4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.

Größe: px
Ab Seite anzeigen:

Download "4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln."

Transkript

1 4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst klein sein Statisches perfektes Hashing Sei U = {0, 1,..., p 1}, p prim, das Universum, n N die Größe des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln. Eine Hashfunktion h : U {0, 1,..., n 1} partitioniert S in Buckets B i = {x S; h(x) = i}, für i = 0, 1,..., n 1. EADS 4.4 Perfektes Hashing 125/600

2 0 h 0 B 0 n 1 B n 1 p 1 Hashfunktion h mit Buckets B i Abbildung 1: Veranschaulichung einer Hashfunktion h mit Buckets B i. EADS 4.4 Perfektes Hashing 126/600

3 Definition 33 H = H 2,n bezeichne die Klasse aller Funktionen mit h a,b : U {0, 1,..., n 1} h a,b (x) = ((a x + b) mod p) mod n für alle x U, wobei 0 < a < p und 0 b < p. Lemma 34 H ist universell, d.h. für alle x, y U mit x y gilt Pr[h(x) = h(y)] 1 n, wenn h zufällig und gleichverteilt aus H gewählt wird. EADS 4.4 Perfektes Hashing 127/600

4 Beweis: Sei h a,b (x) = h a,b (y) = i. Dann ist i = (ax + b) mod p = (ay + b) mod p }{{}}{{} α β (mod n) Sei α {0,..., p 1} fest. Dann gibt es in der obigen Kongruenz p/n 1 Möglichkeiten für β, nämlich da α β und x y gilt. β {i, i + n, i + 2n,... } \ {α}, EADS 128/600

5 Beweis: Also gibt es höchstens ( p ) p 1 = p n (( p 1 n ) ) p(p 1) n Möglichkeiten für das Paar (α, β). Jedes Paar (α, β) bestimmt aber genau ein Paar (a, b), da Z p ein Körper ist. Weil es insgesamt p(p 1) Paare (a, b) gibt und h uniform zufällig aus H ausgewählt wird, folgt Pr[h(x) = h(y)] für jedes Paar x, y U mit x y. p(p 1)/n p(p 1) = 1 n EADS 4.4 Perfektes Hashing 128/600

6 Lemma 35 Sei S U, S = m. Dann gilt: 1 E [ n 1 ( ) ] Bi 2 i=0 m(m 1) 2n 2 B i 2 ] n 1 E[ i=0 m(m 1) n + m 3 4 Pr[h a,b ist injektiv auf S] 1 n 1 Pr[ m(m 1) 2n B i 2 < 4m] > 1 2, falls m n i=0 EADS 4.4 Perfektes Hashing 129/600

7 Beweis: Definiere die Zufallsvariablen X {x,y} für alle {x, y} S gemäß X {x,y} = { 1 falls h(x) = h(y), 0 sonst. Wegen Lemma 34 gilt E[X {x,y} ] = Pr[h(x) = h(y)] 1/n für alle Paare {x, y} S. Weiter ist E [ n 1 ( ) ] Bi = {{x, y} S; h(x) = h(y)} 2 i=0 ( ) m 1 2 n. EADS 4.4 Perfektes Hashing 130/600

8 Beweis (Forts.): Da x 2 = 2 (x 2) + x für alle x N, folgt B i 2 ] = E n 1 E[ i=0 [ n 1 i=0 ( 2 ( Bi 2 (1) m(m 1) 2 + m. 2n ) ) ] + B i Aus der Markov-Ungleichung (Pr[X t] E[X] t für alle t > 0) folgt [ n 1 ( ) ] Bi Pr[h a,b nicht injektiv auf S] = Pr 1 2 (1) i=0 m(m 1) 2n. EADS 4.4 Perfektes Hashing 131/600

9 Beweis (Forts.): Für m n folgt aus (2), dass B i 2 ] m + m = 2m. n 1 E[ i=0 Also folgt, wiederum mit Hilfe der Markov-Ungleichung, dass [ n 1 ] Pr B i 2 > 4m 1 4m 2m = 1 2. i=0 EADS 4.4 Perfektes Hashing 132/600

10 Die Struktur der perfekten Hashtabelle nach Michael L. Fredman, János Komlós, Endre Szemerédi: Storing a sparse table with O(1) worst case access time, Journal of the ACM 31(3), p (1984) verwendet ein zweistufiges Hashverfahren. Für einen gegebenen Schlüssel x wird zunächst i = h(x) berechnet, um über den Tabellenplatz T [i], b i, B i und h i H 2, Bi 2 zu ermitteln. Dann wird im Tabellenplatz T [b i + h i (x)] nachgeschaut, ob x da abgespeichert ist. Falls ja, wird true ausgegeben und sonst false. Falls n 1 B i 2 < 4n i=0 ist, so wird nur O(n) Platz verwendet. EADS 4.4 Perfektes Hashing 133/600

11 0 h 0 h i b i B i 2 n 1 p 1 Zweistufige Hashtabelle nach Fredman, Komlós und Szemerédi bbildung 2: Aufbau der zweistufigen Hashtabelle von Fredman, Komlos und Szemeredi ingabe: S U, S = n EADS 4.4 Perfektes Hashing 134/600

12 Algorithmus für Hashtabelle nach FKS: Eingabe: S U, S = m n Ausgabe: Hashtabelle nach FKS 1. Wähle h H 2,n zufällig. Berechne h(x) für alle x S. 2. Falls i B i 2 4m, dann wiederhole Konstruiere die Mengen B i für alle 0 i < n. 4. for i = 0 to n 1 do (a) wähle h i H 2, Bi 2 zufällig (b) falls h i auf B i nicht injektiv ist, wiederhole (a) EADS 4.4 Perfektes Hashing 135/600

13 Ein Durchlauf der Schleife bestehend aus den Schritten 1. und 2. benötigt Zeit O(n). Gemäß Lemma 35 ist die Wahrscheinlichkeit, dass Schritt 1. wiederholt werden muss, 1/2 für jedes neue h. Die Anzahl der Schleifendurchläufe ist also geometrisch verteilt mit Erfolgswahrscheinlichkeit 1/2, und es ergibt sich E[# Schleifendurchläufe] 2. Also ist der Zeitaufwand für diese Schleife O(n). Schritt 3. kostet offensichtlich ebenfalls Zeit O(n). EADS 4.4 Perfektes Hashing 136/600

14 Für jedes i {0,..., n 1} gilt, ebenfalls gemäß Lemma 35, dass Pr[h i ist auf B i injektiv] 1 B i ( B i 1) 2 B i 2 > 1 2. Damit ist auch hier die erwartete Anzahl der Schleifendurchläufe 2 und damit der erwartete Zeitaufwand O( B i 2 ). Insgesamt ergibt sich damit für Schritt 4. wie auch für den gesamten Algorithmus ein Zeitaufwand von O(n). EADS 4.4 Perfektes Hashing 137/600

15 4.4.2 Dynamisches perfektes Hashing Sei U = {0,..., p 1} für eine Primzahl p. Zunächst einige mathematische Grundlagen. Definition 36 H k,n bezeichne in diesem Abschnitt die Klasse aller Polynome Z p [x] vom Grad < k, wobei mit a = (a 0,..., a k 1 ) U k k 1 h a (x) = a j x j mod p mod n für alle x U. j=0 EADS 4.4 Perfektes Hashing 138/600

16 Definition 37 Eine Klasse H von Hashfunktionen von U nach {0,..., n 1} heißt (c, k)-universell, falls für alle paarweise verschiedenen x 0, x 1,..., x k 1 U und für alle i 0, i 1,..., i k 1 {0,..., n 1} gilt, dass Pr[h(x 0 ) = i 0 h(x k 1 ) = i k 1 ] c n k, wenn h H gleichverteilt gewählt wird. EADS 4.4 Perfektes Hashing 139/600

17 Satz 38 H k,n ist (c, k)-universell mit c = (1 + n p )k. Beweis: Da Z p ein Körper ist, gibt es für jedes Tupel (y 0,..., y k 1 ) U k genau ein Tupel (a 0,..., a k 1 ) Z k p mit k 1 a j x j r = y r mod p für alle 0 r < k. j=0 Da es sich hier um eine Vandermonde-Matrix handelt, folgt, dass { a; h a (x r ) = i r mod n für alle 0 r < k} = {(y 0,..., y k 1 ) U k ; y r = i r mod n für alle 0 r < k} p k. n EADS 4.4 Perfektes Hashing 140/600

18 Beweis (Forts.): Da es insgesamt p k Möglichkeiten für a gibt, folgt p k 1 Pr[h(x r ) = i r für alle 0 r < k] n p k ( p = n ) k n p ( < 1 + n ) k p 1 n k 1 n k. EADS 4.4 Perfektes Hashing 141/600

19 Kuckuck-Hashing für dynamisches perfektes Hashing Kuckuck-Hashing arbeitet mit zwei Hashtabellen, T 1 und T 2, die je aus den Positionen {0,..., n 1} bestehen. Weiterhin benötigt es zwei (1 + δ, O(log n))-universelle Hashfunktionen h 1 und h 2 für ein genügend kleines δ > 0, die die Schlüsselmenge U auf {0,..., n 1} abbilden. Jeder Schlüssel x S wird entweder in Position h 1 (x) in T 1 oder in Position h 2 (x) in T 2 gespeichert, aber nicht in beiden. Die IsElement-Operation prüft einfach, ob x an einer der beiden Positionen gespeichert ist. EADS 4.4 Perfektes Hashing 142/600

20 Die Insert-Operation verwendet nun das Kuckucksprinzip, um neue Schlüssel einzufügen. Gegeben ein einzufügender Schlüssel x, wird zunächst versucht, x in T 1 [h 1 (x)] abzulegen. Ist das erfolgreich, sind wir fertig. Falls aber T 1 [h 1 (x)] bereits durch einen anderen Schlüssel y besetzt ist, nehmen wir y heraus und fügen stattdessen x in T 1 [h 1 (x)] ein. Danach versuchen wir, y in T 2 [h 2 (y)] unterzubringen. Gelingt das, sind wir wiederum fertig. Falls T 2 [h 2 (y)] bereits durch einen anderen Schlüssel z besetzt ist, nehmen wir z heraus und fügen stattdessen y in T 2 [h 2 (y)] ein. Danach versuchen wir, z in T 1 [h 1 (z)] unterzubringen, und so weiter, bis wir endlich den zuletzt angefassten Schlüssel untergebracht haben. Formal arbeitet die Insert-Operation wie folgt: EADS 4.4 Perfektes Hashing 143/600

21 if T 1 [h 1 (x)] = x then return fi repeat MaxLoop times (a) exchange x und T 1 [h 1 (x)] (b) if x = NIL then return fi (c) exchange x und T 2 [h 2 (x)] (d) if x = NIL then return fi od rehash(); Insert(x) EADS 4.4 Perfektes Hashing 144/600

Hashing. Übersicht. 5 Hashing

Hashing. Übersicht. 5 Hashing Übersicht 5 Hashing Hashtabellen Hashing with Chaining Universelles Hashing Hashing with Linear Probing Anpassung der Tabellengröße Perfektes Hashing Diskussion / Alternativen H. Täubig (TUM) GAD SS 14

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 4

Grundlagen der Algorithmen und Datenstrukturen Kapitel 4 Grundlagen der Algorithmen und Datenstrukturen Kapitel 4 Christian Scheideler + Helmut Seidl SS 2009 06.05.09 Kapitel 4 1 Wörterbuch-Datenstruktur S: Menge von Elementen Jedes Element e identifiziert über

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Hashing Maike Buchin 2. und 4.5.2017 Motivation häufig werden Daten anhand eines numerischen Schlüssel abgespeichert Beispiele: Studenten der RUB nach Matrikelnummer Kunden einer

Mehr

Übersicht. Einfache Suche Binäre Suchbäume Hashing Skip-Lists Mengen Sortieren Order-Statistics. 2 Suchen und Sortieren

Übersicht. Einfache Suche Binäre Suchbäume Hashing Skip-Lists Mengen Sortieren Order-Statistics. 2 Suchen und Sortieren Übersicht 2 Einfache Suche Binäre Suchbäume Skip-Lists Mengen Sortieren Order-Statistics (Folie 103, Seite 46 im Skript) Wie können wir eine partielle Funktion {1,..., n} N effizient speichern? Wie können

Mehr

Korollar 191 In einem (a, b)-baum mit n gespeicherten Schlüsseln können die Wörterbuchoperationen in Zeit O(log a n) durchgeführt werden.

Korollar 191 In einem (a, b)-baum mit n gespeicherten Schlüsseln können die Wörterbuchoperationen in Zeit O(log a n) durchgeführt werden. Korollar 191 In einem (a, b)-baum mit n gespeicherten Schlüsseln können die Wörterbuchoperationen in Zeit O(log a n) durchgeführt werden. Bemerkung: Die Wahl von a und b hängt wesentlich von der Anwendung

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

EADS 3.3 Gewichtsbalancierte Bäume 95/598 ľernst W. Mayr

EADS 3.3 Gewichtsbalancierte Bäume 95/598 ľernst W. Mayr 3.3 Gewichtsbalancierte Bäume Siehe zu diesem Thema Seite 189ff in Kurt Mehlhorn: Data structures and algorithms 1: Sorting and searching, EATCS Monographs on Theoretical Computer Science, Springer Verlag:

Mehr

Satz 23 In einer Hashtabelle der Größe n mit m Objekten tritt mit Wahrscheinlichkeit

Satz 23 In einer Hashtabelle der Größe n mit m Objekten tritt mit Wahrscheinlichkeit Satz 23 In einer Hashtabelle der Größe n mit m Objekten tritt mit Wahrscheinlichkeit 1 e m(m 1) 2n 1 e m2 2n mindestens eine Kollision auf, wenn für jeden Schlüssel jede Hashposition gleich wahrscheinlich

Mehr

Beweis: Die obere Schranke ist klar, da ein Binärbaum der Höhe h höchstens

Beweis: Die obere Schranke ist klar, da ein Binärbaum der Höhe h höchstens Beweis: Die obere Schranke ist klar, da ein Binärbaum der Höhe h höchstens h 1 2 j = 2 h 1 j=0 interne Knoten enthalten kann. EADS 86/600 Beweis: Induktionsanfang: 1 ein AVL-Baum der Höhe h = 1 enthält

Mehr

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n)

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) AVL-Bäume: Ausgabe aller Elemente in O(n) Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) Frage: Kann man Einfügen, Löschen und Suchen in O(1) Zeit? 1 Hashing einfache Methode

Mehr

4. Übung zu Algorithmen I 17. Mai 2017

4. Übung zu Algorithmen I 17. Mai 2017 4. Übung zu Algorithmen I 17. Mai 2017 Björn Kaidel bjoern.kaidel@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Lisa Kohl, Christian Schulz, Sebastian Schlag und Christoph Striecks) Organisatorisches

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Hashtabellen:

Mehr

Dies ist gerade der konstruktive Schritt beim Aufbau von Binomialbäumen.

Dies ist gerade der konstruktive Schritt beim Aufbau von Binomialbäumen. Linken von Bäumen: Zwei Bäume desselben Wurzel-Rangs werden unter Einhaltung der Heap-Bedingung verbunden. Sind k 1 und k 2 die Wurzeln der zwei zu linkenden Bäume, so wird ein neuer Baum aufgebaut, dessen

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / Vorlesung 5, Donnerstag, 21.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / Vorlesung 5, Donnerstag, 21. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2013 / 2014 Vorlesung 5, Donnerstag, 21. November 2013 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 8 (13.5.2016) Hashtabellen I Algorithmen und Komplexität Dictionary mit sortiertem Array Laufzeiten: create: O(1) insert: O(n) find: O(log

Mehr

Kapitel III Selektieren und Sortieren

Kapitel III Selektieren und Sortieren Kapitel III Selektieren und Sortieren 1. Einleitung Gegeben: Menge S von n Elementen aus einem total geordneten Universum U, i N, 1 i n. Gesucht: i-kleinstes Element in S. Die Fälle i = 1 bzw. i = n entsprechen

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (11 Hashverfahren: Allgemeiner Rahmen) Prof. Dr. Susanne Albers Das Wörterbuch-Problem (1) Das Wörterbuch-Problem (WBP) kann wie folgt beschrieben

Mehr

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =.

Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n i =. 2. Der Blum-Floyd-Pratt-Rivest-Tarjan Selektions-Algorithmus Definition 77 Sei n N. Der Median (das mittlere Element) einer total geordneten Menge von n Elementen ist deren i-kleinstes Element, wobei n

Mehr

Hashverfahren I. Algorithmen und Datenstrukturen 251 DATABASE SYSTEMS GROUP

Hashverfahren I. Algorithmen und Datenstrukturen 251 DATABASE SYSTEMS GROUP Hashverfahren I Bisher: Suchen mit Hilfe von Schlüsselvergleichen Jetzt: Stattdessen Adressberechnung Auswertung einer Funktion (Hash- oder Adressfunktion) Vorteil: Suche erfolgt weitgehend unabhängig

Mehr

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 6 (7.5.2018) Dictionaries, Binäre Suche, Hashtabellen I / Yannic Maus Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary:

Mehr

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode Multiplikationsethode Inforatik I Einführung Rainer Schrader Zentru für Angewandte Inforatik Köln 30. Mai 005 zu (): Irrationale Zahlen sind eine gute Wahl. Erinnerung: Φ = 1 + 5 = 1.6180339887... ˆΦ =

Mehr

Hashing. Überblick Aufgabe Realisierung

Hashing. Überblick Aufgabe Realisierung Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion mit Verkettung der Überläufer Offene Universelles 2/33 Überblick Aufgabe Realisierung Aufgabe Dynamische Verwaltung

Mehr

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen Universelles Hashing Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen wir können nicht annehmen, daß die Keys gleichverteilt im Universum liegen (z.b. Identifier im Programm) könnte also

Mehr

Datenstrukturen und Algorithmen. Vorlesung 10

Datenstrukturen und Algorithmen. Vorlesung 10 Datenstrukturen und Algorithmen Vorlesung 10 Hashtabelle als Erinnerung Hashtabellen sind Tabellen (Arrays), wo aber die Elemente nicht von links nach rechts eingefügt werden, wie bei typischen Arrays

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Hashing Hashfunktionen Kollisionen Ausblick. Hashverfahren. Dank an: Beate Bollig, TU Dortmund! 1/42. Hashverfahren

Hashing Hashfunktionen Kollisionen Ausblick. Hashverfahren. Dank an: Beate Bollig, TU Dortmund! 1/42. Hashverfahren Dank an: Beate Bollig, TU Dortmund! 1/42 Hashing Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion mit Verkettung der Überläufer Offene Universelles Hashing 2/42

Mehr

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n)

Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) Beweis: Annahme: T (n) c n, wobei c = c(m) konstant ist. Die Annahme ist ok, falls T (n) ( ( ) n 3 T + T m ) 4 n n 3 c + m 4 n c + n n + C m + cn; dies gilt, falls m 2 n m C m + n 2 (bis auf, ) c m + 3

Mehr

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung Übersicht Datenstrukturen und Algorithmen Vorlesung 13: 1 Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 2 Effizienz

Mehr

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an.

Ein sortiertes Feld kann in O(log n) durchsucht werden, z.b. mit Binärsuche. Der Algorithmus 1 gibt den Pseudocode der binären Suche an. 2.5 Suchen Eine Menge S will nach einem Element durchsucht werden. Die Menge S ist statisch und S = n. S ist Teilmenge eines Universums auf dem eine lineare Ordnung definiert ist und soll so gespeichert

Mehr

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung Übersicht Datenstrukturen und Algorithmen Vorlesung 13: 1 Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group https://moves.rwth-aachen.de/teaching/ss-18/dsal/ 2 Effizienz

Mehr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr 3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:

Mehr

Übersicht. 1 Einführung. 2 Suchen und Sortieren. 3 Graphalgorithmen. 4 Algorithmische Geometrie. 5 Textalgorithmen. 6 Paradigmen

Übersicht. 1 Einführung. 2 Suchen und Sortieren. 3 Graphalgorithmen. 4 Algorithmische Geometrie. 5 Textalgorithmen. 6 Paradigmen Übersicht 1 Einführung 2 Suchen und Sortieren 3 Graphalgorithmen 4 Algorithmische Geometrie 5 6 Paradigmen Übersicht 5 Editdistanz (Folie 446, Seite 83 im Skript) Eingabe: Zwei Strings v und w Frage: Kommt

Mehr

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 )

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 ) Kapitel 4 Streuen Wir behandeln nun Ipleentationen ungeordneter Wörterbücher, in denen die Schlüssel ohne Beachtung ihrer Sortierreihenfolge gespeichert werden dürfen, verlangen aber, dass es sich bei

Mehr

14. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i

14. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i Motivation 14. Hashing Hash Tabellen, Geburtstagsparadoxon, Hashfunktionen, Perfektes und universelles Hashing, Kollisionsauflösung durch Verketten, offenes Hashing, Sondieren [Ottan/Widayer, Kap. 4.1-4.3.2,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil Hash-Verfahren Version vom: 18. November 2016 1 / 28 Vorlesung 9 18. November 2016

Mehr

13. Hashing. Sortierte Ausgabe aller Elemente in O(n) Zeit Suche, Minimum, Maximum, Nachfolger in O(log n) Zeit Einfügen, Löschen in O(log n) Zeit

13. Hashing. Sortierte Ausgabe aller Elemente in O(n) Zeit Suche, Minimum, Maximum, Nachfolger in O(log n) Zeit Einfügen, Löschen in O(log n) Zeit AVL-Bäume: Sortierte Ausgabe aller Elemente in O(n) Zeit Suche, Minimum, Maximum, Nachfolger in O(log n) Zeit Einfügen, Löschen in O(log n) Zeit Frage: Kann man Einfügen, Löschen und Suchen in O(1) Zeit?

Mehr

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1}

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1} 105 4. Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen

Mehr

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen

Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen Algorithmen und Komplexität Teil 1: Grundlegende Algorithmen WS 08/09 Friedhelm Meyer auf der Heide Vorlesung 13, 25.11.08 Friedhelm Meyer auf der Heide 1 Organisatorisches Die letzte Vorlesung über Grundlegende

Mehr

Kollision Hashfunktion Verkettung Offenes Hashing Perfektes Hashing Universelles Hashing Dynamisches Hashing. 4. Hashverfahren

Kollision Hashfunktion Verkettung Offenes Hashing Perfektes Hashing Universelles Hashing Dynamisches Hashing. 4. Hashverfahren 4. Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen von

Mehr

Algorithmen und Datenstrukturen II: Hashverfahren

Algorithmen und Datenstrukturen II: Hashverfahren Algorithmen und Datenstrukturen II: Hashverfahren Prof. Dr. Oliver Braun Letzte Änderung: 10.05.2017 16:21 Algorithmen und Datenstrukturen II: Hashverfahren 1/28 Hashverfahren bisher jeder Datensatz durch

Mehr

= 1. Falls ( a n. ) r i. i=1 ( b p i

= 1. Falls ( a n. ) r i. i=1 ( b p i Das Jacobi-Symbol Definition Jacobi-Symbol Sei n N ungerade mit Primfaktorzerlegung n = s definieren das Jacobi-Symbol ( a ( ) ri n) := s a i=1 p i. i=1 pr i i. Wir Anmerkungen: Falls a quadratischer Rest

Mehr

Algorithmen I. Tutorium 1-4. Sitzung. Dennis Felsing

Algorithmen I. Tutorium 1-4. Sitzung. Dennis Felsing Algorithmen I Tutorium 1-4. Sitzung Dennis Felsing dennis.felsing@student.kit.edu www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-05-09 Überblick 1 Verkettete Listen 2 Unbeschränkte Felder 3 Amortisierte Laufzeitanalyse

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (13 Offenes Hashing) Prof. Dr. Susanne Albers Hashing: Allgemeiner Rahmen Schlüsselmenge S Universum U aller möglichen Schlüssel Hashfunktion h 0,,m-1

Mehr

SS17 Algorithmen und Datenstrukturen 5. Kapitel Hashverfahren

SS17 Algorithmen und Datenstrukturen 5. Kapitel Hashverfahren SS17 Algorithmen und Datenstrukturen 5. Kapitel Hashverfahren Martin Dietzfelbinger Mai 2017 FG KTuEA, TU Ilmenau Algorithmen und Datenstrukturen SS17 Kapitel 5 5.1 Grundbegriffe Gegeben: Universum U (auch

Mehr

Lösungsvorschläge für das 7. Übungsblatt Letzte Änderung am 27. Juni 2001

Lösungsvorschläge für das 7. Übungsblatt Letzte Änderung am 27. Juni 2001 Grundlagen zu Datenstrukturen und Algorithen Schitt, Schöer SS 2001 http://www.pi-sb.pg.de/~sschitt/info5-ss01 U N S A R I V E R S A V I E I T A S N I S S Lösungsvorschläge für das 7. Übungsblatt Letzte

Mehr

5. Vorrangwarteschlangen - Priority Queues

5. Vorrangwarteschlangen - Priority Queues 5. Vorrangwarteschlangen - Priority Queues Priority Queues unterstützen die Operationen Insert(), Delete(), ExtractMin(), FindMin(), DecreaseKey(), Merge(). Priority Queues per se sind nicht für IsElement()-Anfragen,

Mehr

Definition 14 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt:

Definition 14 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 2.1.2 Rot-Schwarz-Bäume Definition 14 Rot-Schwarz-Bäume sind externe Binärbäume (jeder Knoten hat 0 oder 2 Kinder) mit roten und schwarzen Kanten, so dass gilt: 1 alle Blätter hängen an schwarzen Kanten

Mehr

Algorithmen und Datenstrukturen (Informatik II) SS Klausur

Algorithmen und Datenstrukturen (Informatik II) SS Klausur Lehrstuhl für Algorith. und Datenstrukturen Prof. Dr. Hannah Bast Axel Lehmann Algorithmen und Datenstrukturen (Informatik II) SS 2013 http://ad-wiki.informatik.uni-freiburg.de/teaching Klausur Mittwoch

Mehr

Dictionary Definition

Dictionary Definition Kapitel ADS:IV IV. Datenstrukturen Record Linear List Linked List Stack Queue Priority Queue Dictionary Direct-address Table Hash Function ADS:IV-60 Datenstrukturen POTTHAST 2018 Dictionary Definition

Mehr

Algorithmen und Datenstrukturen II: Hashverfahren

Algorithmen und Datenstrukturen II: Hashverfahren Algorithmen und Datenstrukturen II: Hashverfahren Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 10.05.2017 16:21 Inhaltsverzeichnis Hashverfahren....................................

Mehr

Eine universelle Klasse von Hash-Funktionen

Eine universelle Klasse von Hash-Funktionen Eine universelle Klasse von Hash-Funktionen Annahmen: U = p, mit Primzahl p und U = {0,, p-1} Seien a {1,, p-1} und b {0,, p-1} Definiere wie folgt Satz: Die Menge ist eine universelle Klasse von Hash-Funktionen..

Mehr

Hashverfahren. (Algorithmen und Datenstrukturen II) Prof. Dr. Oliver Braun. Letzte Änderung: :33. Hashverfahren 1/29

Hashverfahren. (Algorithmen und Datenstrukturen II) Prof. Dr. Oliver Braun. Letzte Änderung: :33. Hashverfahren 1/29 Hashverfahren (Algorithmen und Datenstrukturen II) Prof. Dr. Oliver Braun Letzte Änderung: 19.03.2018 07:33 Hashverfahren 1/29 Hashverfahren bisher jeder Datensatz durch eindeutigen Schlüssel k K gekennzeichnet

Mehr

P ( Mindestens zwei Personen haben am gleichen Tag Geb. ) (1) = 1 P ( Alle Personen haben an verschiedenen Tagen Geb. ) (2)

P ( Mindestens zwei Personen haben am gleichen Tag Geb. ) (1) = 1 P ( Alle Personen haben an verschiedenen Tagen Geb. ) (2) 1 Hashing Einleitung Eine sehr naive Herangehensweise zur Implementierung eines Wörterbuchs ist die Benutzung eines hinreichend grossen unsortierten Arrays, in dem jeweils an eine freie Position eingefügt

Mehr

Hashing I. 1 Direkte Adressierung. 2 Grundlagen des Hashings. 3 Kollisionsauflösung durch Verkettung. 4 Hashfunktionen. 5 Offene Adressierung

Hashing I. 1 Direkte Adressierung. 2 Grundlagen des Hashings. 3 Kollisionsauflösung durch Verkettung. 4 Hashfunktionen. 5 Offene Adressierung Übersicht Datenstrukturen und Algorithmen Vorlesung 2: Hashing Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-4/ datenstrukturen-und-algorithmen/ Diese

Mehr

Programmiertechnik II

Programmiertechnik II Hash-Tabellen Überblick Hashfunktionen: Abbildung von Schlüsseln auf Zahlen Hashwert: Wert der Hashfunktion Hashtabelle: Symboltabelle, die mit Hashwerten indiziert ist Kollision: Paar von Schlüsseln mit

Mehr

Teil 1: Suchen. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Suchen 1-1

Teil 1: Suchen. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Suchen 1-1 Teil 1: Suchen Problemstellung Elementare Suchverfahren Hashverfahren Idee Hashfunktion Hashverfahren mit Verkettung Offene Hashverfahren Dynamische Hashverfahren Binäre Suchbäume Ausgeglichene Bäume B-Bäume

Mehr

Range-Search. Operationen: Welche Datenstrukturen sind geeignet? Arrays? Listen? AVL-Bäume? Splay-Bäume?

Range-Search. Operationen: Welche Datenstrukturen sind geeignet? Arrays? Listen? AVL-Bäume? Splay-Bäume? Algorithmische Geometrie Die Technik der Sweepline Range-Search (Folie 431, Seite 79 im Skript) Operationen: 1 Einfügen einer Zahl x 2 Löschen einer Zahl x 3 Ausgabe aller gespeicherter Zahlen in [a, b]

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2014 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Algorithmen und Datenstrukturen 8. Vorlesung

Algorithmen und Datenstrukturen 8. Vorlesung Algorithmen und Datenstrukturen 8. Vorlesung Martin Dietzfelbinger 2. Juni 2008 Beispiel eines N-MSB: Mehrweg-Such-Bäume Wurzel 27 39 7 16 29 35 36 38 45 1 2 4 10 11 13 21 25 41 48 50 9 12 FG KTuEA, TU

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 06 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Der Körper F 2 p. Lemma. Sei D R, aber D kein Quadrat in R. Dann gilt R[ D] = R R.

Der Körper F 2 p. Lemma. Sei D R, aber D kein Quadrat in R. Dann gilt R[ D] = R R. Der Körper F 2 p Lemma Sei D R, aber D kein Quadrat in R. Dann gilt R[ D] = R R. Wir definieren den Isomorphismus φ : R[ D] R R mit x + y D (x + yd, x yd). Die Bijektivität von φ folgt mit der Umkehrabbildung

Mehr

Unterlagen zu Polynomringen. Erhard Aichinger

Unterlagen zu Polynomringen. Erhard Aichinger Unterlagen zu Polynomringen Erhard Aichinger Linz, im November 2005 Alle Rechte vorbehalten 1 KAPITEL 1 Polynome und Körper 1. Körper DEFINITION 1.1. Ein kommutativer Ring mit Eins R R,,,, 0, 1 ist ein

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

Implementierung von Mengen (und Wörterbücher): Alternative zu Suchbäumen

Implementierung von Mengen (und Wörterbücher): Alternative zu Suchbäumen 5.8 HashVerfahren und Anwendungen Implementierung von Mengen (und Wörterbücher): Alternative zu Suchbäumen hash: zerhacken, Hackfleisch Grundidee: Indexierung der Tabelle mit geeignet transformierten Schlüsselwerten

Mehr

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion

9. Rekursion. 1 falls n 1 n (n 1)!, andernfalls. Experiment: Die Türme von Hanoi. Links Mitte Rechts. Mathematische Rekursion Experiment: Die Türme von Hanoi. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration Links Mitte Rechts Mathematische Rekursion Viele mathematische Funktionen

Mehr

Beispiel für simultane Kongruenz

Beispiel für simultane Kongruenz Beispiel für simultane Kongruenz Jetzt wollen wir das Lemma der letzten Einheit anwenden. Wenn man eine Zahl sucht, die kongruent zu y modulo m und kongruent zu z modulo n ist, so nehme man zam + ybn wobei

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Tanya Braun und Felix Kuhr (Übungen) sowie viele Tutoren Wiederholung: Disjunkte Mengen (Union-Find)

Mehr

Diskrete Mathematik 1

Diskrete Mathematik 1 Ruhr-Universität Bochum Lehrstuhl für Kryptologie und IT-Sicherheit Prof. Dr. Alexander May M. Ritzenhofen, M. Mansour Al Sawadi, A. Meurer Lösungsblatt zur Vorlesung Diskrete Mathematik 1 WS 008/09 Blatt

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 156, Seite 56 im Skript) Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die letzte Ebene vollständig besetzt ist,

Mehr

Hashing. Algorithmen und Datenstrukturen II 1

Hashing. Algorithmen und Datenstrukturen II 1 Hashing Algorithmen und Datenstrukturen II 1 Einführendes Beispiel Ein Pizza-Lieferservice in Bielefeld speichert die Daten seiner Kunden: Name, Vorname, Adresse und Telefonnummer Wenn ein Kunde seine

Mehr

5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)?

5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)? 5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)? Ladefaktor: α, n aktuelle Anzahl gespeicherter Werte m Tabellengröße. Einfacher Ansatz: rehash() a z c h s r b s h a z Wenn

Mehr

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017 2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel

Mehr

Informatik II: Algorithmen und Datenstrukturen SS 2015

Informatik II: Algorithmen und Datenstrukturen SS 2015 Informatik II: Algorithmen und Datenstrukturen SS 2015 Vorlesung 8b, Mittwoch, 17. Juni 2015 (Balancierte Suchbäume) Prof. Dr. Hannah Bast Lehrstuhl für Algorithmen und Datenstrukturen Institut für Informatik

Mehr

Informatik I 5. Kapitel. Hashverfahren. Hashverfahren. Hashverfahren. Rainer Schrader. 3. Juni Gliederung

Informatik I 5. Kapitel. Hashverfahren. Hashverfahren. Hashverfahren. Rainer Schrader. 3. Juni Gliederung Informatik I 5. Kapitel Rainer Schrader Zentrum für Angewandte Informatik Köln 3. Juni 2008 1 / 86 2 / 86 Gliederung Adressberechnung durch Hashing Hashfunktionen Kollisionsbehandlung Anwendung von Hashfunktionen

Mehr

Randomisierte Algorithmen 2. Erste Beispiele

Randomisierte Algorithmen 2. Erste Beispiele Randomisierte Algorithmen Randomisierte Algorithmen 2. Erste Beispiele Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2016/2017 1 / 35 Randomisierter Identitätstest

Mehr

Themen. Hashverfahren. Stefan Szalowski Programmierung II Hashverfahren

Themen. Hashverfahren. Stefan Szalowski Programmierung II Hashverfahren Themen Hashverfahren Einleitung Bisher: Suchen in logarithmischer Zeit --> Binärsuche Frage: Geht es eventuell noch schneller/effektiver? Finden von Schlüsseln in weniger als logarithmischer Zeit Wichtig

Mehr

Hashing. Überblick Aufgabe Realisierung

Hashing. Überblick Aufgabe Realisierung Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion it Verkettung der Überläufer Offene Universelles 2/33 Überblick Aufgabe Realisierung Aufgabe Dynaische Verwaltung

Mehr

Algorithmen und Datenstrukturen Hashverfahren

Algorithmen und Datenstrukturen Hashverfahren Algorithmen und Datenstrukturen Hashverfahren Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Prinzip Details Anwendungen Motivation Hashverfahren

Mehr

Der komplexitätstheoretische Zugang zur Kryptographie

Der komplexitätstheoretische Zugang zur Kryptographie Der komplexitätstheoretische Zugang zur Kryptographie Claus Diem Im Wintersemester 2017 / 18 Literatur Oded Goldreich: Foundations of Cryptography Jonathan Katz & Yeduda Lindell: Intoduction to Modern

Mehr

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n.

Bemerkungen. Gilt m [l] n, so schreibt man auch m l mod n oder m = l mod n und spricht. m kongruent l modulo n. 3.6 Restklassen in Polynomringen 3.6.1 Einführung und Definitionen Der Begriff der Restklasse stammt ursprünglich aus der Teilbarkeitslehre in Z; (Z = Z, +, ist ein kommutativer Ring). Definition 153 Sei

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

3.5 Schnelle Fouriertransformation (FFT, DFT)

3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5 Schnelle Fouriertransformation (FFT, DFT) 3.5.1 Grundlagen Ein Polynom P = i a ix i C[x] vom Grad n ist eindeutig durch seine Koeffizienten a i bestimmt, d.h. man hat eine Bijektion {Polynome C[x]

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS Übungsblatt 4

Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS Übungsblatt 4 Algorithmik Funke/Bahrdt/Krumpe/Mendel/Seybold SS 2015 http://www.fmi.informatik.uni-stuttgart.de/alg Institut für Formale Methoden der Informatik Universität Stuttgart Übungsblatt 4 Punkte: 50 Problem

Mehr

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f.

Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f. 3 Kongruenz modulo g definiert auf K[x] eine Äquivalenzrelation g : h g f h f ist durch g teilbar, und [f] g ist die Äquivalenzklasse von f 4 Auf der Menge aller Restklassen [f] g kann man Addition und

Mehr

Das Generalized Birthday Problem

Das Generalized Birthday Problem Das Generalized Birthday Problem Problem Birthday Gegeben: L 1, L 2 Listen mit Elementen aus {0, 1} n Gesucht: x 1 L 1 und x 2 L 2 mit x 1 x 2 = 0. Anwendungen: Meet-in-the-Middle Angriffe (z.b. für RSA,

Mehr

Übersicht. Einführung Universelles Hashing Perfektes Hashing

Übersicht. Einführung Universelles Hashing Perfektes Hashing Hasing Übersict Einfürung Universelles Hasing Perfektes Hasing 2 Das Wörterbuc-Problem Gegeben: Universum U = [0 N-1], wobei N eine natürlice Zal ist. Ziel: Verwalte Menge S U mit folgenden Operationen.

Mehr

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1

Mehr

Ferien-Übungsblatt 8 Lösungsvorschläge

Ferien-Übungsblatt 8 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Ferien-Übungsblatt 8 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Probabilistische Komplexitätsklassen [vgl.

Mehr