4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1}

Größe: px
Ab Seite anzeigen:

Download "4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1}"

Transkript

1 Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen von h durch Liste, Baum,... alternativ: Hashing berechne h(s) direkt (meist in O(1)) aus s Problem: D meist sehr groß daher: h i.allg. nicht injektiv; oft: h(s) = s mod m Kollision bei Einfügen von s, wenn s S, s s h(s) = h(s )

2 106 Kollisionsbehandlung 1.) offene Hashverfahren: verwende anderen, freien Platz h (s) A (innerhalb der Hashtabelle) 2.) Hashverfahren mit Verkettung: h(s) führt zu Liste mit Elementen s, für die h(s ) = h(s)

3 Wahl der Hashfunktion Anforderung: wenige Kollisionen Divisionsrest-Methode in Praxis meist am besten h(s) = s mod m ungünstiges m: 2er-Potenz, 10er-Potenz,... Beispiel: Preise und m = 100: h({49, 69, 99, 149, 199, 299, 399}) = {49, 69, 99} gut: m Primzahl

4 108 Multiplikative Methode multipliziere mit irrationaler Zahl θ und ignoriere ganzzahligen Anteil h(s) = m (s θ s θ ) effizient implementierbar bei m = 2 k durch int, 2 Shifts gut: θ = (goldener Schnitt - 1)

5 Hashverfahren mit Verkettung Synonyme werden in dyn. Datenstruktur (z.b. Liste) außerhalb der Hashtabelle gespeichert Separate Verkettung jeder Hashtabelleneintrag ist Anfang einer Liste von Synonymen Beispiel: (mit h(s) = s mod 7, S = {1, 10, 3, 6, 20, 13})

6 110 Operationen in Hashtabelle Suchen: beginne mit h(s) und folge Verweisen bis gefunden oder Listenende Einfügen: füge s am Ende der Liste h(s) ein, wenn s nicht gefunden (!) Löschen: suche s und entferne s aus Liste

7 Direkte Verkettung jeder Hashtabelleneintrag ist Zeiger auf Liste von Synonymen Vorteil: weniger Ausnahmebehandlungen/ Abfragen als bei separater Verkettung Beispiel: Suche, Einfügen und Löschen analog zu separater Verkettung

8 112 Direkte Verkettung in Java public class HashTable<D> implements MyCollection<Integer,D>{ protected int size; protected List<Integer,D>[] tab; public HashTable(int n) {size = n; for (int i=0; i<tab.length; i++) tab = new List[size]; tab[i] = new List<Integer,D>();} private int h(int key) {return key % size;} public D find(integer key) throws Exception { List<Integer,D> list = tab[h(key)]; return list.find(key);} public void insert(integer key, D content) { List<Integer,D> list = tab[h(key)]; list.insert(key,content);} // Mehrfacheintraege erlaubt public void delete(integer key) { List<Integer,D> list = tab[h(key)]; list.delete(key);} } public HashIterator iterator() {return new HashIterator();}

9 113 Analyse von direkter Verkettung im schlechtesten Fall: alle Schlüssel in gleicher Liste t suche (n) O(n) im Mittel: Annahme: alle Hashadressen gleich wahrscheinlich def.: Belegungsfaktor α := n m durchschnittliche Länge l einer Liste: l = α bei erfolgloser Suche: bei erfolgreicher Suche: W t suche A (n) = α O(1) für n m n ˆt suche A (n) = 1 n (1 + j 1 m ) = 1 + n 1 2m 1 + α 2 j=1 Aufwand des Löschens: wie bei erfolgreicher Suche Einfügen: 1 (bzw. wie bei erfolgloser Suche, wenn keine Duplikate)

10 114 Vergleich: separate vs. direkte Verkettung α separate Verkettung direkte Verkettung erfolgreich erfolglos erfolgreich erfolglos Anzahl bei der Suche betrachteter Einträge (nach Ottmann, Widmayer) Bemerkung: die Synonymlisten können (aufgeteilt in Seiten) im Sekundärspeicher liegen α > 1 möglich

11 Offene Hashverfahren Synonyme innerhalb der Hashtabelle gespeichert betrachte Folge von Hashfunktionen h i : D A i = 0, 1, 2,... Einfügen: sind h 0 (s),..., h i 1 (s) belegt und h i (s) frei, so speichere s in h i (s) Suche: suche s in h 0 (s),..., h i (s) bis h i (s) enthält s oder bis h i (s) frei

12 116 Löschen s zunächst suchen Problem: naives Entfernen zerstört Suchketten für andere Elemente Lösungsmöglichkeit: s nur als gelöscht markieren aber nicht wirklich entfernen markierte Plätze beim Einfügen wiederverwenden Effizienz leidet unter Löschmarkierungen offenes Hashing nur geeignet, wenn Löschen selten

13 Lineares Sondieren offenes Hashverfahren mit h i+1 (s) = h i (s) + 1 mod m für i IN Beispiel: füge ein 6, 10, 13, 20, 3, 1 Vorteil: einfach implementierbar Nachteil: primäre Häufung verschlechtert Effizienz

14 118 Aufwand ( Knuth) im schlechtesten Fall: linear (O(n)) im Mittel: Annahme: alle Hashadressen gleich wahrscheinlich falls Tabelle beim Einfügen bereits k Einträge enthält: p 1 = m k m Wahrscheinlichkkeit, daß beim 1. Versuch freier Platz gefunden p 2 = k m m k m 1... beim 2. Versuch... p 3 = k m k 1 m 1 m k m 2... beim 3. Versuch... allgemein: p i = ( i 2 j=0 Erwartungswert beim (k + 1)-ten Einfügen: E k+1 = k j m j ) m k m i+1... beim i. Versuch... k+1 i=1 i p i = }{{} (Induktion, Mehlhorn) m + 1 m k + 1

15 119 E = 1 k k = m+1 k E j j=1 k j=1 Mittlerer Einfügeaufwand bei k Schlüsseln 1 m j+2 = m+1 k (H m+1 H m k+1 ) wobei: H i = i m+1 k (ln(m + 1) ln(m k + 1)) = m+1 k ln( m+1 m k+1 ) = 1 k m+1 ln( 1 1 m+1 k = 1 α (ln(1) ln(1 α }{{} )) =0 ) j=1 1 j 1 k m ln(i) }{{} Eulersche Konstante harmonische Zahlen = 1 α ln(1 α ) wobei α = k m+1

16 120 Bemerkungen bei linearem Sondieren ist Gleichverteilungsannahme unrealistisch daher in Praxis: E = 1 α 2 1 α α E E (nach Wirth) Folgerung: Tabelle in Praxis 10% zu groß wählen

17 Quadratisches Sondieren h i (s) = (h 0 (s) + i 2 ) mod m für i > 0, m prim ggf. Einfügen unmöglich, obwohl noch Plätze frei besser als lineares Sondieren, da keine primäre Häufung

18 Perfektes Hashing Idee: analog zu optimalen Suchbaum Hashverfahren für feste Schlüsselmenge S = {s 1,..., s n } {1,..., N} optimieren gesucht: perfekte (d.h. injektive) Hashfunktion, die effizient berechenbar (in O(1)) und mit möglichst kleiner Hashtabelle erreichbar: (Details s. Mehlhorn) Auswertung in O(1) Tabellengröße m < 3n also: α > 1/3 Ermittlung einer geeigneten Hashfunktion in O(n N) (bei großem N verbesserbar zu: O(n 3 log n + log(log N)))

19 123 Ermittlung einer geeigneten Hashfunktion 1) bestimme k (1 k < N) mit n 1 i=0 S i 2 < 3n wobei S i := {x S (kx mod N) mod n = i} für i = 0,..., n 1 Aufwand: O(n N) (geeignetes k existiert! Mehlhorn) 2) c i := S i ( S i 1) + 1 für i = 0,..., n 1 m := n 1 i=0 c i = n + n 1 i=0 < n + 3n n = 3n S i 2 n 1 i=0 S i

20 124 3) bestimme k i (i = 0,..., n 1, 1 k i < N) mit h i (x) := (k i x mod N) mod c i auf S i injektiv Aufwand für i: O( S i N) (geeignetes k i existiert! Mehlhorn) 4) h(x) := let i = (k x mod N) mod n, j = (k i x mod N) mod c i in i 1 + j l=0 c l }{{} vorberechnet Auswertung: O(1) (2 *, 4 mod, 1 + )

21 125 Beispiel: Perfektes Hashing S = {1, 3, 4, 7}, N = 7, n = 4 1) probiere k = 1: S 0 = {4, 7}, S 1 = {1}, S 2 =, S 3 = {3} 3 S 1 2 = = 6 < 12 = 3n k = 1 geeignet i=0 2) c 0 := 3, c 1 := 1, c 2 := 1, c 3 := 1, m := 6 3) probiere k 0 = 1: h 0 (x) := (x mod 7) mod 3 h 0 (4) = 1, h 0 (7) = 0 k 0 = 1 geeignet für i = 1,..., 3: k i = 1 trivialerweise geeignet, wegen S i 1 4) Hashtabelle: {z } S 0 {z} S 1 {z} S 2 {z} S 3

22 Universelles Hashing Details s. Mehlhorn statt Hashfunktion h manuell vorgeben: h zufällig aus Topf H ziehen Vorteil: bei mehrfachem Aufbau einer Hashtabelle für (fast) festes S wird die Effizienz über H gemittelt (z.b. für Symboltabelle eines Compilers) ein dauerhaft unglücklich gewähltes h wird vermieden z.b. H := {h a,b h a,b (x) := (ax + b mod p) mod m, a, b {0,..., N 1}} wobei m, N IN, p prim

23 Dynamisches Hashing erweiterbare bzw. verkleinerbare Hashtabelle insbesondere für Sekundärspeicher Varianten: Lineares Hashing Erweiterbares Hashing Gridfile (Details: Ottmann, Widmayer)

24 128 Lineares Hashing Folge von Hashfunktionen h i (x) = x mod (m 0 2 i ) i = 0, 1,... stets zwei Funktionen, h i und h i+1, aktiv j + m h i+1 j: 87,167,247 j: 167 h i m *2i : m0 *2 i : 0 h i+1 h i+1 0 * i : j + m *2 i : 0... frei Erweitern 87, hi+1 h i frei

25 129 Erweitern und Verkleinern beim Linearen Hashing Erweitern falls α > α max : j := j + 1; Schlüssel in Bucket B j 1 werden gemäß h i+1 umgespeichert falls hiernach j = m 0 2 i : Tabellengröße verdoppeln; j := 0; i := i + 1 Verkleinerung umgekehrt, wenn α < α min

26 130 Zusammenfassung: Hashverfahren im Mittel sehr effizient (bei α < 90%) (meist: O(1)) im Worst Case: schlecht (O(n)) #Schlüssel muss ungefähr bekannt sein, sonst Platzverschwendung bzw. Ineffizienz (Abhilfe: dynamische Hashverfahren) keine sortierte Ausgabe möglich ( Variante: monotone Hashfunktion) Löschen bei offenem Hashing umständlich auch mehrdimensionales Hashing möglich ( partial match queries)

Kollision Hashfunktion Verkettung Offenes Hashing Perfektes Hashing Universelles Hashing Dynamisches Hashing. 4. Hashverfahren

Kollision Hashfunktion Verkettung Offenes Hashing Perfektes Hashing Universelles Hashing Dynamisches Hashing. 4. Hashverfahren 4. Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen von

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen Universelles Hashing Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen wir können nicht annehmen, daß die Keys gleichverteilt im Universum liegen (z.b. Identifier im Programm) könnte also

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (13 Offenes Hashing) Prof. Dr. Susanne Albers Hashing: Allgemeiner Rahmen Schlüsselmenge S Universum U aller möglichen Schlüssel Hashfunktion h 0,,m-1

Mehr

Korollar 191 In einem (a, b)-baum mit n gespeicherten Schlüsseln können die Wörterbuchoperationen in Zeit O(log a n) durchgeführt werden.

Korollar 191 In einem (a, b)-baum mit n gespeicherten Schlüsseln können die Wörterbuchoperationen in Zeit O(log a n) durchgeführt werden. Korollar 191 In einem (a, b)-baum mit n gespeicherten Schlüsseln können die Wörterbuchoperationen in Zeit O(log a n) durchgeführt werden. Bemerkung: Die Wahl von a und b hängt wesentlich von der Anwendung

Mehr

Satz 23 In einer Hashtabelle der Größe n mit m Objekten tritt mit Wahrscheinlichkeit

Satz 23 In einer Hashtabelle der Größe n mit m Objekten tritt mit Wahrscheinlichkeit Satz 23 In einer Hashtabelle der Größe n mit m Objekten tritt mit Wahrscheinlichkeit 1 e m(m 1) 2n 1 e m2 2n mindestens eine Kollision auf, wenn für jeden Schlüssel jede Hashposition gleich wahrscheinlich

Mehr

Algorithmen und Datenstrukturen II: Hashverfahren

Algorithmen und Datenstrukturen II: Hashverfahren Algorithmen und Datenstrukturen II: Hashverfahren Prof. Dr. Oliver Braun Letzte Änderung: 10.05.2017 16:21 Algorithmen und Datenstrukturen II: Hashverfahren 1/28 Hashverfahren bisher jeder Datensatz durch

Mehr

EADS 3.3 Gewichtsbalancierte Bäume 95/598 ľernst W. Mayr

EADS 3.3 Gewichtsbalancierte Bäume 95/598 ľernst W. Mayr 3.3 Gewichtsbalancierte Bäume Siehe zu diesem Thema Seite 189ff in Kurt Mehlhorn: Data structures and algorithms 1: Sorting and searching, EATCS Monographs on Theoretical Computer Science, Springer Verlag:

Mehr

Hashverfahren. (Algorithmen und Datenstrukturen II) Prof. Dr. Oliver Braun. Letzte Änderung: :33. Hashverfahren 1/29

Hashverfahren. (Algorithmen und Datenstrukturen II) Prof. Dr. Oliver Braun. Letzte Änderung: :33. Hashverfahren 1/29 Hashverfahren (Algorithmen und Datenstrukturen II) Prof. Dr. Oliver Braun Letzte Änderung: 19.03.2018 07:33 Hashverfahren 1/29 Hashverfahren bisher jeder Datensatz durch eindeutigen Schlüssel k K gekennzeichnet

Mehr

Algorithmen und Datenstrukturen II: Hashverfahren

Algorithmen und Datenstrukturen II: Hashverfahren Algorithmen und Datenstrukturen II: Hashverfahren Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 10.05.2017 16:21 Inhaltsverzeichnis Hashverfahren....................................

Mehr

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung Übersicht Datenstrukturen und Algorithmen Vorlesung 13: 1 Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://moves.rwth-aachen.de/teaching/ss-15/dsal/ 2 Effizienz

Mehr

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung

Hashing II. Übersicht. 1 Hashing und Verkettung. 2 Offene Adressierung Übersicht Datenstrukturen und Algorithmen Vorlesung 13: 1 Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group https://moves.rwth-aachen.de/teaching/ss-18/dsal/ 2 Effizienz

Mehr

P ( Mindestens zwei Personen haben am gleichen Tag Geb. ) (1) = 1 P ( Alle Personen haben an verschiedenen Tagen Geb. ) (2)

P ( Mindestens zwei Personen haben am gleichen Tag Geb. ) (1) = 1 P ( Alle Personen haben an verschiedenen Tagen Geb. ) (2) 1 Hashing Einleitung Eine sehr naive Herangehensweise zur Implementierung eines Wörterbuchs ist die Benutzung eines hinreichend grossen unsortierten Arrays, in dem jeweils an eine freie Position eingefügt

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (11 Hashverfahren: Allgemeiner Rahmen) Prof. Dr. Susanne Albers Das Wörterbuch-Problem (1) Das Wörterbuch-Problem (WBP) kann wie folgt beschrieben

Mehr

Teil VII. Hashverfahren

Teil VII. Hashverfahren Teil VII Hashverfahren Überblick 1 Hashverfahren: Prinzip 2 Hashfunktionen 3 Kollisionsstrategien 4 Aufwand 5 Hashen in Java Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 7 1 Hashverfahren:

Mehr

Eine universelle Klasse von Hash-Funktionen

Eine universelle Klasse von Hash-Funktionen Eine universelle Klasse von Hash-Funktionen Annahmen: U = p, mit Primzahl p und U = {0,, p-1} Seien a {1,, p-1} und b {0,, p-1} Definiere wie folgt Satz: Die Menge ist eine universelle Klasse von Hash-Funktionen..

Mehr

Teil 1: Suchen. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Suchen 1-1

Teil 1: Suchen. M.O.Franz, Oktober 2007 Algorithmen und Datenstrukturen - Suchen 1-1 Teil 1: Suchen Problemstellung Elementare Suchverfahren Hashverfahren Idee Hashfunktion Hashverfahren mit Verkettung Offene Hashverfahren Dynamische Hashverfahren Binäre Suchbäume Ausgeglichene Bäume B-Bäume

Mehr

Hashing. Überblick Aufgabe Realisierung

Hashing. Überblick Aufgabe Realisierung Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion mit Verkettung der Überläufer Offene Universelles 2/33 Überblick Aufgabe Realisierung Aufgabe Dynamische Verwaltung

Mehr

Algorithmen und Datenstrukturen Hashverfahren

Algorithmen und Datenstrukturen Hashverfahren Algorithmen und Datenstrukturen Hashverfahren Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Prinzip Details Anwendungen Motivation Hashverfahren

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil Hash-Verfahren Version vom: 18. November 2016 1 / 28 Vorlesung 9 18. November 2016

Mehr

Hashing Hashfunktionen Kollisionen Ausblick. Hashverfahren. Dank an: Beate Bollig, TU Dortmund! 1/42. Hashverfahren

Hashing Hashfunktionen Kollisionen Ausblick. Hashverfahren. Dank an: Beate Bollig, TU Dortmund! 1/42. Hashverfahren Dank an: Beate Bollig, TU Dortmund! 1/42 Hashing Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion mit Verkettung der Überläufer Offene Universelles Hashing 2/42

Mehr

Hashverfahren I. Algorithmen und Datenstrukturen 251 DATABASE SYSTEMS GROUP

Hashverfahren I. Algorithmen und Datenstrukturen 251 DATABASE SYSTEMS GROUP Hashverfahren I Bisher: Suchen mit Hilfe von Schlüsselvergleichen Jetzt: Stattdessen Adressberechnung Auswertung einer Funktion (Hash- oder Adressfunktion) Vorteil: Suche erfolgt weitgehend unabhängig

Mehr

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 )

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 ) Kapitel 4 Streuen Wir behandeln nun Ipleentationen ungeordneter Wörterbücher, in denen die Schlüssel ohne Beachtung ihrer Sortierreihenfolge gespeichert werden dürfen, verlangen aber, dass es sich bei

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 4

Grundlagen der Algorithmen und Datenstrukturen Kapitel 4 Grundlagen der Algorithmen und Datenstrukturen Kapitel 4 Christian Scheideler + Helmut Seidl SS 2009 06.05.09 Kapitel 4 1 Wörterbuch-Datenstruktur S: Menge von Elementen Jedes Element e identifiziert über

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

Themen. Hashverfahren. Stefan Szalowski Programmierung II Hashverfahren

Themen. Hashverfahren. Stefan Szalowski Programmierung II Hashverfahren Themen Hashverfahren Einleitung Bisher: Suchen in logarithmischer Zeit --> Binärsuche Frage: Geht es eventuell noch schneller/effektiver? Finden von Schlüsseln in weniger als logarithmischer Zeit Wichtig

Mehr

17. Hashing. Hash Tabellen, Geburtstagsparadoxon, Hashfunktionen, Kollisionsauflösung durch Verketten, offenes Hashing, Sondieren

17. Hashing. Hash Tabellen, Geburtstagsparadoxon, Hashfunktionen, Kollisionsauflösung durch Verketten, offenes Hashing, Sondieren 336 17. Hashing Hash Tabellen, Geburtstagsparadoxon, Hashfunktionen, Kollisionsauflösung durch Verketten, offenes Hashing, Sondieren Motivation 337 Ziel: Tabelle aller n Studenten dieser Vorlesung Anforderung:

Mehr

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n)

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) AVL-Bäume: Ausgabe aller Elemente in O(n) Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) Frage: Kann man Einfügen, Löschen und Suchen in O(1) Zeit? 1 Hashing einfache Methode

Mehr

Implementierung von Mengen (und Wörterbücher): Alternative zu Suchbäumen

Implementierung von Mengen (und Wörterbücher): Alternative zu Suchbäumen 5.8 HashVerfahren und Anwendungen Implementierung von Mengen (und Wörterbücher): Alternative zu Suchbäumen hash: zerhacken, Hackfleisch Grundidee: Indexierung der Tabelle mit geeignet transformierten Schlüsselwerten

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Hashing I. 1 Direkte Adressierung. 2 Grundlagen des Hashings. 3 Kollisionsauflösung durch Verkettung. 4 Hashfunktionen. 5 Offene Adressierung

Hashing I. 1 Direkte Adressierung. 2 Grundlagen des Hashings. 3 Kollisionsauflösung durch Verkettung. 4 Hashfunktionen. 5 Offene Adressierung Übersicht Datenstrukturen und Algorithmen Vorlesung 2: Hashing Prof. Dr. Erika Ábrahám Theorie Hybrider Systeme Informatik 2 http://ths.rwth-aachen.de/teaching/ss-4/ datenstrukturen-und-algorithmen/ Diese

Mehr

Übersicht. Einfache Suche Binäre Suchbäume Hashing Skip-Lists Mengen Sortieren Order-Statistics. 2 Suchen und Sortieren

Übersicht. Einfache Suche Binäre Suchbäume Hashing Skip-Lists Mengen Sortieren Order-Statistics. 2 Suchen und Sortieren Übersicht 2 Einfache Suche Binäre Suchbäume Skip-Lists Mengen Sortieren Order-Statistics (Folie 103, Seite 46 im Skript) Wie können wir eine partielle Funktion {1,..., n} N effizient speichern? Wie können

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 8 (13.5.2016) Hashtabellen I Algorithmen und Komplexität Dictionary mit sortiertem Array Laufzeiten: create: O(1) insert: O(n) find: O(log

Mehr

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen 5. Compiler Gliederung 1. Struktur eines Compilers 2. Syntaxanalyse durch rekursiven Abstieg 3. Ausnahmebehandlung 4. Arrays und Strings 6. Sortieren und Suchen 1. Grundlegende Datenstrukturen 2. Bäume

Mehr

Datenstrukturen und Algorithmen. Vorlesung 10

Datenstrukturen und Algorithmen. Vorlesung 10 Datenstrukturen und Algorithmen Vorlesung 10 Hashtabelle als Erinnerung Hashtabellen sind Tabellen (Arrays), wo aber die Elemente nicht von links nach rechts eingefügt werden, wie bei typischen Arrays

Mehr

14. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i

14. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i Motivation 14. Hashing Hash Tabellen, Geburtstagsparadoxon, Hashfunktionen, Perfektes und universelles Hashing, Kollisionsauflösung durch Verketten, offenes Hashing, Sondieren [Ottan/Widayer, Kap. 4.1-4.3.2,

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2014 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Praktische Informatik I Algorithmen und Datenstrukturen Wintersemester 2006/07

Praktische Informatik I Algorithmen und Datenstrukturen Wintersemester 2006/07 6 Hashverfahren zum Namen Hash : engl für zerhacken gestreute Speicherung 61 Grundbegriffe Wir unterstellen ein direkt adressierbares Speichermedium mit einer Menge von Adressen, dem Adressraum Die Datensätze

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Hashing Maike Buchin 2. und 4.5.2017 Motivation häufig werden Daten anhand eines numerischen Schlüssel abgespeichert Beispiele: Studenten der RUB nach Matrikelnummer Kunden einer

Mehr

Überlaufbehandlung ohne Verkettung

Überlaufbehandlung ohne Verkettung 3.2 Statische Hash-Verfahren direkte Berechnung der Speicheradresse (Seitenadresse) eines Satzes über Schlüssel (Schlüsseltransformation) Hash-Funktion h: S {, 2,..., n} S = Schlüsselraum, n = Größe des

Mehr

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften:

Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: Binäre Suchbäume (a, b)-bäume (Folie 173, Seite 56 im Skript) Es sei a 2 und b 2a 1. Definition Ein (a, b)-baum ist ein Baum mit folgenden Eigenschaften: 1 Jeder Knoten hat höchstens b Kinder. 2 Jeder

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 06 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

17. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i

17. Hashing. Motivation. Naive Ideen. Bessere Idee? k(s) = s i b i Motivation 17. Hashing Hash Tabellen, Geburtstagsparadoxon, Hashfunktionen, Kollisionsauflösung durch Verketten, offenes Hashing, Sondieren Ziel: Tabelle aller n Studenten dieser Vorlesung Anforderung:

Mehr

Programmiertechnik II

Programmiertechnik II Hash-Tabellen Überblick Hashfunktionen: Abbildung von Schlüsseln auf Zahlen Hashwert: Wert der Hashfunktion Hashtabelle: Symboltabelle, die mit Hashwerten indiziert ist Kollision: Paar von Schlüsseln mit

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Such-Algorithmen für Wörterbücher. Wörterbuch. Sommersemester Dr.

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Such-Algorithmen für Wörterbücher. Wörterbuch. Sommersemester Dr. Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 0 Fortgeschrittene Datenstrukturen Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München Such-Algorithmen

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 9 (25.5.2016) Hashtabellen II, Binäre Suchbäume I Algorithmen und Komplexität Hashtabellen mit Chaining Jede Stelle in der Hashtabelle

Mehr

2. Suchen mit Hashverfahren

2. Suchen mit Hashverfahren 2. Suchen mit Hashverfahren Idee Hashfunktion Hashverfahren mit linear verketteten Listen Offene Hashverfahren Dynamische Hashverfahren Hashverfahren in Java Prof. Dr. O. Bittel, HTWG Konstanz Algorithmen

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 8 (14.5.2018) Hashtabellen III Algorithmen und Komplexität Hashtabellen mit Chaining Jede Stelle in der Hashtabelle zeigt auf eine verkette

Mehr

Algorithmen I. Tutorium 1-4. Sitzung. Dennis Felsing

Algorithmen I. Tutorium 1-4. Sitzung. Dennis Felsing Algorithmen I Tutorium 1-4. Sitzung Dennis Felsing dennis.felsing@student.kit.edu www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-05-09 Überblick 1 Verkettete Listen 2 Unbeschränkte Felder 3 Amortisierte Laufzeitanalyse

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Beweis: Die obere Schranke ist klar, da ein Binärbaum der Höhe h höchstens

Beweis: Die obere Schranke ist klar, da ein Binärbaum der Höhe h höchstens Beweis: Die obere Schranke ist klar, da ein Binärbaum der Höhe h höchstens h 1 2 j = 2 h 1 j=0 interne Knoten enthalten kann. EADS 86/600 Beweis: Induktionsanfang: 1 ein AVL-Baum der Höhe h = 1 enthält

Mehr

Informatik I 5. Kapitel. Hashverfahren. Hashverfahren. Hashverfahren. Rainer Schrader. 3. Juni Gliederung

Informatik I 5. Kapitel. Hashverfahren. Hashverfahren. Hashverfahren. Rainer Schrader. 3. Juni Gliederung Informatik I 5. Kapitel Rainer Schrader Zentrum für Angewandte Informatik Köln 3. Juni 2008 1 / 86 2 / 86 Gliederung Adressberechnung durch Hashing Hashfunktionen Kollisionsbehandlung Anwendung von Hashfunktionen

Mehr

Informatik II Hashing

Informatik II Hashing lausthal Das Wörterbuch-Problem Informatik II Hashing. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Das Wörterbuch-Problem (WBP) kann wie folgt beschrieben werden: egeben: Menge von Objekten

Mehr

Informatik II Hashing

Informatik II Hashing lausthal Informatik II Hashing. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Das Wörterbuch-Problem Das Wörterbuch-Problem (WBP) kann wie folgt beschrieben werden: egeben: Menge von Objekten

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 9 (28.5.2014) Hashtabellen III Algorithmen und Komplexität Offene Adressierung : Zusammenfassung Offene Adressierung: Alle Schlüssel/Werte

Mehr

Hashtabellen. Hashverfahren, was ist das eigentlich?

Hashtabellen. Hashverfahren, was ist das eigentlich? Hashverfahren, was ist das eigentlich? Das Hashverfahren ist ein Algorithmus zum Suchen von Datenobjekten in großen Datenmengen. Es basiert auf der Idee, dass eine mathematische Funktion die Position eines

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier

Algorithmen und Datenstrukturen SoSe 2008 in Trier. Henning Fernau Universität Trier Algorithmen und Datenstrukturen SoSe 2008 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Algorithmen und Datenstrukturen Gesamtübersicht Organisatorisches / Einführung Grundlagen: RAM,

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode

Multiplikationsmethode. Informatik I. goldener Schnitt. Der goldene Schnitt. Einführung. Rainer Schrader. 30. Mai Konstruktionsmethode Multiplikationsethode Inforatik I Einführung Rainer Schrader Zentru für Angewandte Inforatik Köln 30. Mai 005 zu (): Irrationale Zahlen sind eine gute Wahl. Erinnerung: Φ = 1 + 5 = 1.6180339887... ˆΦ =

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I INSTITUT FÜR THEORETISCHE INFORMATIK 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Hashtabellen:

Mehr

Hashing. Überblick Aufgabe Realisierung

Hashing. Überblick Aufgabe Realisierung Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion it Verkettung der Überläufer Offene Universelles 2/33 Überblick Aufgabe Realisierung Aufgabe Dynaische Verwaltung

Mehr

Informatik II Hashing

Informatik II Hashing lausthal Informatik II Hashing. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Das Datenbank-Problem "revisited" Lösung bisher: Preprocessing: Elemente 1x sortieren, kostet O(n log n) Laufzeit:

Mehr

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln. 4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst

Mehr

8. Hashing Lernziele. 8. Hashing

8. Hashing Lernziele. 8. Hashing 8. Hashing Lernziele 8. Hashing Lernziele: Hashverfahren verstehen und einsetzen können, Vor- und Nachteile von Hashing gegenüber Suchbäumen benennen können, verschiedene Verfahren zur Auflösung von Kollisionen

Mehr

Programmiertechnik II

Programmiertechnik II Programmiertechnik II Hash-Tabellen Überblick Hashfunktionen: Abbildung von Schlüsseln auf Zahlen Hashwert: Wert der Hashfunktion Hashtabelle: Symboltabelle, die mit Hashwerten indiziert ist Kollision:

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (16 Dynamische Tabellen) Prof. Dr. Susanne Albers Dynamische Tabellen Problem: Verwaltung einer Tabelle unter den Operationen Einfügen und Entfernen,

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer

Mehr

Kapitel 3. Symboltabelle. Symboltabelle Wintersemester 2008/09 1 / 10

Kapitel 3. Symboltabelle. Symboltabelle Wintersemester 2008/09 1 / 10 Kapitel 3 Symboltabelle Symboltabelle Wintersemester 2008/09 1 / 10 Symboltabelle: Ziele und Kriterien Ziele: Die Merkmale bzw. Schlüssel aller Symbole festlegen, die nicht durch Endzustände des Automaten

Mehr

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16

Algorithmen & Datenstrukturen Lösungen zu Blatt 9 HS 16 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Departement Informatik 24. November 2016 Markus

Mehr

Hashing. Übersicht. 5 Hashing

Hashing. Übersicht. 5 Hashing Übersicht 5 Hashing Hashtabellen Hashing with Chaining Universelles Hashing Hashing with Linear Probing Anpassung der Tabellengröße Perfektes Hashing Diskussion / Alternativen H. Täubig (TUM) GAD SS 14

Mehr

Was ist ein assoziativer Speicher?

Was ist ein assoziativer Speicher? Überblick 17. Datenstrukturen 17.1 Einleitung 17.2 Listen 17.3 Assoziative Speicher 17.4 Bäume 17.5 Mengen 17.6 Das Collections-Framework in Java 17.7 Zusammenfassung 17 Datenstrukturen 3 Assoziative Speicher

Mehr

Informatik II. Giuseppe Accaputo, Felix Friedrich, Patrick Gruntz, Tobias Klenze, Max Rossmannek, David Sidler, Thilo Weghorn FS 2017

Informatik II. Giuseppe Accaputo, Felix Friedrich, Patrick Gruntz, Tobias Klenze, Max Rossmannek, David Sidler, Thilo Weghorn FS 2017 1 Informatik II Übung 8 Giuseppe Accaputo, Felix Friedrich, Patrick Gruntz, Tobias Klenze, Max Rossmannek, David Sidler, Thilo Weghorn FS 2017 Heutiges Programm 2 1 Hashtabellen 2 Wiederholung Verkettete

Mehr

Kapitel 6 HASHING. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm

Kapitel 6 HASHING. Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Kapitel 6 HASHING Algorithmen & Datenstrukturen Prof. Dr. Wolfgang Schramm Übersicht 1 1. Einführung 2. Algorithmen 3. Eigenscha?en von Programmiersprachen 4. Algorithmenparadigmen 5. Suchen & SorGeren

Mehr

Suchbäume. Suchbäume. Einfügen in Binären Suchbäumen. Suchen in Binären Suchbäumen. Prinzip Suchbaum. Algorithmen und Datenstrukturen

Suchbäume. Suchbäume. Einfügen in Binären Suchbäumen. Suchen in Binären Suchbäumen. Prinzip Suchbaum. Algorithmen und Datenstrukturen Suchbäume Suchbäume Prinzip Suchbaum Der Wert eines Knotens wird als Schlüssel verstanden Knoten kann auch weitere Daten enthalten, die aber hier nicht weiter betrachtet werden Werte der Schlüssel müssen

Mehr

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005 Fibonacci-Suche Informatik I Einführung Rainer Schrader Zentrum für Angewandte Informatik Köln 4. Mai 005 Grundidee wie bei der Binärsuche, aber andere Aufteilung Fibonacci-Zahlen: F 0 = 0 F 1 = 1 F m

Mehr

Algorithmen & Datenstrukturen. 3. Suchen

Algorithmen & Datenstrukturen. 3. Suchen Algorithmen & Datenstrukturen 3. Suchen 1 Exponentielle Suche Gesucht wird ein Element mit Schlüssel k. Die exponentielle Suche eignet sich zum Suchen in nach den Schlüsselwerten sortierten Feldern, deren

Mehr

Dictionary Definition

Dictionary Definition Kapitel ADS:IV IV. Datenstrukturen Record Linear List Linked List Stack Queue Priority Queue Dictionary Direct-address Table Hash Function ADS:IV-60 Datenstrukturen POTTHAST 2018 Dictionary Definition

Mehr

Seminar Datenbanken Martin Gerstmann

Seminar Datenbanken Martin Gerstmann Seminar Datenbanken Martin Gerstmann Gliederung 1. Ziele 2. Arten 2.1. erweiterbares Hashing 2.2. lineares Hashing 2.3. virtuelles Hashing 3. Bewertung 1. Ziele wachsende/schrumpfende Datenmengen verwalten

Mehr

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014

Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS Oktober 2014 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.813 Algorithmen und Datenstrukturen 1 VU 6.0 Nachtragstest SS 2014 22. Oktober

Mehr

B6.1 Introduction. Algorithmen und Datenstrukturen. Algorithmen und Datenstrukturen. B6.1 Introduction. B6.3 Analyse. B6.4 Ordnungsbasierte Methoden

B6.1 Introduction. Algorithmen und Datenstrukturen. Algorithmen und Datenstrukturen. B6.1 Introduction. B6.3 Analyse. B6.4 Ordnungsbasierte Methoden Algorithmen und Datenstrukturen 11. April 2018 B6. Binäre Suchbäume a Algorithmen und Datenstrukturen B6. Binäre Suchbäume 1 Marcel Lüthi and Gabriele Röger Universität Basel 11. April 2018 a Folien basieren

Mehr

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009

Algorithmen und Datenstrukturen 1 VL Übungstest WS Jänner 2009 Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 2. Übungstest WS 2008 16. Jänner

Mehr

Kap. 5 Hashing. 15./16. VO DAP2 SS /18. Juni 2009

Kap. 5 Hashing. 15./16. VO DAP2 SS /18. Juni 2009 Kap. 5 Hashing nach Übungstest Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 15./16. VO DAP2 SS 2009 16./18. Juni 2009 1 Linux-Kurs 2. Teil Beginn: Di 16.6.

Mehr

Kap. 5 Hashing. Linux-Kurs 2. Teil. Überblick. Motivation. 4 Idee von Hashing. Idee von Hashing. Warum soll ich heute hier bleiben? Und wenn nicht?

Kap. 5 Hashing. Linux-Kurs 2. Teil. Überblick. Motivation. 4 Idee von Hashing. Idee von Hashing. Warum soll ich heute hier bleiben? Und wenn nicht? Kap. 5 Hashing Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, T Dortmund nach Übungstest 15./16. VO DAP2 SS 2009 16./18. Juni 2009 Linux-Kurs 2. Teil Beginn: Di 16.6.

Mehr

Datenstrukturen & Algorithmen Lösungen zu Blatt 5 FS 14

Datenstrukturen & Algorithmen Lösungen zu Blatt 5 FS 14 Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik 26. März

Mehr

Bäume, Suchbäume und Hash-Tabellen

Bäume, Suchbäume und Hash-Tabellen Im folgenden Fokus auf Datenstrukturen, welche den assoziativen Zugriff (über einen bestimmten Wert als Suchkriterium) optimieren Bäume: Abbildung bzw. Vorberechnung von Entscheidungen während der Suche

Mehr

Hashing. Algorithmen und Datenstrukturen II 1

Hashing. Algorithmen und Datenstrukturen II 1 Hashing Algorithmen und Datenstrukturen II 1 Einführendes Beispiel Ein Pizza-Lieferservice in Bielefeld speichert die Daten seiner Kunden: Name, Vorname, Adresse und Telefonnummer Wenn ein Kunde seine

Mehr

Übersicht. Datenstrukturen und Algorithmen. Einführung (II) Einführung (I) Vorlesung 12: Hashing I (K11) Counting Sort. Joost-Pieter Katoen

Übersicht. Datenstrukturen und Algorithmen. Einführung (II) Einführung (I) Vorlesung 12: Hashing I (K11) Counting Sort. Joost-Pieter Katoen Übersicht Datenstrukturen und Algorithen Vorlesung 2: (K) Joost-Pieter Katoen Lehrstuhl für Inforatik 2 Software Modeling and Verification Group https://oves.rwth-aachen.de/teaching/ss-8/dsal/ 4. Juni

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Kürzeste Wege, Heaps, Hashing Heute: Kürzeste Wege: Dijkstra Heaps: Binäre Min-Heaps Hashing:

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 6, Donnerstag 27.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 6, Donnerstag 27. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 6, Donnerstag 27. November 2013 (Hashing Kollisionsbehandlung, Prioritätswarteschlangen)

Mehr

s(x, i) = i h 2 (x), i N 0

s(x, i) = i h 2 (x), i N 0 TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 5 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D.

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Alfons Kemper, Ph.D. Übung zur Vorlesung Einführung in die Informatik für Ingenieure (MSE) Alexander van Renen (renen@in.tum.de)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

Rückblick: Pufferverwaltung

Rückblick: Pufferverwaltung Rückblick: Pufferverwaltung Datenbankpuffer zum Schließen der Zugriffslücke zwischen Primär- und Sekundärspeicher Ersetzungsstrategien berücksichtigen Zeitpunkte und/oder Anzahl der Zugriffe auf bestimmte

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)?

5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)? 5.8.2 Erweiterungen Dynamische Hash-Funktionen (mit variabler Tabellengröße)? Ladefaktor: α, n aktuelle Anzahl gespeicherter Werte m Tabellengröße. Einfacher Ansatz: rehash() a z c h s r b s h a z Wenn

Mehr