02

Musterlösung Prüfung WS 01/02 Musterlösung Prüfung WS 01/02 Fach: I3 Software-Technik (SEE, GRS, BTS) Teilprüfung: Betriebssysteme Tag: 29.01.2002 10:45 14.45 Raum: 1006 Bearbeitungszeit: 4 Stunden Name:... Matr.Nr.:... Punkte:...

Mehr

Übungsblatt 2: Betriebssysteme, Prozesse

Übungsblatt 2: Betriebssysteme, Prozesse Ludwig-Maximilians-Universität München München, 13.05.2009 Institut für Informatik Priv.-Doz. Dr. Peer Kröger Thomas Bernecker Einführung in die Informatik: Systeme und Anwungen SS 2009 Übungsblatt 2:

Mehr

Deadlocks. Christoph Lindemann. Betriebssysteme. Betriebssysteme WS 2004/05. Fahrplan. Inhalt. Das Deadlock Problem

Deadlocks. Christoph Lindemann. Betriebssysteme. Betriebssysteme WS 2004/05. Fahrplan. Inhalt. Das Deadlock Problem Betriebssysteme WS 2004/05 Deadlocks Christoph Lindemann Fahrplan 14.10. Organisation der Vorlesung, Einführung in Betriebssysteme 21.10. Strukturen von Betriebssystemen 28.10. Prozesse und Threads 4.11.

Mehr

Info B VL 16: Monitore und Semaphoren

Info B VL 16: Monitore und Semaphoren Info B VL 16: Monitore und Semaphoren Objektorientiere Programmierung in Java 2003 Ute Schmid (Vorlesung) Elmar Ludwig (Übung) FB Mathematik/Informatik, Universität Osnabrück Info B VL 16: Monitore und

Mehr

Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme

Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme Seite 1 Test (Lösungen) Betriebssysteme, Rechnernetze und verteilte Systeme 1 11.07.2007 Hinweise: Bevor Sie mit der Bearbeitung der Aufgaben beginnen, müssen Sie auf allen Blättern Ihren Namen und Ihre

Mehr

POSIX-Threads. Aufgabe 9 SP - Ü U10.1

POSIX-Threads. Aufgabe 9 SP - Ü U10.1 U10 10. Übung U10 10. Übung POSIX-Threads Aufgabe 9 U10.1 U10-1 Motivation von Threads U10-1 Motivation von Threads UNIX-Prozesskonzept: eine Ausführungsumgebung (virtueller Adressraum, Rechte, Priorität,...)

Mehr

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl

(Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl Übung zur Vorlesung Grundlagen Betriebssysteme und Systemsoftware (Prof. Dr. J. Schlichter, WS 2011 / 2012) Übungsleitung: Dr. Wolfgang Wörndl (gbs-ws11@mailschlichter.informatik.tu-muenchen.de) http://www11.in.tum.de/veranstaltungen/grundlagenbetriebssystemeundsystemsoftwarews1112

Mehr

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion Betriebssysteme Vorlesung im Herbstsemester 2010 Universität Mannheim Kapitel 6: Speicherbasierte Prozessinteraktion Felix C. Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung

Mehr

Grundlagen der Programmierung in C Klassen

Grundlagen der Programmierung in C Klassen Grundlagen der Programmierung in C Klassen Wintersemester 2005/2006 G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de Das C++ Typsystem simple address pointer reference structured integral

Mehr

Nebenläufigkeit mit Java

Nebenläufigkeit mit Java Nebenläufigkeit mit Java Einheit 03: Synchronisation Lorenz Schauer Lehrstuhl für Mobile und Verteilte Systeme Heutige Agenda Synchronisation von Threads Locks Java Monitor-Konzept Lock Freigabe Zusammenspiel

Mehr

I 7. Übung. I-1 Überblick. Besprechung Aufgabe 5 (mysh) Online-Evaluation. Posix Threads. Ü SoS I I.1

I 7. Übung. I-1 Überblick. Besprechung Aufgabe 5 (mysh) Online-Evaluation. Posix Threads. Ü SoS I I.1 I 7. Übung I 7. Übung I-1 Überblick Besprechung Aufgabe 5 (mysh) Online-Evaluation Posix Threads I.1 I-2 Evaluation I-2 Evaluation Online-Evaluation von Vorlesung und Übung SOS zwei TANs, zwei Fragebogen

Mehr

Softwarelösungen: Versuch 4

Softwarelösungen: Versuch 4 Softwarelösungen: Versuch 4 Nichtstun in Schleife wird ersetzt durch zeitweilige Zurücknahme der Anforderung, um es anderen Prozessen zu erlauben, die Ressource zu belegen: /* Prozess 0 */ wiederhole flag[0]

Mehr

Kapitel 9. Programmierkurs. Attribute von Klassen, Methoden und Variablen. 9.1 Attribute von Klassen, Methoden und Variablen

Kapitel 9. Programmierkurs. Attribute von Klassen, Methoden und Variablen. 9.1 Attribute von Klassen, Methoden und Variablen Kapitel 9 Programmierkurs Birgit Engels Anna Schulze Zentrum für Angewandte Informatik Köln Objektorientierte Programmierung Attribute von Klassen, Methoden und Variablen Interfaces WS 07/08 1/ 18 2/ 18

Mehr

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

JedesObjekt(mit ÝÒ ÖÓÒ Þ -Methoden)verfügtübereine. wartender Threads sowie die Objekt-Methoden:

JedesObjekt(mit ÝÒ ÖÓÒ Þ -Methoden)verfügtübereine. wartender Threads sowie die Objekt-Methoden: JedesObjekt(mit ÝÒ ÖÓÒ Þ -Methoden)verfügtübereine weitereschlange Ì Ö ÉÙ Ù Û Ø Ò Ì Ö amobjekt wartender Threads sowie die Objekt-Methoden: ÔÙ Ò ÚÓ Û Ø µ Ø ÖÓÛ ÁÒØ ÖÖÙÔØ Ü ÔØ ÓÒ ÔÙ Ò ÚÓ ÒÓØ Ý µ ÔÙ Ò ÚÓ

Mehr

Threads and Scheduling

Threads and Scheduling Vorlesung Betriebssysteme WS 2010, fbi.h-da.de Threads and Scheduling Jürgen Saala 1. Threads 2. Scheduling 2 1. Threads 3 Prozesse mit je 1 Adressraum 1 Ausführungsfaden d.h. Unabhängiger Adressraum mit

Mehr

Gliederung. Monitor (eine auf ein Modul bezogene) Klasse

Gliederung. Monitor (eine auf ein Modul bezogene) Klasse Systemprogrammierung Prozesssynchronisation: Hochsprachenebene Wolfgang Schröder-Preikschat Lehrstuhl Informatik 4 04. November 2014 c wosch (Lehrstuhl Informatik 4) Systemprogrammierung SP2 # WS 2014/15

Mehr

Technische Informatik II

Technische Informatik II Institut für Technische Informatik und Kommunikationsnetze Technische Informatik II Übung 1: Prozesse und Threads Aufgabe 1: Prozesse und Threads a) Wie verhält sich eine Applikation die aus mehreren Prozessen

Mehr

Betriebssysteme G: Parallele Prozesse ( Teil C: SpinLock, Semaphore, Monitore)

Betriebssysteme G: Parallele Prozesse ( Teil C: SpinLock, Semaphore, Monitore) Betriebssysteme G: Parallele Prozesse ( Teil C: SpinLock, Semaphore, Monitore) 1 Hardwareunterstützung Uniprozessor-System Verbiete Interrupts während des Aufenthalts in einer CR disable interrupt CR(bzw:

Mehr

Aufgabenblatt 8 Musterlösung

Aufgabenblatt 8 Musterlösung Prof. Dr. rer. nat. Roland Wismüller Aufgabenblatt 8 Musterlösung Vorlesung Betriebssysteme I Wintersemester 2017/18 Aufgabe 1: Erzeuger-Verbraucher Synchronisation (Bearbeitung in der Übungsstunde) Erzeuger-Verbraucher-Problem:

Mehr

Thread-Konzept in objektorientierten Programmiersprachen. Threads. Threads in Java

Thread-Konzept in objektorientierten Programmiersprachen. Threads. Threads in Java Thread-Konzept in objektorientierten Programmiersprachen 1 Threads ein Thread ist ein eigenständiges Programmfragment, das parallel zu anderen Teilen eines Programmes ablaufen kann alle Threads eines Programmes

Mehr

Domänenmodell: Fadenkommunikation und -synchronisation

Domänenmodell: Fadenkommunikation und -synchronisation Domänenmodell: Fadenkommunikation und -synchronisation Alexander Humphreys, Reinhard Rösch, Fabian Scheler 15. Mai 2003 Inhaltsverzeichnis 1 Domänendefinition 1 2 Domänenlexikon 1 3 Konzeptmodelle 4 4

Mehr

Nebenläufige Programmierung in Java: Threads

Nebenläufige Programmierung in Java: Threads Nebenläufige Programmierung in Java: Threads Wahlpflicht: Fortgeschrittene Programmierung in Java Jan Henke HAW Hamburg 10. Juni 2011 J. Henke (HAW) Threads 10. Juni 2011 1 / 18 Gliederung 1 Grundlagen

Mehr

U9-3 Vergleich von Thread-Konzepten. U9-2 Motivation von Threads. U9-3 Vergleich von Thread-Konzepten (2) U9-1 Überblick

U9-3 Vergleich von Thread-Konzepten. U9-2 Motivation von Threads. U9-3 Vergleich von Thread-Konzepten (2) U9-1 Überblick U9 9. Übung U9 9. Übung U9-1 Überblick Besprechung Aufgabe 6 (printdir) Posix-Threads U9.1 User-Level Threads: Federgewichtige Prozesse Realisierung von Threads auf Anwendungsebene innerhalb eines Prozesses

Mehr

Übung zu Grundlagen der Betriebssysteme. 11. Übung

Übung zu Grundlagen der Betriebssysteme. 11. Übung Übung zu Grundlagen der Betriebssysteme 11. Übung 08.01.2012 Organisation Anmeldung zur Klausur Klausur Grundlagen der Betriebssysteme Datum: 05.02.2013 Raum F414 (steht aber noch nicht sicher fest) Anmeldung

Mehr

HSR Rapperswil 2001 Markus Rigling. Programmieren: Vererbung. 1 Variante 2

HSR Rapperswil 2001 Markus Rigling. Programmieren: Vererbung. 1 Variante 2 HSR Rapperswil 2001 Markus Rigling Programmieren: Vererbung 1 Variante 2 Inhaltsverzeichnis: 1. Was ist Vererbung...3 2. Anwendung...3 3. Realisierung...3 4. Vorgehensweise zur Erstellung einer Kind-Klasse...3

Mehr

U8 POSIX-Threads U8 POSIX-Threads

U8 POSIX-Threads U8 POSIX-Threads U8 POSIX-Threads U8 POSIX-Threads Motivation Thread-Konzepte pthread-api pthread-koordinierung U8.1 U8-1 Motivation von Threads U8-1 Motivation von Threads UNIX-Prozesskonzept: eine Ausführungsumgebung

Mehr

Softwaresysteme I Übungen Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2007 U9.fm

Softwaresysteme I Übungen Jürgen Kleinöder Universität Erlangen-Nürnberg Informatik 4, 2007 U9.fm U9 9. Übung U9 9. Übung U9-1 Überblick Besprechung Aufgabe 6 (printdir) Posix-Threads U9.1 U9-2 Motivation von Threads U9-2 Motivation von Threads UNIX-Prozesskonzept: eine Ausführungsumgebung (virtueller

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2010 / 2011

Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2010 / 2011 Name: Matrikelnummer: Studiengang: INF CV IM Lehramt BSc MSc BEd MEd Diplom Klausur zur Vorlesung Grundlagen der Betriebssysteme WS 2010 / 2011 Montag, den 21. Februar 2011, 14:15 Uhr 15:45 Uhr Prof. Dr.

Mehr

Gegenseitiger Ausschluss 102

Gegenseitiger Ausschluss 102 Gegenseitiger Ausschluss 102 MX = M (P 1... P n ) M = (lock unlock M) P i = (lock begin_critical_region i end_critical_region i unlock private_work i P i ) n Prozesse P 1... P n wollen konkurrierend auf

Mehr

Betriebssysteme BS-H WS 2014/15. Hans-Georg Eßer. Foliensatz H: Zusammenfassung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/01/10

Betriebssysteme BS-H WS 2014/15. Hans-Georg Eßer. Foliensatz H: Zusammenfassung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/01/10 BS-H Betriebssysteme WS 2014/15 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz H: Zusammenfassung v1.0, 2015/01/10 10.01.2015 Betriebssysteme, WS 2014/15, Hans-Georg Eßer Folie H-1 Übersicht: BS

Mehr

Konzepte der Programmiersprachen

Konzepte der Programmiersprachen Konzepte der Programmiersprachen Sommersemester 2010 4. Übungsblatt Besprechung am 9. Juli 2010 http://www.iste.uni-stuttgart.de/ps/lehre/ss2010/v_konzepte/ Aufgabe 4.1: Klassen in C ++ Das folgende C

Mehr

Bitte verwenden Sie nur dokumentenechtes Schreibmaterial!

Bitte verwenden Sie nur dokumentenechtes Schreibmaterial! VO 182.711 Prüfung Betriebssysteme 17. Januar 2014 KNr. MNr. Zuname, Vorname Ges.)(100) 1.)(35) 2.)(20) 3.)(45) Zusatzblätter: Bitte verwenden Sie nur dokumentenechtes Schreibmaterial! 1 Synchronisation

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme

Klausur zur Vorlesung Grundlagen der Betriebssysteme Prof. Dr. L. Wegner Dipl.-Math. K. Schweinsberg Klausur zur Vorlesung Grundlagen der Betriebssysteme 19.2.2004 Name:... Vorname:... Matrikelnr.:... Studiengang:... Hinweise: Bearbeitungszeit 2 Stunden.

Mehr

Verteilte Anwendungen. Teil 3: Synchronisation

Verteilte Anwendungen. Teil 3: Synchronisation Verteilte Anwendungen Teil 3: Synchronisation 08.04.18 1 Literatur [3-1] Werner, Dieter: Theorie der Betriebssysteme. Hanser, 1992 [3-2] Dannegger, Christian; Geugelin-Dannegger, Patricia: Parallele Prozesse

Mehr

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading Leistungskurs C++ Multithreading Threading mit Qt Plattformübergreifende Thread-Klasse Sehr einfach zu benutzen Leider etwas schlecht dokumentiert Leistungskurs C++ 2 QThread Plattformübergreifende Thread-Klasse

Mehr

Betriebssysteme Theorie

Betriebssysteme Theorie Betriebssysteme Theorie SS 2011 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz D (05.05.2011) Synchronisation 05.05.2011 Betriebssysteme-Theorie, Hans-Georg Eßer Folie D-1 Einführung (1) Es gibt

Mehr

Wegweiser. Das Erzeuger-/Verbraucher-Problem. Semaphore. Transaktionen. Botschaften

Wegweiser. Das Erzeuger-/Verbraucher-Problem. Semaphore. Transaktionen. Botschaften Wegweiser Das Erzeuger-/Verbraucher-Problem Semaphore Transaktionen Botschaften Betriebssysteme WS 2013, Threads 75 Beispiele Erzeuger-/Verbraucher-Probleme Betriebsmittelverwaltung Warten auf eine Eingabe

Mehr

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen Seite 8 A UFGABE 11 INTERP ROZEßKOMMUNIKATION Das folgende Petrinetz zeigt zwei verkoppelte Prozesse P1 und P2. Die Transitionen a und b beschreiben Aktionen von P1, die Transitionen c und d Aktionen von

Mehr

Monitor (eine auf ein Modul bezogene) Klasse

Monitor (eine auf ein Modul bezogene) Klasse Systemprogrammierung Prozesssynchronisation: Hochsprachenebene Wolfgang Schröder-Preikschat Lehrstuhl Informatik 4 16. November 2011 c wosch (Lehrstuhl Informatik 4) Systemprogrammierung SP2#WS2011/12

Mehr

Systemprogrammierung

Systemprogrammierung Systemprogrammierung Prozesssynchronisation: Hochsprachenebene Wolfgang Schröder-Preikschat Lehrstuhl Informatik 4 12. Januar 2011 c wosch (Lehrstuhl Informatik 4) Systemprogrammierung WS2010/11 1 / 20

Mehr

Betriebssysteme. Teil 13: Scheduling

Betriebssysteme. Teil 13: Scheduling Betriebssysteme Teil 13: Scheduling Betriebssysteme - WS 2015/16 - Teil 13/Scheduling 15.01.16 1 Literatur [13-1] Quade, Jürgen; Mächtel, Michael: Moderne Realzeitsysteme kompakt. dpunkt, 2012 [13-2] Quade,

Mehr

Pthreads. David Klaftenegger. Seminar: Multicore Programmierung Sommersemester

Pthreads. David Klaftenegger. Seminar: Multicore Programmierung Sommersemester Seminar: Multicore Programmierung Sommersemester 2009 16.07.2009 Inhaltsverzeichnis 1 Speichermodell 2 3 Implementierungsvielfalt Prioritätsinversion 4 Threads Speichermodell Was sind Threads innerhalb

Mehr

#define N 5 // Anzahl der Philosophen. while (TRUE) { // Der Philosoph denkt

#define N 5 // Anzahl der Philosophen. while (TRUE) { // Der Philosoph denkt Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung Ausnahmebehandlung und Nebenläufigkeit 9. Vorlesung am 15. Dezember 2010 Ausnahmebehandlung in Java class A { void foo() throws Help, SyntaxError {... class B extends A

Mehr

U8-1 Motivation von Threads. U8-2 Vergleich von Thread-Konzepten. U8-2 Vergleich von Thread-Konzepten (2) Motivation

U8-1 Motivation von Threads. U8-2 Vergleich von Thread-Konzepten. U8-2 Vergleich von Thread-Konzepten (2) Motivation U8 POSIX-Threads U8 POSIX-Threads U8-1 Motivation von Threads U8-1 Motivation von Threads Motivation Thread-Konzepte UNIX-Prozesskonzept: eine Ausführungsumgebung (virtueller Adressraum, Rechte, Priorität,...)

Mehr

Elementare Konzepte von

Elementare Konzepte von Elementare Konzepte von Programmiersprachen Teil 2: Anweisungen (Statements) Kapitel 6.3 bis 6.7 in Küchlin/Weber: Einführung in die Informatik Anweisungen (statements) in Java Berechnung (expression statement)

Mehr

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes

PThreads. Pthreads. Jeder Hersteller hatte eine eigene Implementierung von Threads oder light weight processes PThreads Prozesse und Threads Ein Unix-Prozess hat IDs (process,user,group) Umgebungsvariablen Verzeichnis Programmcode Register, Stack, Heap Dateideskriptoren, Signale message queues, pipes, shared memory

Mehr

Zur Erinnerung: Threads. Threadverwaltung. Threads: Prioritäten. Beispiel Flugbuchungsprogramm. Nichtdeterminismus

Zur Erinnerung: Threads. Threadverwaltung. Threads: Prioritäten. Beispiel Flugbuchungsprogramm. Nichtdeterminismus Zur Erinnerung: Threads Programmierung (fortgeschrittene Konzepte) Threads, Monitore, Semaphore und speisende en Wolf-Ulrich Raffel (uli@wuraffel.de) Möglichkeiten, Threads zu definieren Bildung einer

Mehr

Klausur Nichtsequentielle Programmierung. Nachname: Bachelor Magister. Vorname: Master Lehramt

Klausur Nichtsequentielle Programmierung. Nachname: Bachelor Magister. Vorname: Master Lehramt Klausur Nichtsequentielle Programmierung Prof. Dr. Marcel Kyas 5. Oktober 2009 Nachname: Bachelor Magister Vorname: Master Lehramt Diplom Hinweise zur Klausur Bitte überprüfen Sie, dass Sie alle Seiten

Mehr

Klausur Nichtsequentielle Programmierung. Nachname: Bachelor Magister. Vorname: Master Lehramt

Klausur Nichtsequentielle Programmierung. Nachname: Bachelor Magister. Vorname: Master Lehramt Klausur Nichtsequentielle Programmierung Prof. Dr. Marcel Kyas 14. Juli 2010 Nachname: Bachelor Magister Vorname: Master Lehramt Diplom Hinweise zur Klausur Bitte überprüfen Sie, dass Sie alle Seiten dieser

Mehr

Markus Klußmann, Amjad Saadeh Institut für Informatik. Pthreads. von Markus Klußmann und Amjad Saadeh. Pthreads

Markus Klußmann, Amjad Saadeh Institut für Informatik. Pthreads. von Markus Klußmann und Amjad Saadeh. Pthreads Markus Klußmann, Amjad Saadeh Institut für Informatik Pthreads von Markus Klußmann und Amjad Saadeh Pthreads Inhalt - Was sind Threads? - Prozess vs. Thread - Kurzer Überblick POSIX - Threads im Betriebssystem

Mehr

Betriebssysteme. Wintersemester Kapitel 2 Prozess und Threads. Patrick Kendzo

Betriebssysteme. Wintersemester Kapitel 2 Prozess und Threads. Patrick Kendzo Betriebssysteme Wintersemester 2015 Kapitel 2 Prozess und Threads Patrick Kendzo ppkendzo@gmail.com Programm Inhalt Einleitung Prozesse und Threads Speicherverwaltung Ein- / Ausgabe und Dateisysteme Zusammenfassung

Mehr

Systemprogrammierung

Systemprogrammierung Systemprogrammierung Prozesssynchronisation: Hochsprachenebene Wolfgang Schröder-Preikschat Lehrstuhl Informatik 4 16. November 2011 c wosch (Lehrstuhl Informatik 4) Systemprogrammierung SP2#WS2011/12

Mehr

Literatur. Betriebssysteme - WS 2015/16 - Teil 13/Scheduling 2

Literatur. Betriebssysteme - WS 2015/16 - Teil 13/Scheduling 2 Literatur [13-1] Quade, Jürgen; Mächtel, Michael: Moderne Realzeitsysteme kompakt. dpunkt, 2012 [13-2] Quade, Jürgen: Embedded Linux lernen mit dem Raspberry Pi. dpunkt, 2014 [13-3] Eißenlöffel, Thomas:

Mehr

Praktikum aus Softwareentwicklung 2, Stunde 5

Praktikum aus Softwareentwicklung 2, Stunde 5 Praktikum aus Softwareentwicklung 2, Stunde 5 Lehrziele/Inhalt 1. Threads Threads Threads sind parallele, oder auf Rechnern mit nur einer CPU quasi-parallele, Programmabläufe in Java. Sie können beispielsweise

Mehr

Nicht-blockierende Synchronisation für Echtzeitsysteme

Nicht-blockierende Synchronisation für Echtzeitsysteme Nicht-blockierende Synchronisation für Echtzeitsysteme Seminar Mobile Systeme Florian Schricker 15. März 2005 Seminarleiter: Prof. Dr. Dieter Zöbel 1 INHALTSVERZEICHNIS INHALTSVERZEICHNIS Inhaltsverzeichnis

Mehr

Testen nebenläufiger Objekte

Testen nebenläufiger Objekte Testen nebenläufiger Objekte Threads in Java Julian Lambertz Seminar Tests in Informatik und Statistik im SS 2004 Universität Ulm J.L., Juni 2004 1 Themenüberblick Einleitung Begriff der Nebenläufigkeit

Mehr

Theorie zu Übung 8 Implementierung in Java

Theorie zu Übung 8 Implementierung in Java Universität Stuttgart Institut für Automatisierungstechnik und Softwaresysteme Prof. Dr.-Ing. M. Weyrich Theorie zu Übung 8 Implementierung in Java Klasse in Java Die Klasse wird durch das class-konzept

Mehr

Betriebssystembau (BSB)

Betriebssystembau (BSB) Betriebssystembau (BSB) 6. Übung http://ess.cs.tu-.de/de/teaching/ws2013/bsb/ Olaf Spinczyk olaf.spinczyk@tu-.de http://ess.cs.tu-.de/~os AG Eingebettete System Informatik 12, TU Dortmund Agenda Vorstellung

Mehr

Deadlock. Peter Puschner Institut für Technische Informatik

Deadlock. Peter Puschner Institut für Technische Informatik Deadlock Peter Puschner Institut für Technische Informatik peter@vmars.tuwien.ac.at Deadlock Permanentes Blockieren einer Menge von Prozessen, die um Ressourcen konkurrieren oder miteinander kommunizieren

Mehr

Wechselseitiger Ausschluss in verteilten Systemen / Elektionsalgorithmen. Özden Urganci Ulf Sigmund Ömer Ekinci

Wechselseitiger Ausschluss in verteilten Systemen / Elektionsalgorithmen. Özden Urganci Ulf Sigmund Ömer Ekinci Wechselseitiger Ausschluss in verteilten Systemen / Elektionsalgorithmen Özden Urganci Ulf Sigmund Ömer Ekinci Inhaltsangabe 1 Einleitung 2 Prinzipien des verteilten wechselseitigen Ausschlusses 2.1 Anforderungen

Mehr

Wirtschaftsinformatik II Sommersemester Lo sungshinweise zu den Ü bungen P. Mandl, M. Dolag, B. Rottmüller, et al.

Wirtschaftsinformatik II Sommersemester Lo sungshinweise zu den Ü bungen P. Mandl, M. Dolag, B. Rottmüller, et al. Wirtschaftsinformatik II Sommersemester 2016 Lo sungshinweise zu den Ü bungen 2-6 @Prof. P. Mandl, M. Dolag, B. Rottmüller, et al. Seite 1 / 6 Übung 2 Verwendung von Java-Threads Ableitung von Klasse Thread

Mehr

Probeklausur: Programmierung WS04/05

Probeklausur: Programmierung WS04/05 Probeklausur: Programmierung WS04/05 Name: Hinweise zur Bearbeitung Nimm Dir für diese Klausur ausreichend Zeit, und sorge dafür, dass Du nicht gestört wirst. Die Klausur ist für 90 Minuten angesetzt,

Mehr

Effiziente Synchronisations- und Sperrverfahren

Effiziente Synchronisations- und Sperrverfahren 2018-02-27 Effiziente Synchronisations- und Sperrverfahren HARRY FLOHR Inhalt Einleitung und Begriffsklärung... 1 Barrier... 2 Spinlock... 3 Mutex... 4 Semaphor... 5 Condition variables... 7 Effizienzabschätzungen

Mehr

Deadlocks. System hat nur begrenzte Ressourcen (Ressourcentypen) Hauptspeicher Externer Speicher Drucker File

Deadlocks. System hat nur begrenzte Ressourcen (Ressourcentypen) Hauptspeicher Externer Speicher Drucker File Kapitel V Deadlocks (Verklemmungen) 1 Deadlocks System hat nur begrenzte Ressourcen (Ressourcentypen) Hauptspeicher Externer Speicher Drucker File Prozesse benötigen Genehmigung vor der Benutzung von Ressourcen.

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Frühe Betriebssysteme, geschützte CPU-Befehle, CPU-Modus

Rechnerarchitektur und Betriebssysteme (CS201): Frühe Betriebssysteme, geschützte CPU-Befehle, CPU-Modus Rechnerarchitektur und Betriebssysteme (CS201): Frühe Betriebssysteme, geschützte CPU-Befehle, CPU-Modus 2. November 2012 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität

Mehr

WS Parallele Prozesse. Prof. Hannelore Frank. Parallele Prozesse. PetriNetze. Synchronisation UNIX. Wettbewerb PC Krit.Abschnitt Spinlocks

WS Parallele Prozesse. Prof. Hannelore Frank. Parallele Prozesse. PetriNetze. Synchronisation UNIX. Wettbewerb PC Krit.Abschnitt Spinlocks WS 2007 Überblick 1 2 Petri-Netze als Entwurfshilfsmittel 3 nebenläufiger 4 -Systemfunktionen Literatur Eduard Glatz: Betriebssysteme. Grundlagen, Konzepte, Systemprogrammierung dpunkt.verlag, 2006, ISBN

Mehr

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading

Lehrstuhl für Datenverarbeitung. Technische Universität München. Leistungskurs C++ Multithreading Leistungskurs C++ Multithreading Threading mit Qt Plattformübergreifende Thread-Klasse Sehr einfach zu benutzen Leider etwas schlecht dokumentiert Leistungskurs C++ 2 QThread Plattformübergreifende Thread-Klasse

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Semaphor, Monitor, Deadlocks, Re-Entrance

Rechnerarchitektur und Betriebssysteme (CS201): Semaphor, Monitor, Deadlocks, Re-Entrance Rechnerarchitektur und Betriebssysteme (CS201): Semaphor, Monitor, Deadlocks, Re-Entrance 5. November 2013 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität Basel Repetition

Mehr

Neben der Verwendung von Klassen ist Vererbung ein wichtiges Merkmal objektorientierter

Neben der Verwendung von Klassen ist Vererbung ein wichtiges Merkmal objektorientierter Kapitel 1 Der vierte Tag 1.1 Vererbung Neben der Verwendung von Klassen ist Vererbung ein wichtiges Merkmal objektorientierter Sprachen. Unter Vererbung versteht man die Möglichkeit, Eigenschaften vorhandener

Mehr

1 Verkettete Liste (20 Punkte)

1 Verkettete Liste (20 Punkte) 1 Verkettete Liste (20 Punkte) Eine einfach-verkettete Liste (auch Schlange oder engl. Queue) gibt beinhaltende Objekte am Ende der Liste zurück und entfernt diese aus der Liste mit der Methode removelast():.

Mehr

Nebenläufige Programmierung

Nebenläufige Programmierung Nebenläufige Programmierung Perspektiven der Informatik 27. Januar 2003 Gert Smolka Telefon-Szenario Eine Telefonzelle Mehrere Personen wollen telefonieren Immer nur eine Person kann telefonieren Ressource

Mehr

9. Vorlesung Betriebssysteme

9. Vorlesung Betriebssysteme Dr. Christian Baun 9. Vorlesung Betriebssysteme Hochschule Mannheim WS1213 1/39 9. Vorlesung Betriebssysteme Dr. Christian Baun Hochschule Mannheim Fakultät für Informatik wolkenrechnen@gmail.com Dr. Christian

Mehr

Prozesszustände (1a)

Prozesszustände (1a) Prozesszustände (1a) NOT EXISTING DELETED CREATED Meta-Zustand (Theoretische Bedeutung) Prozesszustände Multiuser Umfeld (1c) Hintergrund-Prozess - der Prozess startet im Hintergrund - my-commandbin &

Mehr

Klausur Nichtsequentielle Programmierung. Nachname: Bachelor Magister. Vorname: Master Lehramt

Klausur Nichtsequentielle Programmierung. Nachname: Bachelor Magister. Vorname: Master Lehramt Klausur Nichtsequentielle Programmierung Prof. Dr. Marcel Kyas 20. Juli 2011 Nachname: Bachelor Magister Vorname: Master Lehramt Matr.-Nr.: Diplom Hinweise zur Klausur Überprüfen Sie, dass Sie alle Seiten

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Technische Universität München WS 2003/2004 Institut für Informatik Prof. Dr. Christoph Zenger Semestralklausur Einführung in die Programmierung Semestralklausur Java (Lösungsvorschlag) 1 Die Klasse ArrayList

Mehr

Fakultät für Informatik der Technischen Universität München. Nebenläufigkeit. Probleme

Fakultät für Informatik der Technischen Universität München. Nebenläufigkeit. Probleme Nebenläufigkeit Probleme 175 Race Conditions: Probleme Situationen, in denen zwei oder mehrere Threads/Prozesse, die gleichen geteilten Daten lesen oder schreiben und das Resultat davon abhängt, wann genau

Mehr

Memory Models Frederik Zipp

Memory Models Frederik Zipp Memory Models Frederik Zipp Seminar: Programmiersprachen für Parallele Programmierung (SS 2010) Fakultät für Informatik - IPD SNELTING LEHRSTUHL PROGRAMMIERPARADIGMEN 1

Mehr

JJ Prozesse und Nebenläufigkeit

JJ Prozesse und Nebenläufigkeit 1 Wiederholung: Algorithmus von Peterson boolean ready0=false, ready1=false; int turn=0; JJ Prozesse und Nebenläufigkeit (Auszug aus der Vorlesung) while( 1 ) Prozess 0 ready0 = true; turn = 1; while(

Mehr

Innere Klassen. Gerd Bohlender. Institut für Angewandte und Numerische Mathematik. Vorlesung: Einstieg in die Informatik mit Java

Innere Klassen. Gerd Bohlender. Institut für Angewandte und Numerische Mathematik. Vorlesung: Einstieg in die Informatik mit Java Innere Klassen Gerd Bohlender Institut für Angewandte und Numerische Mathematik Vorlesung: Einstieg in die Informatik mit Java 13.06.07 G. Bohlender (IANM UNI Karlsruhe) Innere Klassen 13.06.07 1 / 11

Mehr

RTOS Einführung. Version: Datum: Autor: Werner Dichler

RTOS Einführung. Version: Datum: Autor: Werner Dichler RTOS Einführung Version: 0.0.1 Datum: 20.07.2013 Autor: Werner Dichler Inhalt Inhalt... 2 RTOS... 3 Definition... 3 Anforderungen... 3 Aufgaben... 3 Eigenschaften... 4 Einteilung der Betriebssysteme...

Mehr

5. Foliensatz Betriebssysteme und Rechnernetze

5. Foliensatz Betriebssysteme und Rechnernetze Prof. Dr. Christian Baun 5. Foliensatz Betriebssysteme und Rechnernetze FRA-UAS SS2017 1/29 5. Foliensatz Betriebssysteme und Rechnernetze Prof. Dr. Christian Baun Frankfurt University of Applied Sciences

Mehr

Verteilte Systeme CS5001

Verteilte Systeme CS5001 Verteilte Systeme CS5001 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Client-Server-Anwendungen: Vom passiven (shared state) Monitor zum aktiven Monitor Monitor (Hoare, Brinch-Hansen,

Mehr

parallele Prozesse auf sequenziellen Prozessoren Ein Process ist ein typisches Programm, mit eigenem Addressraum im Speicher.

parallele Prozesse auf sequenziellen Prozessoren Ein Process ist ein typisches Programm, mit eigenem Addressraum im Speicher. Threads parallele Prozesse auf sequenziellen Prozessoren Prozesse und Threads Es gibt zwei unterschiedliche Programme: Ein Process ist ein typisches Programm, mit eigenem Addressraum im Speicher. Ein Thread

Mehr

Zusammenfassung Modul 223

Zusammenfassung Modul 223 Zusammenfassung Modul 223 von Christian Roth Powered by Schuschu Bison Schweiz AG, Surentalstrasse 10, CH-6210 Sursee, www.bison-group.com Inhaltsverzeichnis 1 Entwurfmuster... 3 1.1 Singleton... 3 1.1.1

Mehr