Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 8

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 8"

Transkript

1 1. Terme und mit Klammern Schwerpunkt: Beschreibung von Sachverhalten Schwerpunkt: Problemlösen 1.1 Auflösen und Setzen einer Klammer 1.2 Minuszeichen vor einer Klammer Subtrahieren einer Klammer 1.3 Ausklammern - beschreiben Sachverhalte durch Terme und - erkennen und vergleichen die Struktur von Termen - modellieren inner- und außermathematische Problemsituationen mit Hilfe von Termen und - formen Terme mit Hilfe der Rechengesetze um - nutzen Parametervariationen (PM) - nutzen Darstellungsformen wie Terme und zur Problemlösung (PM) - erläutern mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge unter Zuhilfenahme formaler Darstellungen (A) - nutzen die Probe zur Überprüfung von Ergebnissen - strukturieren, interpretieren, analysieren und bewerten Daten und Informationen aus Texten und mathematikhaltigen Darstellungen 1.4 Auflösen von zwei Klammern in einem Produkt Zusätzlich: - veranschaulichen und interpretieren Terme s.o. - nutzen Terme und zur mathematischen Argumentation 1.5 Binomische Formeln - nutzen die Probe zur Kontrolle beim Gleichungslösen und beurteilen die Ergebnisse 1.6 Faktorisieren einer Summe 1.8 Mischungsaufgaben s.o. Zusätzlich: - finden und bewerten mögliche Einflussfaktoren in Realsituationen (MM) Pflicht wg. Interdisziplina rität : Chemie, Physik - verwenden Terme mit Variablen und zur Ermittlung von Lösungen im mathematischen Modell (MM)

2 1.9 Formeln mit mehreren Variablen 1.10 Aufgaben zur Vertiefung - untersuchen Fragen der Lösbarkeit von und Gleichungssystemen - formulieren diesbezügliche Aussagen - untersuchen, beschreiben und begründen Auswirkungen von Parametervariationen unter Verwendung des - nutzen Tabellen, Grafen, Terme und zur Bearbeitung linearer Zusammenhänge - können überschaubare Terme mit Variablen zusammenfassen, ausmultiplizieren und ausklammern, um mathematische Probleme zu lösen 2. Lineare mit zwei Variablen Systeme linearer Schwerpunkt: Modellieren Schwerpunkt: Lösungsverfahren bewerten 2.1 Lineare der Form ax+by=c, Lösungen einer linearen Gleichung mit zwei Variablen - nutzen zur mathematischen Argumentation - modellieren inner- und außermathematische - Problemsituationen mit Hilfe von Termen und - lösen lineare in einfachen Fällen algebraisch - lösen in Sachzusammenhängen durch Probieren, numerisch und grafisch unter Verwendung des - untersuchen Fragen der Lösbarkeit von und Gleichungssystemen und - formulieren diesbezüglich Aussagen - nutzen beim Gleichungslösen die Probe zur Kontrolle und beurteilen die Ergebnisse - untersuchen, beschreiben und begründen Auswirkungen von Parametervariationen unter Verwendung des eingeführten - nutzen lineare Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge, auch unter Verwendung des - stellen lineare Funktionen - nutzen Parametervariationen (PM) - nutzen Darstellungsformen wie Terme und zur Problemlösung (PM) - erläutern mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge unter Zuhilfenahme formaler Darstellungen (A) - nutzen die Probe zur Überprüfung von Ergebnissen - strukturieren, interpretieren, analysieren und bewerten Daten und Informationen aus Texten und mathematikhaltigen Darstellungen - verwenden Terme mit Variablen und zur Ermittlung von Lösungen im mathematischen Modell (MM) - finden und bewerten mögliche Einflussfaktoren in Realsituationen (MM) - nutzen Tabellen, Grafen, Terme und zur Bearbeitung linearer Zusammenhänge - finden Begründungen durch GTR durchgängig : Z (Zahlen und Operationen), GM (Größen und Messen), RF (Raum und Form), F (Funktionaler Zusammenhang), DZ (Daten und Zufall) : A (Mathematisch argumentieren), PM (Probleme math. Lösen), MM (Math. Modellieren), MD (Math. Darstellungen verwenden), E (Mit Seite 2 von 8

3 - durch Terme und dar und wechseln zwischen den Darstellungen Term, Gleichung, Tabelle, Graf Zurückführen auf Bekanntes, Einführen von Hilfsgrößen oder Hilfslinien (A) - modellieren Sachsituationen durch lineare Funktionen - wenden die Eigenschaften der linearen Funktionen auch unter Verwendung des eingeführten zur Lösung von Problemen an und bewerten die Lösungen - deuten die Parameter linearer Funktionen in der grafischen Darstellung und nutzen diese in Anwendungssituationen - untersuchen, beschreiben und begründen Auswirkungen von Parametervariationen bei linearen Funktionen unter Verwendung des - bestimmen die Funktionsgleichung von linearen Funktionen aus dem Grafen - interpretieren die Steigung als konstante Änderungsrate 2.2 Systeme linearer - Grafisches Lösungsverfahren - lösen und Gleichungssysteme in Sachzusammenhängen durch Probieren und grafisch unter Verwendung des eingeführten - modellieren mithilfe linearer Gleichungssysteme (A) - wenden grafische Verfahren oder geometrische Konstruktionen zur Problemlösung an (MD) - stellen funktionale Zusammenhänge durch Tabellen, Grafen oder Terme dar, auch unter Verwendung des eingeführten, interpretieren und nutzen solche Darstellungen (MD) - stellen geometrische Sachverhalte algebraisch dar und umgekehrt (MD) 2.3 Lösen eines Gleichungssystems mit dem Additionsverfahren, Gleichsetzungsverfahren oder Einsetzungsverfahren - lösen lineare Gleichungssysteme mit zwei Variablen in einfachen Fällen algebraisch - lösen Gleichungssysteme in Sachzusammenhängen numerisch unter Verwendung des Zusätzlich: - wenden algebraische und numerische Verfahren oder geometrische Konstruktionen zur Problemlösung an - beurteilen ihre Ergebnisse, vergleichen und bewerten Lösungswege und Zwei Verfahren: Additionsund Gleichsetzungsverfahren : Z (Zahlen und Operationen), GM (Größen und Messen), RF (Raum und Form), F (Funktionaler Zusammenhang), DZ (Daten und Zufall) : A (Mathematisch argumentieren), PM (Probleme math. Lösen), MM (Math. Modellieren), MD (Math. Darstellungen verwenden), E (Mit Seite 3 von 8

4 Problemlösestrategien (PM) - interpretieren die im Modell gewonnenen Ergebnisse im Hinblick auf die Realsituation, - reflektieren die Annahmen und variieren diese gegebenenfalls (MM) - vergleichen und bewerten verschiedene Lösungsansätze und Lösungswege (A) - ziehen die Möglichkeit mehrerer Lösungen in Betracht und überprüfen diese (PM) 2.4 Sonderfälle beim rechnerischen Lösen - modellieren inner- und außermathematische Problemsituationen mit Hilfe von Termen und. erklären Ursachen von Fehlern (PM) GTR - lösen in Sachzusammenhängen durch Probieren, numerisch und grafisch unter Verwendung des. - nutzen beim Gleichungslösen die Probe zur Kontrolle und beurteilen die Ergebnisse. - untersuchen, beschreiben und begründen Auswirkungen von Parametervariationen unter Verwendung des eingeführten 3. Quadratwurzeln und Reelle Zahlen Schwerpunkt: Rechnen im erweiterten Zahlbereich Schwerpunkt: Substituieren, Vorwärts- und Rückwärtsarbeiten 3.1. Quadratwurzeln - lösen einfache Rechenaufgaben Heronverfahren im Bereich der reellen Zahlen 3.2. Reelle Zahlen - begründen die Notwendigkeit der Zahlbereichserweiterung von rationalen zu reellen Zahlen an Beispielen. - erläutern Grenzen der Beschreibung reeller Zahlen durch Dezimalbrüche - beschreiben Näherungsverfahren und wenden sie an. - nennen kennzeichnende Unterschiede zwischen rationalen und irrationalen Zahlen. Wie viele reelle Zahlen gibt es? : Z (Zahlen und Operationen), GM (Größen und Messen), RF (Raum und Form), F (Funktionaler Zusammenhang), DZ (Daten und Zufall) : A (Mathematisch argumentieren), PM (Probleme math. Lösen), MM (Math. Modellieren), MD (Math. Darstellungen verwenden), E (Mit Seite 4 von 8

5 3.3. Zusammenhang zwischen Wurzelziehen und Quadrieren - lösen einfache Rechenaufgaben im Bereich der reelle Zahlen an: Substituieren, Vorwärts- und Rückwärtsarbeiten 3.4. Rechenregeln für Quadratwurzeln und ihre Anwendung Zusätzlich: - beschreiben Sachverhalte durch Terme und 3.5. Umformen von Wurzeltermen - veranschaulichen und interpretieren Terme - erkennen und vergleichen Struktur von Termen - verwenden Terme mit Variablen und zur Ermittlung von Lösungen im mathematischen Modell (MM) - nutzen Terme und zur mathematischen Argumentation - modellieren Inner- und außermathematische Problemsituationen mit Hilfe von Termen und - formen Terme mit Hilfe der Rechengesetze um - wenden Rechengesetze für Quadratwurzeln exemplarisch an und begründen sie - nutzen Parametervariationen (PM) - nutzen Darstellungsformen wie Terme und zur Problemlösung (PM) - nutzen die Probe zur Überprüfung von Ergebnissen - stellen funktionale Zusammenhänge durch Tabellen, Grafen oder Terme dar, auch unter Verwendung des eingeführten, - interpretieren und nutzen solche Darstellungen (MD) 4. Satz des Pythargoras 4.1. Satz des Pythagoras 4.2. Berechnen von Streckenlängen Schwerpunkt: Konstruktionen, Berechnungen und Beweisen - ermitteln Längen durch Konstruktion maßstabsgetreuer Figuren durch Messung - berechnen und Interpretieren zusammengesetzte Größen - berechnen Streckenlängen mit Hilfe des Satzes von Pythagoras - wenden Satz des Pythagoras bei Konstruktionen, Berechnungen und Beweisen an - beschreiben und begründen Symmetrie, Kongruenz, Lagebeziehungen geometrischer Objekte, Schwerpunkt: Übergang vom zeichnerischen Lösungsverfahren zum algebraischen - beschaffen sich notwendige Informationen für mathematische Argumentationen und bewerten diese (A) - finden Begründungen durch Zurückführen auf Bekanntes, Einführen von Hilfsgrößen oder Hilfslinien (A) - bauen mehrschrittige Argumentationsketten auf und/oder analysieren diese (A) : Z (Zahlen und Operationen), GM (Größen und Messen), RF (Raum und Form), F (Funktionaler Zusammenhang), DZ (Daten und Zufall) : A (Mathematisch argumentieren), PM (Probleme math. Lösen), MM (Math. Modellieren), MD (Math. Darstellungen verwenden), E (Mit Seite 5 von 8

6 - nutzen diese Eigenschaften im Rahmen des Problemlösens zur Analyse von Sachzusammenhängen - erfassen inner- und außermathematische Problemstellungen und beschaffen die zu einer Problemlösung noch fehlenden Informationen (PM) an: Spezialisieren und Verallgemeinern, Zerlegen in Teilprobleme (PM) - wenden geometrische Konstruktionen zur Problemlösung an (PM) - interpretieren die im Modell gewonnenen Ergebnisse im Hinblick auf die Realsituation, - reflektieren die Annahmen und variieren diese gegebenenfalls (MM) - stellen geometrische Sachverhalte algebraisch dar und umgekehrt (MM) 4.3 Umkehrung des Satzes des Pythagoras an: Vorwärts- und Rückwärtsarbeiten (PM) 5. Parabeln Quadratische Funktionen und 5.1 Quadratfunktion Eigenschaften der Normalparabel 5.2 Quadratische Grafisches Lösungsverfahren Schwerpunkt: Zusammenhang von Funktionsterm und Graph - lösen quadratische in einfachen Fällen algebraisch - lösen in Sachzusammenhängen durch Probieren und grafisch unter Verwendung des - formulieren Fragen der Lösbarkeit von untersuchen sowie diesbezügliche Aussagen - nutzen Probe zur Kontrolle beim Gleichungslösen und beurteilen die Ergebnisse Schwerpunkt: Nutzen verschiedener Darstellungsformen - strukturieren, interpretieren, analysieren und bewerten Daten und Informationen (K) - erfassen und beschreiben Zuordnungen mit Variablen und Termen - nutzen den GTR zur Bestimmung von Ergebnissen - nutzen den eingeführten : Z (Zahlen und Operationen), GM (Größen und Messen), RF (Raum und Form), F (Funktionaler Zusammenhang), DZ (Daten und Zufall) : A (Mathematisch argumentieren), PM (Probleme math. Lösen), MM (Math. Modellieren), MD (Math. Darstellungen verwenden), E (Mit Seite 6 von 8 GTR

7 Taschenrechner zur Kontrolle - finden Begründungen durch Zurückführen auf Bekanntes, Einführen von Hilfsgrößen oder Hilfslinien (A) - beurteilen ihre Ergebnisse, vergleichen und bewerten Lösungswege und Problemlösestrategien (PM) 5.3 Verschieben der Normalparabel 5.4 Strecken und Spiegeln der Normalparabel 5.5 Strecken und Verschieben der Normalparabel - untersuchen Auswirkungen von Parametervariationen unter Verwendung des - beschreiben und begründen deuten die Parameter quadratischer Funktionen in der grafischen Darstellung - nutzen diese in Anwendungssituationen - bestimmen die Funktionsgleichung von quadratischen Funktionen aus dem Grafen - nutzen Parametervariation (PM) 5.6 Lösen quadratischer - lösen quadratische in einfachen Fällen algebraisch - stellen lineare und quadratische Funktionen durch Terme und dar - wechseln zwischen den Darstellungen Term, Gleichung, Tabelle, Graf - lösen in Sachzusammenhängen numerisch - formulieren Fragen der Lösbarkeit von - untersuchen diesbezügliche Aussagen - nutzen die Probe zur Kontrolle beim Gleichungslösen und zur Beurteilung der Ergebnisse - nutzen die Probe zur Überprüfung von Ergebnissen - wenden algebraische, numerische, grafische Verfahren zur Problemlösung an (PM) - nutzen Darstellungsformen wie Terme und zur Problemlösung (PM) - ziehen die Möglichkeit mehrerer Lösungen in Betracht und überprüfen diese (PM) - erläutern mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge unter Zuhilfenahme formaler Darstellungen (A) an: Spezialisieren und Verallgemeinern, Zerlegen in Teilprobleme, Substituieren, Vorwärts- und Rückwärtsarbeiten (PM) 5.7 Modellieren - planen Messungen in ihrer - nutzen Tabellen, Grafen, Terme : Z (Zahlen und Operationen), GM (Größen und Messen), RF (Raum und Form), F (Funktionaler Zusammenhang), DZ (Daten und Zufall) : A (Mathematisch argumentieren), PM (Probleme math. Lösen), MM (Math. Modellieren), MD (Math. Darstellungen verwenden), E (Mit Seite 7 von 8

8 Anwenden von quadratischen Umwelt, führen diese gezielt durch, entnehmen Maßangaben aus Quellenmaterial, führen Berechnungen durch und bewerten die Ergebnisse sowie den gewählten Weg - wenden die Eigenschaften der quadratischen Funktionen auch unter Verwendung des zur Lösung von Problemen an und bewerten die Lösungen - modellieren Sachsituationen durch quadratische Funktionen und zur Bearbeitung quadratische Zusammenhänge und - nutzen den eingeführten Taschenrechner beim Wechsel zwischen verschiedenen Darstellungsformen - stellen funktionale Zusammenhänge durch Tabellen, Grafen oder Terme dar, auch mit GTR, interpretieren und nutzen solche Darstellungen (M) - wenden Eigenschaften von Ortslinien zur Lösung von Sachproblemen an - verwenden Funktionen oder Regression zur Ermittlung von Lösungen (MM) - erkennen quadratische Zusammenhänge als Zuordnungen zwischen Zahlen und zwischen Größen in Tabellen, Grafen, Diagrammen und Sachtexten, beschreiben diese verbal und erläutern sie - identifizieren und klassifizieren quadratische Funktionen in Tabellen, Termen, und Grafen - nutzen quadratische Funktionen als Mittel zur Beschreibung quantitativer Zusammenhänge, auch unter Verwendung des - verwenden Terme mit Variablen und zur Ermittlung von Lösungen im mathematischen Modell (MM) - finden und bewerten mögliche Einflussfaktoren in Realsituationen (MM) an: Spezialisieren und Verallgemeinern, Zerlegen in Teilprobleme, Substituieren, Variieren von Bedingungen, Vorwärts- und Rückwärtsarbeiten (PM) - interpretieren die im Modell gewonnenen Ergebnisse im Hinblick auf die Realsituation, reflektieren die Annahmen und variieren diese gegebenenfalls (MM) 5.9 Optimierungspro bleme mit quadratischen Funktionen Siehe Regression - stellen Datenpaare grafisch dar - führen quadratische Regressionen unter Verwendung des durch und nutzen die Ergebnisse für Prognosen - verwenden Regressionen zur Ermittlung von Lösungen im mathematischen Modell (MM) fachübergreif ender Bezug: Physik : Z (Zahlen und Operationen), GM (Größen und Messen), RF (Raum und Form), F (Funktionaler Zusammenhang), DZ (Daten und Zufall) : A (Mathematisch argumentieren), PM (Probleme math. Lösen), MM (Math. Modellieren), MD (Math. Darstellungen verwenden), E (Mit Seite 8 von 8

Jahrgang: 8 Themenkreise 1/5. Operieren führen Rechnungen mit dem eingeführten Taschenrechner aus und bewerten die Ergebnisse

Jahrgang: 8 Themenkreise 1/5. Operieren führen Rechnungen mit dem eingeführten Taschenrechner aus und bewerten die Ergebnisse Terme und Auflösen einer Klammer Subtrahieren einer Klammer Ausklammern Binomische Formeln Faktorisieren Mischungsaufgaben mit Parametern Typ T 1 T 2 = 0 7 46 10 16 17 18 19 21 22 27 28 33 34 37 38 40

Mehr

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen Quadratwurzel Reelle Zahlen Quadratwurzeln Reelle Zahlen Zusammenhang zwischen Wurzelziehen und Quadrieren Rechenregeln Umformungen (Bd. Kl. 9) 7 46 8 18 19 20 21 24 25 29 30 34 + 2 mit Excel Beschreiben

Mehr

Längen, Flächen, Rauminhalte

Längen, Flächen, Rauminhalte Schulinterner Arbeitsplan Mathematik Klasse 7 & 8 Kompetenzen: s.u. Der Kompetenzbereich Kommunikation wird abhängig von der gewählten Methode bei allen Themen abgedeckt. KLASSE 7 Thema Prozessbezogene

Mehr

Stoffverteilungsplan Mathematik Klassen 7 auf der Grundlage des Kerncurriculums

Stoffverteilungsplan Mathematik Klassen 7 auf der Grundlage des Kerncurriculums Stoffverteilungsplan Mathematik Klassen 7 auf der Grundlage des Kerncurriculums Zeitraum Lambacher Schweizer Mathematik für Gymnasien 7 Kapitel I Terme, Gleichungen, Formeln 1 Terme mit einer Variablen

Mehr

Schulinternes Curriculum Mathematik. Jahrgang 7. Themenfolge

Schulinternes Curriculum Mathematik. Jahrgang 7. Themenfolge Schulinternes Curriculum Mathematik Jahrgang 7 Gültig ab: 2016/2017 Erläuterungen: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche P1 mathematisch argumentieren I1 Zahlen und Operationen

Mehr

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016 Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 9 August 2016 Anzahl der schriftlichen Arbeiten: 4, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe Anlage,

Mehr

Gymnasium OHZ Schul-KC Mathematik Jahrgang 7 eingeführtes Schulbuch: Lambacher Schweizer 7

Gymnasium OHZ Schul-KC Mathematik Jahrgang 7 eingeführtes Schulbuch: Lambacher Schweizer 7 8-10 Wochen stellen Zuordnungen und funktionale Zusammenhänge durch Tabellen, Graphen oder Terme dar, auch unter Verwendung digitaler Mathematikwerkzeuge, interpretieren und nutzen solche Darstellungen.

Mehr

Mathematik - Klasse 8 -

Mathematik - Klasse 8 - Schuleigener Lehrplan Mathematik - Klasse 8 - 1. Terme und Gleichungen mit Klammern 1.1 Auflösen einer Klammer 1.2 Minuszeichen vor einer Klammer Subtrahieren einer Klammer 1.3 Ausklammern 1.4 Auflösen

Mehr

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln.

Funktionen Lineare Zuordnungen mit eigenen Worten in Wertetabellen, Graphen und in Termen darstellen und zwischen diesen Darstellungen wechseln. Kernlernplan Jahrgangsstufe 8 8 Lineare Funktionen und lineare Gleichungen 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte Funktionen Interpretieren

Mehr

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 8 Stand: , Seite 1 von 8

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 8 Stand: , Seite 1 von 8 Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 8 Stand: 17.02.2016, Seite 1 von 8 Unterrichtswerk: Elemente der Mathematik, Niedersachsen, 8. Schuljahr, Schroedel,

Mehr

Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk

Altes Gymnasium Oldenburg ab Schuljahr 2009/ 10. Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Schulinternes Curriculum Mathematik Jahrgang: 10 Lehrwerk: Elemente der Mathematik Hilfsmittel: ClassPad300, Das große Tafelwerk Legende: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche

Mehr

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 7 Februar 2016

Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 7 Februar 2016 Albert-Einstein-Gymnasium, Arbeitsplan Mathematik für den Jahrgang 7 Februar 2016 Anzahl der schriftlichen Arbeiten: 5, Gewichtung der schriftlichen Leistungen 50%-60% Nachweis der Durchführung: siehe

Mehr

KGS-Schneverdingen Schulinterner Lehrplan Mathematik Stoffverteilungsplan Klasse Zuordnungen

KGS-Schneverdingen Schulinterner Lehrplan Mathematik Stoffverteilungsplan Klasse Zuordnungen Stoffverteilungsplan Klasse 7 Schulbuch: Elemente der Mathematik Die Kapitelangaben sind dem Lehrbuch entnommen 1. Zuordnungen Lernbereich Proportionale und antiproportionale Zusammenhänge Ausgehend von

Mehr

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN

Grundlage ist das Lehrbuch Fundamente der Mathematik, Cornelsen Verlag, ISBN Schulinternes Curriculum der Klasse 8 am Franz-Stock-Gymnasium (vorläufige Version, Stand: 20.08.16) Grundlage ist das Lehrbuch, Cornelsen Verlag, ISBN 978-3-06-040323-3 ca. 6 Wochen Kapitel I: Terme Terme

Mehr

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen Neue Wege Klasse 8 Schulcurriculum EGW Inhalt Neue Wege 8 prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Kapitel 1 Die Sprache der Algebra Terme und Gleichungen 1.1 Rechnen mit Termen Summen und

Mehr

Seite 1 von 5. Schulinternes Curriculum Mathematik. Jahrgang 6

Seite 1 von 5. Schulinternes Curriculum Mathematik. Jahrgang 6 Seite 1 von 5 Schulinternes Curriculum Mathematik Jahrgang 6 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene Kompetenzbereiche inhaltsbezogene Kompetenzbereiche P1 mathematisch argumentieren I1 Zahlen

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

Niedersächsisches Internatsgymnasium Bad Bederkesa - Mathematik-Arbeitsplan der Jahrgangsstufe

Niedersächsisches Internatsgymnasium Bad Bederkesa - Mathematik-Arbeitsplan der Jahrgangsstufe Niedersächsisches Internatsgymnasium Bad Bederkesa - Mathematik-Arbeitsplan der Jahrgangsstufe 7 2015-2016 Prozess-bezogene Die nachfolgenden prozessbezogenen sind nicht an bestimmte Inhalte geknüpft und

Mehr

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN

Stoffverteilungsplan Elemente der Mathematik 3 Baden-Württemberg ISBN Bleib fit im Umgang mit Bruchzahlen Zahl Algorithmus Klasse 6 1. Prozent- und Zinsrechnung 1.1 Absoluter und relativer Vergleich Anteile in Prozent 1.2 Grundaufgaben der Prozentrechnung Im Blickpunkt:

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8

Stoffverteilungsplan Mathematik im Jahrgang 8 Lambacher Schweizer 8 Mathematik Jahrgangsstufe 8 (Lambacher Schweitzer 8) Zeitraum prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Informationen aus authentischen Texten Überprüfen von Ergebnissen und Ordnen Rationale

Mehr

Inhaltsbezogene Kompetenzen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen

Inhaltsbezogene Kompetenzen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen Arithmetik/Algebra mit Zahlen und Symbolen umgehen Rechnen mit rationalen Zahlen Ordnen ordnen und vergleichen rationale Zahlen Operieren lösen lineare Gleichungen nutzen lineare Gleichungssysteme mit

Mehr

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 7

Erzbischöfliche Liebfrauenschule Köln. Schulinternes Curriculum Fach: Mathematik Jg. 7 Erzbischöfliche Liebfrauenschule Köln Schulinternes Curriculum Fach: Mathematik Jg. 7 Reihen -folge Buchabschnit t Themen Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen 1 1.1 1.9 Zuordnungen -

Mehr

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: , Seite 1 von 7

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: , Seite 1 von 7 Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 10 Stand: 25.11.2014, Seite 1 von 7 Unterrichtswerk: Elemente der Mathematik, Niedersachsen, 10. Schuljahr, Schroedel,

Mehr

Mathematik 8 Version 09/10

Mathematik 8 Version 09/10 Mathematik 8 Version 09/10 Informationen aus authentischen Texten mehrschrittige Argumentationen Spezialfälle finden Verallgemeinern Untersuchung von Zahlen und Figuren Überprüfen von Ergebnissen und Lösungswegen

Mehr

KLP Klasse 7. Kap. I. Prozentrechnung. Arg/Komm Problemlösen. Vergleichen und bewerten Darstellungen Nutzen verschiedene Darstellungsformen

KLP Klasse 7. Kap. I. Prozentrechnung. Arg/Komm Problemlösen. Vergleichen und bewerten Darstellungen Nutzen verschiedene Darstellungsformen Kap. I Arithmetik Prozentrechnung Umwandlung von Brüchen Dezimalbrüchen Prozentzahlen Vergleichen und bewerten Darstellungen Nutzen verschiedene Darstellungsformen Berechnen von Prozentwert Prozentsatz

Mehr

Stoffverteilungsplan Klasse 9

Stoffverteilungsplan Klasse 9 1. Quadratwurzeln Lernbereich Entdeckungen an rechtwinkligen Dreiecken und Ähnlichkeit Ausgehend von der Berechnung von Seitenlängen von Quadraten wird die Quadratwurzel eingeführt, der naive Umgang mit

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 8 8 Kapitel I Reelle Zahlen 1 Von bekannten und neuen Zahlen 2 Wurzeln und Streckenlängen 3 Der geschickte Umgang mit Wurzeln

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Thema I: Lineare und lineare Gleichungen 1. Lineare 2. Aufstellen von linearen Funktionsgleichungen 3. Nullstellen und Schnittpunkte 1. Klassenarbeit Thema II: Reelle 1. Von bekannten und neuen 2. Wurzeln

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Die Umsetzung der Lehrplaninhalte in 7 und 8 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Erwartete prozessbezogene am Ende der 8. Klasse: Argumentieren/Kommunizieren

Mehr

Wirtschaftsschule: Mathematik 10 (zweistufige Wirtschaftsschule)

Wirtschaftsschule: Mathematik 10 (zweistufige Wirtschaftsschule) Fachlehrpläne Wirtschaftsschule: Mathematik 10 (zweistufige Wirtschaftsschule) M10 Lernbereich 1: Potenzen schreiben Produkte bestehend aus gleichen Faktoren als Potenz, um große und kleine Zahlen kürzer

Mehr

Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium)

Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium) Kernlehrplan Mathematik in Klasse 9 am Städtischen Gymnasium Gütersloh (für das 8-jährige Gymnasium) Zeitraum Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen Lehrbuchkapitel Elemente der Mathematik

Mehr

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5

Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 Jgst. 5 Fach Mathematik Lehrwerk: Elemente der Mathematik 5 3 pro (maximal 45 Minuten) Rechnen mit natürlichen Zahlen; Darstellung natürlicher Zahlen und einfacher Bruchteile; Rechnen mit Größen Maßstabsverhältnisse;

Mehr

Unterrichtsentwicklungstag 2009 MATHEMATIK

Unterrichtsentwicklungstag 2009 MATHEMATIK Unterrichtsentwicklungstag 2009 MATHEMATIK Jahrgang 5 Lerninhalte Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Material / Zusatz 1. Kreis und Winkel ebene Strukturen mit den Begriffen Punkt,

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 7 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Die Umsetzung der Lehrplaninhalte in 7 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen Schulinternes Curriculum Erwartete prozessbezogene am Ende der 8. Klasse: Argumentieren/Kommunizieren

Mehr

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 8

Schulinterne Lehrpläne der Städtischen Realschule Waltrop. im Fach: MATHEMATIK Klasse 8 Klettbuch 978-3-12-740481-4 Arithmetik/Algebra 1 Rechnen mit Termen Verbalisieren Reflektieren Erläutern die Arbeitsschritte bei einfachen mathematischen Verfahren (Konstruktionen, Rechenverfahren, Algorithmen)

Mehr

Schulinterner Stoffverteilungsplan Mathematik. auf der Basis des Schulbuchs EdM (Schroedel) Klasse 9 (G9)

Schulinterner Stoffverteilungsplan Mathematik. auf der Basis des Schulbuchs EdM (Schroedel) Klasse 9 (G9) Seite 1 Gymnasium Neu Wulmstorf r Stoffverteilungsplan Mathematik auf der Basis des Schulbuchs EdM (Schroedel) Klasse 9 (G9) (Fachkonferenz-Beschluss vom 19.09.2016) Vorbemerkung: Da der Kompetenzerwerb

Mehr

Schulinternes Curriculum Mathematik 8

Schulinternes Curriculum Mathematik 8 Die dargestellte Reihenfolge der Unterrichtsinhalte ist eine von mehreren sinnvollen Möglichkeiten und daher nicht bindend. Kapitel I Lineare Funktionen 1 Lineare Funktionen 2 Aufstellen von linearen Funktionsgleichungen

Mehr

Schulinterner Lehrplan Mathematik G8 Klasse 8

Schulinterner Lehrplan Mathematik G8 Klasse 8 Schulinterner Lehrplan Heinrich-Böll-Gymnasium 1/7 Jg 8, Stand: 1.11.2011 Schulinterner Lehrplan Mathematik G8 Klasse 8 Verbindliche Inhalte: Ergänzungen aus Kl. 7:Stochastik Wahrscheinlichkeit im ein-und

Mehr

Band 7. Realisieren: einem mathematischen Modell (Tabelle, Graph, Gleichung) eine passende Realsituation

Band 7. Realisieren: einem mathematischen Modell (Tabelle, Graph, Gleichung) eine passende Realsituation MATHEMATIK NEUE WEGE 7/8 Vergleich mit dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) in Nordrhein-Westfalen Die folgende Übersicht zeigt, wie Mathematik Neue Wege zur Umsetzung des Kernlehrplans

Mehr

Kapitel I Reelle Zahlen. Arithmetik / Algebra

Kapitel I Reelle Zahlen. Arithmetik / Algebra Themen/Inhalte inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Aufgaben (Minimum) integrierende Wiederholung Zeit Kapitel I Reelle Zahlen Erkundungen 1. Von bekannten und neuen Zahlen 2. Wurzeln

Mehr

Der Kompetenzbereich Kommunikation wird abhängig von der gewählten Methode bei allen Themen abgedeckt.

Der Kompetenzbereich Kommunikation wird abhängig von der gewählten Methode bei allen Themen abgedeckt. Schulinterner Arbeitsplan Mathematik Klasse 9 & 10 Kompetenzen: s.u. Der Kompetenzbereich Kommunikation wird abhängig von der gewählten Methode bei allen Themen abgedeckt. KLASSE 9 Ähnlichkeit MA 1: erläutern

Mehr

Die Nummern vor den jeweiligen Themen beziehen sich auf das eingeführte Mathematikbuch (Neue Wege, Schrödel).

Die Nummern vor den jeweiligen Themen beziehen sich auf das eingeführte Mathematikbuch (Neue Wege, Schrödel). Kepler-Gymnasium Freudenstadt Mathematikcurriculum Klasse 7/8 Legende: Kerncurriculum: normale Darstellung Schulcurriculum: gelb hinterlegt Wahlberreich: blaugrau unterlegt und (geklammert) Die blauen

Mehr

antiproportionale Zuordnungen mit Anwendungen

antiproportionale Zuordnungen mit Anwendungen Chemie: Graphen zu -Versuchsreihen Thema: Proportionale und antiproportionale Zuordnungen mit Anwendungen Umfang: 12 Wochen Jahrgangsstufe 7 Proportionale und antiproportionale Zuordnungen Darstellen Zuordnungen

Mehr

Stoffverteilungsplan Mathematik im Jahrgang 7 Lambacher Schweizer 7

Stoffverteilungsplan Mathematik im Jahrgang 7 Lambacher Schweizer 7 Argumentieren / Kommunizieren Lesen Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle, Graph) ziehen, strukturieren und bewerten. Verbalisieren Arbeitsschritte bei mathematischen

Mehr

Stoffverteilungsplan Mathematik Klasse 8

Stoffverteilungsplan Mathematik Klasse 8 Kapitel IV (1.Teil): Lineare Funktionen Erkundungen (fakultativ) Steigungen überall 1. Lineare Funktionen 2. Aufstellen von linearen Funktionsgleichungen Dieser Teil des Kapitels IV sollte zu Beginn des

Mehr

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 7 Stand: , Seite 1 von 8

Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 7 Stand: , Seite 1 von 8 Mariengymnasium Jever Schuleigenes Fachcurriculum / Arbeitsplan Mathematik Jahrgang 7 Stand: 30.10.2015, Seite 1 von 8 Unterrichtswerk: Elemente der Mathematik, Niedersachsen, 7. Schuljahr, Schroedel,

Mehr

Synopse zum Kernlehrplan für die Gesamtschule/Sekundarschule/Realschule

Synopse zum Kernlehrplan für die Gesamtschule/Sekundarschule/Realschule Synopse zum Kernlehrplan für die Gesamtschule/Sekundarschule/Realschule Schnittpunkt Mathematik Band 8 978-3-12-742485-0 x x G-Kurs E-Kurs Zeitraum Inhaltsverzeichnis Rahmenlehrplan für die Sekundarstufe

Mehr

Stoffverteilungsplan Mathematik 7 Lehrwerk: Lambacher Schweizer 7

Stoffverteilungsplan Mathematik 7 Lehrwerk: Lambacher Schweizer 7 Prozente und Zinsen Arithmetik/Algebra Ordnen: Rationale Zahlen ordnen, vergleichen Operieren: Grundrechenarten für rationale Zahlen ausführen Prozente Vergleiche werden einfacher Prozentsatz Prozentwert

Mehr

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium

Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Mathematik schulinternes Curriculum Reinoldus- und Schiller-Gymnasium Klasse 7 7 Kapitel I Prozente und Zinsen 1 Prozente Vergleiche werden einfacher 2 Prozentsatz Prozentwert Grundwert 3 Grundaufgaben

Mehr

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012)

KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Lehrbuch: Elemente der Mathematik 10 KGS Schneverdingen Gymnasialzweig Mathematik Klasse 10 Stoffverteilungsplan (Stand: Juli 2012) Thema Inhalte Kompetenzen Zeit in Stunden Buchseiten Bemerkungen Modellieren

Mehr

Mathematik 7 Version 09/10

Mathematik 7 Version 09/10 Mathematik 7 Version 09/10 Argumentieren / Kommunizieren Lesen Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle, Graph) ziehen, strukturieren und bewerten. Verbalisieren

Mehr

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5

Seite 1 von 8. Schulinternes Curriculum Mathematik. Jahrgang 5 Seite 1 von 8 Schulinternes Curriculum Mathematik Jahrgang 5 Gültig ab: 2011/2012 Erläuterungen: prozessbezogene bereiche inhaltsbezogene bereiche P1 mathematisch argumentieren I1 Zahlen und Operationen

Mehr

Mathematik Schuleigener Arbeitsplan Klasse 6 (Stand: Februar 2016)

Mathematik Schuleigener Arbeitsplan Klasse 6 (Stand: Februar 2016) erläutern einfache mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen. begründen durch Ausrechnen. vergleichen verschiedene Lösungswege,

Mehr

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung

GES Espenstraße Schulinterner Lehrplan Mathematik Stand Vorbemerkung Vorbemerkung Die im Folgenden nach Jahrgängen sortierten Inhalte, inhaltsbezogenen Kompetenzen (IK) und prozessbezogenen Kompetenzen (PK) sind für alle im Fach Mathematik unterrichtenden Lehrer verbindlich.

Mehr

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 9 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen

Die Umsetzung der Lehrplaninhalte in Fokus Mathematik 9 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in Nordrhein-Westfalen (Schulbuch: ) Die Umsetzung der Lehrplaninhalte in 9 (Gymnasium) auf der Basis des Kerncurriculums Mathematik in NordrheinWestfalen Schulinternes Curriculum Erwartete prozessbezogene am Ende der 9. Klasse:

Mehr

Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr.

Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr. Lerninhalte und Kompetenzerwartungen in der Klasse 8 mit Bezug zum eingeführten Lehrwerk: Mathematik Neue Wege 8 (Schroedel-Verlag Bestell.-Nr. 85478) Viele der im Kernlehrplan aufgeführten Kompetenzbereiche

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 5 Lehrwerk: Fundamente der Mathematik 5, Schroedel-Verlag, ISBN 978-3-06-040348-6 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Lerninhalte 9 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Thema 1: Quadratische Funktionen und quadratische Gleichungen 1 Wiederholen Aufstellen von Funktionsgleichungen 2 Scheitelpunktsbestimmung

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 7 Lehrwerk: Fundamente der Mathematik 7, Schroedel-Verlag, ISBN 978-3-06-041324-9 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

Kern- und Schulcurriculum Mathematik Klasse 7/8. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 7/8. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 7/8 Stand Schuljahr 2009/10 Klasse 7 UE 1 Prozent- und Zinsrechnung Anteile in Prozent Grundaufgaben der Prozentrechnung Promille Prozentuale Änderungen Zinsen

Mehr

Schulinternes Curriculum Mathematik 9 des Anne-Frank-Gymnasiums Werne auf der Grundlage

Schulinternes Curriculum Mathematik 9 des Anne-Frank-Gymnasiums Werne auf der Grundlage Verbalisieren Kommunizieren Erläutern mathematischer Zusammenhänge und Einsichten eigenen Worten und Präzisieren Überprüfung und Bewertung von Problembearbeitungen Vergleichen und Bewerten von Lösungswegen

Mehr

möglicher Einsatz Neuer Medien Quadratische Funktionen und quadratische Gleichungen

möglicher Einsatz Neuer Medien Quadratische Funktionen und quadratische Gleichungen Quadratische und quadratische Gleichungen Arithmetik / Algebra Lösen einfacher und allgemeiner quadratischer Gleichungen (z.b. durch Faktorisieren oder pq-formel) Darstellung quadratischer mit eigenen

Mehr

Stoffverteilungsplan Mathematik Klasse 7

Stoffverteilungsplan Mathematik Klasse 7 Kapitel I Prozente und Zinsen Schnäppchen gesucht Prozentgummi Prozente im Straßenverkehr Mit Prozenten zoomen 1 Prozente Vergleiche werden einfacher 2 Prozentsatz Prozentwert Grundwert 3 Grundaufgaben

Mehr

Fachschaft Mathematik. Schuleigenes Curriculum für die Klassen 7 und 8

Fachschaft Mathematik. Schuleigenes Curriculum für die Klassen 7 und 8 Fachschaft Schuleigenes Curriculum für die 01. Januar 2011 Bildungsplan für die Klassen 7 u. 8 Stufenspezifische Hinweise (Klasse 7 und 8) Kurzform: soll als nutzbringendes und kreatives Betätigungsfeld

Mehr

Klasse 8. Thema Inhalte Kommentare Flächeninhalte Flächeninhalte von Dreiecken. Basteln (Körper / Netze) Räumliches Begreifen

Klasse 8. Thema Inhalte Kommentare Flächeninhalte Flächeninhalte von Dreiecken. Basteln (Körper / Netze) Räumliches Begreifen Klasse 8 1. Berechnungen an Vielecken und Prismen Flächeninhalte Flächeninhalte von Dreiecken Nutzung der MUED-Klickies (Sammlung) Flächeninhalte von Parallelogramm und Trapez Vielecke auf Dreiecke und

Mehr

Schulinternes Curriculum der Jahrgangsstufe 7 im Fach Mathematik

Schulinternes Curriculum der Jahrgangsstufe 7 im Fach Mathematik Eingesetzte Lehrmittel: Mathematik, Neue Wege, Band 7 Arithmetik/ Algebra mit Zahlen und Symbolen umgehen Ordnen Operieren ordnen und vergleichen rationale Zahlen führen Grundrechenarten für rationale

Mehr

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

Abfolge in 7 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen 1. Dreisatz Tabelle und Graph einer Zuordnung Zueinander proportionale Größen proportionale Dreisatz bei proportionalen Zueinander antiproportionale Größen antiproportionale Dreisatz bei antiproportionalen

Mehr

inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Methoden

inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Methoden S t o f f v e r t e i l u n g s p l a n K l a s s e 5 G y m n a s i u m Nr. 1 2 Natürliche Zahlen 2.1 Große Zahlen - Stellentafel 2.4 Anordnung der natürlichen Zahlen - Zahlenstrahl 2.5 Runden von Zahlen

Mehr

Umsetzung des Kerncurriculums G9 Lehrwerk: Lambacher Schweizer

Umsetzung des Kerncurriculums G9 Lehrwerk: Lambacher Schweizer Die des LS 8 sind in der angegebenen Reihenfolge der Lernbereiche zu bearbeiten. 1. Lernbereich Terme und Gleichungen Teil 2 6 Wochen I: Terme und Gleichungen Unterkapitel: 3, die anderen sollten wiederholt

Mehr

Felix-Klein-Gymnasium Göttingen

Felix-Klein-Gymnasium Göttingen Felix-Klein-Gymnasium Göttingen Fachgruppe Mathematik Ausarbeitungen zum Kerncurriculum Mathematik Doppeljahrgang Klasse 7 und Klasse 8 Lehrbuch: Neue Wege (Schroedel-Verlag) September 008 Arbeitsplan

Mehr

Inhaltsfelder Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen

Inhaltsfelder Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Die dem Buch beigelegte CD-Rom kann auf den eigenen Rechner gespielt werden, muss jedoch am Ende des Schuljahres wieder mit dem Buch abgegeben werden. Im Laufe des Schuljahres wird ein Taschenrechner benötigt,

Mehr

UNTERRICHTSVORHABEN 1

UNTERRICHTSVORHABEN 1 UNTERRICHTSVORHABEN 1 Thema: Arithmetik/Algebra mit Zahlen und Symbolen umgehen ggf. fächerverbindende Kooperation mit Umfang: 6 Wochen Jahrgangsstufe 7 Rechnen mit rationalen Zahlen Ordnen ordnen und

Mehr

Schulinternes Curriculum Mathematik 7 auf der Grundlage des Kernlehrplans 2007

Schulinternes Curriculum Mathematik 7 auf der Grundlage des Kernlehrplans 2007 Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung inhaltsbezogener (fachmathematischer) und prozessbezogener Kompetenzen erreicht

Mehr

Schulinterner Lehrplan für das Fach Mathematik an der Bertha-von-Suttner Gesamtschule in Dormagen Nievenheim (Stand 8/2011) Jahrgang 9

Schulinterner Lehrplan für das Fach Mathematik an der Bertha-von-Suttner Gesamtschule in Dormagen Nievenheim (Stand 8/2011) Jahrgang 9 Schulinterner Lehrplan für das Fach Mathematik an der Bertha-von-Suttner Gesamtschule in Dormagen Nievenheim (Stand 8/2011) Jahrgang 9 Erweiterungskurs Die im Lehrplan angeführten nzahlen beziehen sich

Mehr

7 8 9 EF Q1 Q2 Seite 1

7 8 9 EF Q1 Q2 Seite 1 Argumentieren / Kommunizieren Lesen Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle, Graph) ziehen, strukturieren und bewerten. Verbalisieren Arbeitsschritte bei mathematischen

Mehr

Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 6

Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 6 Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 6 Teilkompetenzen, die in allen Inhaltsbereichen auftauchen und von gleich hoher Bedeutung sind Die Schüler - stellen Fragen und äußern begründete

Mehr

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend.

Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 6 Lehrwerk: Fundamente der Mathematik 6, Schroedel-Verlag, ISBN 978-3-06-040349-3 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Lerninhalte 7 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Thema 1: Prozente und Zinsen 1 Prozente Vergleiche werden einfacher 2 Prozentsatz Prozentwert Grundwert 3 Grundaufgaben der Prozentrechnung

Mehr

Schulinternes Curriculum Mathematik

Schulinternes Curriculum Mathematik Schulinternes Curriculum Mathematik Schulinternes Curriculum Mathematik am Scharnhorstgymnasium Hildesheim für die Klassenstufen 5 bis 10 Scharnhorstgymnasium Hildesheim Schulinternes Curriculum Mathematik

Mehr

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen.

Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen Wertetabellen zur Bearbeitung linearer Zusammenhänge nutzen. MAT 07-01 Zuordnungen 14 DS Leitidee: Funktionaler Zusammenhang Thema im Buch: Unterwegs Werte aus Schaubildern ablesen und ihre Bedeutung erklären. entscheiden und begründen, ob es sich um eine nicht

Mehr

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke. MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze

Mehr

SIEGTAL-GYMNASIUM SCHULINTERNER LEHRPLAN MATHEMATIK (G8), JAHRGANG 7

SIEGTAL-GYMNASIUM SCHULINTERNER LEHRPLAN MATHEMATIK (G8), JAHRGANG 7 Themen/Inhalte inhaltsbezogene Kompetenzen prozessbezogene Kompetenzen Kapitel I Prozente und Zinsen Erkundungen Schnäppchen gesucht Prozentgummi Prozente im Straßenverkehr Mit Prozenten zoomen 1. Prozente

Mehr

Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege

Erläutern von Arbeitsschritten bei mathematischen. Vergleichen und Bewerten verschiedener Lösungswege Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen / Schwerpunkte Arithmetik/Algebra mit Zahlen und Symbolen umgehen Termumformungen Lineare Gleichungen mit zwei Variablen - Systeme linearer Gleichungen

Mehr

Inhaltsverzeichnis. Checklisten zur Seite Teste dich! Kopiervorlagen - Lösungen finden Si. auf der CD-ROM. Lineare Gleichungssysteme

Inhaltsverzeichnis. Checklisten zur Seite Teste dich! Kopiervorlagen - Lösungen finden Si. auf der CD-ROM. Lineare Gleichungssysteme Inhaltsverzeichnis Vorschlag für einen Stoffverteilungsplan 4-6 Hinweise zu den Kapiteln des Schülerbuches 7-11 Checklisten 12-18 Kopiervorlagen 19-136 Inklusionsmaterial 137-168 Checklisten zur Seite

Mehr

Schuleigenes Curriculum für das Fach Mathematik Klassenstufen 5 bis 10

Schuleigenes Curriculum für das Fach Mathematik Klassenstufen 5 bis 10 Gymnasium Athenaeum Stade Schuleigenes Curriculum für das Fach Mathematik Klassenstufen 5 bis 10 Das Curriculum basiert auf dem Kerncurriculum für das Gymnasium, herausgegeben vom Niedersächsichen Kultusministerium,

Mehr

Stoffverteilungsplan Mathematik 7 auf der Grundlage des neuen G8 Kernlehrplans 2006 Lambacher Schweizer 7 Klettbuch 978-3-12-734471-4

Stoffverteilungsplan Mathematik 7 auf der Grundlage des neuen G8 Kernlehrplans 2006 Lambacher Schweizer 7 Klettbuch 978-3-12-734471-4 (Vorschlag vom 24.05.2011 für den internen Gebrauch von Abr, Net,Bra,Deu,Mue) Argumentieren / Kommunizieren Lesen Informationen aus einfachen mathematikhaltigen Darstellungen (Text, Bild, Tabelle, Graph)

Mehr

Neue Wege Klasse 7 Schulcurriculum EGW

Neue Wege Klasse 7 Schulcurriculum EGW Neue Wege Klasse 7 Schulcurriculum EGW Reihenfolgen Kapitel 4,5 zu Beginn des Schuljahres. Weitere Reihenfolge der Kapitel wird von den Fachlehrern im Jahrgang 7 festgelegt. Inhalt Neue Wege 7 Kapitel

Mehr

Schulinterner Lehrplan Mathematik Jahrgangsstufe 10

Schulinterner Lehrplan Mathematik Jahrgangsstufe 10 Themenbereich: Körperberechnungen Buch: Mathe heute 10 Seiten: 96-126 Zeitrahmen: 5 Wochen - Wiederholung der Körper Erfassen Würfel, Quader, Zylinder - Wiederholung des Satzes des Geometrie Konstruieren

Mehr

Mathematik Schuleigener Arbeitsplan Klasse 8 (Stand: Februar 2016)

Mathematik Schuleigener Arbeitsplan Klasse 8 (Stand: Februar 2016) przessbezgene Kmpetenzen inhaltsbezgene Kmpetenzen Lernbereich / Kern / Schulbuch Bemerkungen Prbleme mathematisch lösen ziehen mehrere Lösungsmöglichkeiten in Betracht und Überprüfen sie. nutzen Darstellungsfrmen

Mehr

G8 Curriculum Mathematik Klasse 7

G8 Curriculum Mathematik Klasse 7 G8 Curriculum Mathematik Klasse 7 1. Lerneinheit: Prozent- und Zinsrechnung (20 Stunden) - mit Prozentangaben in vielfältigen und auch komplexen Situationen sicher umgehen - Prozentsatz, Prozentwert, Grundwert

Mehr

Stoffverteilungsplan Mathematik Klasse 9

Stoffverteilungsplan Mathematik Klasse 9 Kapitel I Quadratische Funktionen und quadratische Gleichungen 1 Wiederholen Aufstellen von Funktionsgleichungen 2 Scheitelpunktbestimmung quadratische Ergänzung 3 Lösen einfacher quadratischer Gleichungen

Mehr

Mathematik Schuleigener Arbeitsplan Klasse 5 (Stand: Februar 2016)

Mathematik Schuleigener Arbeitsplan Klasse 5 (Stand: Februar 2016) stellen Fragen, äußern Vermutungen und bewerten erläutern mathematische Sachverhalte, Begriffe, Regeln, Verfahren und Zusammenhänge mit eigenen Worten und geeigneten Fachbegriffen. nutzen verschiedene

Mehr

Jahrgangsstufe Überall Terme - Terme mit Variablen aufstellen, berechnen und umformen (24 U.-Std.)

Jahrgangsstufe Überall Terme - Terme mit Variablen aufstellen, berechnen und umformen (24 U.-Std.) Jahrgangsstufe 8 8.1 Überall Terme - Terme mit Variablen aufstellen, berechnen und umformen (24 U.-Std.) stellen Zuordnungen mit eigenen Worten, in Wertetabellen [ ] und in Termen dar und wechseln zwischen

Mehr

Materialien/ Anregungen. Jahrgangsstufe 9: Thema Bezug zum Lehrbuch Ähnlichkeit Lernfeld: Gleiche Form andere Größe (Kapitel 1)

Materialien/ Anregungen. Jahrgangsstufe 9: Thema Bezug zum Lehrbuch Ähnlichkeit Lernfeld: Gleiche Form andere Größe (Kapitel 1) HARDTBERG GYMNASIUM DER STADT BONN Stand: Oktober 2014 Schulinternes Curriculum Mathematik Das schulinterne Curriculum folgt dem Kernlehrplan für das Gymnasium Sekundarstufe I (G8) in Nordrhein-Westfalen

Mehr

Stoffverteilungsplan Mathematik 7 und 8 auf der Grundlage des Kernlehrplans

Stoffverteilungsplan Mathematik 7 und 8 auf der Grundlage des Kernlehrplans Die Kernlehrpläne betonen, dass eine umfassende mathematische Grundbildung im Mathematikunterricht erst durch die Vernetzung r (fachmathematischer) und r Kompetenzen erreicht werden kann. Entsprechend

Mehr

Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2016 / 2017 (G9)

Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2016 / 2017 (G9) Kaiserin Auguste Viktoria Gymnasium Schuleigener Arbeitsplan Mathematik 2016 / 2017 (G9) Die Reihenfolge der Themen ist verbindlich, um Transparenz und Vergleichbarkeit zu sichern. Die Länge der Einheiten

Mehr

Jahrgangsstufe Klasse 8 Fach: Mathematik Stand 09/2011

Jahrgangsstufe Klasse 8 Fach: Mathematik Stand 09/2011 Terme und Gleichungen Vereinfachen von Termen mit mindestens einer Variable, Eigenschaften und Rechengesetze (Klammerregeln, Multiplikation von Summen) Binomische Formeln als Sonderfall der Multiplikation

Mehr

Städtisches Willibrord-Gymnasium Emmerich am Rhein SCHULINTERNER LEHRPLAN SEK. I ORIENTIERUNG AM LEHRWERK NEUE WEGE SEKUNDARSTUFE I UND II

Städtisches Willibrord-Gymnasium Emmerich am Rhein SCHULINTERNER LEHRPLAN SEK. I ORIENTIERUNG AM LEHRWERK NEUE WEGE SEKUNDARSTUFE I UND II Städtisches Willibrord-Gymnasium Emmerich am Rhein SEKUNDARSTUFE I UND II SCHULINTERNER LEHRPLAN SEK. I ORIENTIERUNG AM LEHRWERK NEUE WEGE Prozessbezogene Kompetenzen am Ende des Schulhalbjahres 5.1 Zahlen

Mehr

Vorläufiger schuleigener Lehrplan für das Fach Mathematik Jahrgang 7 Stand Lehrbuch: Mathematik heute 7

Vorläufiger schuleigener Lehrplan für das Fach Mathematik Jahrgang 7 Stand Lehrbuch: Mathematik heute 7 Zuordnungen - Zuordnungen in Tabellen und Graphen - Proportionale Zuordnungen - Antiproportionale Zuordnungen - Schätzen mit proportionalen und antiproportionalen Zuordnungen - Zuordnungen und Tabellenkalkulation

Mehr