Neuronale Netze. Anna Wallner. 15. Mai 2007

Größe: px
Ab Seite anzeigen:

Download "Neuronale Netze. Anna Wallner. 15. Mai 2007"

Transkript

1 5. Mai 2007

2 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente neuronale Netze 2

3 Motivation Gehirn Computer arbeitet in hohem Maße parallel erkennt Muster kann verrauschte/ unvollständige Daten rekonstruieren kann Beispiele verallgemeinern numerisch präzise Berechnung speichert Daten fehlerlos kann zuverlässig auf gespeicherte Daten zugreifen vergisst nichts lernt selbstständig 3

4 Motivation Informationsverarbeitung im Gehirn: Interaktion von stark vernetzten Neuronen über elektrische Impulse Neuronen können gleichzeitig untereinander Informationen austauschen Informationsverarbeitung in einem künstlichen neuronalen Netz: Künstliche Neuronen aktivieren sich untereinander mit Hilfe von gerichteten Verbindungen ~> Aufgaben können anhand von Trainingsbeispielen erlernt werden ~> hohe Parallelität bei der Informationsverarbeitung ~> hohe Fehlertoleranz 4

5 Motivation Fähigkeiten eines neuronalen Netzes: Approximation beliebig komplexer Funktionen Erlernen von Aufgaben (z.b. Klassifikation) Lösen von Problemen, bei denen eine explizite Modellierung schwierig oder nicht durchführbar ist 5

6 Motivation Anwendungsgebiete neuronaler Netze: Frühwarnsysteme Optimierung Zeitreihenanalysen (z.b. Wetter, Aktien) Bildverarbeitung und Mustererkennung - Schrifterkennung - Spracherkennung - Data-Mining Informatik: Bei Robotik, virtuellen Agenten und KI-Modulen in Spielen und Simulationen. 6

7 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente neuronale Netze 7

8 Grundlagen Künstliches Neuron: nicht-lineare parametrisierte beschränkte Funktion X i, i =,...,p i, i =,...,p y = f(x,x 2,...,X p,, 2,..., p ) Eingaben: Ausgaben anderer Neuronen oder beobachtete Werte eines Prozesses Eingaben Parameter (bzw. Gewichte) Ausgabe f(x,x 2,...,X p,, 2,..., p ) y Gewichte: bestimmen den Grad des Einflusses, den die Eingaben auf die Aktivierungsfunktion f haben > 0 ~> erregende Wirkung = 0 ~> keine Wirkung = keine Verbindung < 0 ~> hemmende Wirkung Ausgabe: Ergebnis der Funktion f f p 2 3 X X 2 X 3 X p 8

9 Grundlagen 2 gängige Möglichkeiten der Parametrisierung von f:.) Die Parameter werden den Eingaben zugeordnet: - Ausgabe entspricht nicht-linearer Kombination der Eingabewerte { }, gewichtet durch Parameter { } - häufig verwendetes Potenzial: gewichtete Summe der Eingabewerte mit zusätzlichem Bias -Term - die Aktivierungsfunktion f(v) ist meist s-förmig (sigmoid) i p v = 0 i = i X i X i 9

10 Grundlagen 2 gängige Möglichkeiten der Parametrisierung von f: 2.) Die Parameter gehören zur Definition der Aktivierungsfunktion Beispiel: Gauß'sche radiale Basisfunktion p f(x,x 2,...,X p,, 2,..., p, p+ ) = exp[ i= X i i 2 2 / 2 p+ ] wobei i, i =,...,p = p+ = Position des Mittelpunktes der Gaußglocke Standardabweichung. 0

11 Grundlagen Künstliches neuronales Netz: Verknüpfung der nicht-linearen Funktionen von Neuronen Feedforward -Netze - Informationen fließen nur in eine Richtung (von der Eingabe zur Ausgabe) - stationär (d.h. Eingabewerte konstant => Ausgabewerte konstant)

12 Grundlagen Netzwerkdiagramm eines neuronalen Netzes mit einer verdeckten Schicht Ausgabeschicht Y Y 2 Y K verdeckte Schicht (wird nicht direkt beobachtet) Z Z 2 Z 3 Z M Eingabeschicht X X 2 X 3 X p- X p 2

13 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente neuronale Netze 3

14 Beispiel: XOR XOR (Exclusive Or) logische Verknüpfung zweier Operatoren z = XOR(x,y) z Ausgabe 0 = false = true Gewichte -2 2 Schwellenwerte Ergebnis true <=> genau ein Operator hat den Wert x y Eingabe 4

15 Beispiel: XOR.) x = 0, y = 0 2.) x =, y = ) x = 0, y = ) x =, y =

16 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente neuronale Netze 6

17 Netze mit einer verdeckten Schicht Netzwerkdiagramm eines neuronalen Netzes mit einer verdeckten Schicht Ausgabeschicht Y Y 2 Y K verdeckte Schicht (wird nicht direkt beobachtet) Z 0 Z Z 2 Z M Eingabeschicht X 0 X X 2 X p- X p 7

18 Netze mit einer verdeckten Schicht Gewichte gewichtete Summe Aktivierungsfunktion Merkmale Bias X 0 = 0m z.b. Sigmoidfunktion X m sv = e sv Eingabewerte X 2 X 3 2m 3m Σ s = 0,5 s =,0 s = 0,0 Z m = v m =,2,...,M X p pm p v = n=0 wobei nm X n = 0m m T X 8

19 Netze mit einer verdeckten Schicht Gewichte gewichtete Summe Bias Z 0 = Z 0k k Σ M T k = m=0 mk Z k = 0k k T Z k =,2,...,K Z 2 2k Merkmale Z 3 3k => Ausgabe des neuronalen Netzes: f k X = g k T, k =,2,...,K Z M Mk für Regressionen meist g k T = T k für Klassifikationen meist K g k T = e T k l = e T l Softmax-Funktion 9

20 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente neuronale Netze 20

21 Anpassung des Netzes mit Backpropagation Wie bestimmt man geeignete Gewichte? Sei θ die Menge aller Gewichte = { 0m, m, 0k, k ; 0m, 0k R, m R p, k R M, m =,2,..,M, k =,2,..,K} und X,Y, X = X,...,X p, Y = y,..., y K ein Trainingsdatensatz. ~> Fehlerfunktionen als Maß für die Anpassung ~> Summe der Fehlerquadrate K R = k= y k f k X 2 Differenz zwischen gewünschter und tatsächlicher Ausgabe Minimieren von R(θ) mit Hilfe des Gradientenabstiegs ~> Backpropagation 2

22 Anpassung des Netzes mit Backpropagation 22

23 Anpassung des Netzes mit Backpropagation Backpropagation-Algorithmus:. forward pass : - Festlegen der Gewichte - Anlegen eines Eingabemusters, das anschließend vorwärts durch das Netz propagiert wird - Berechnung der f k X, k =,..,K 2. Vergleich dieser Ausgabe mit den gewünschten Werten ~> Differenz = Fehler des Netzes K R = k= y k f k X 2, X = X,..., X p 23

24 Anpassung des Netzes mit Backpropagation 3. backward pass ~> der Fehler wird über die Ausgabe- zur Eingabeschicht zurück propagiert, die Gewichtungen der Neuronenverbindungen werden abhängig von ihrem Einfluss auf den Fehler geändert Es gilt Z m = 0m m T X, Z = Z,...,Z M f k X = g k T k = g k 0k T k Z K R = k= M = g k 0k m= mk 0m m T X K y k f k X 2 = [ y k= M k g k 0k mk 0m m X ]2 T m= 24

25 Anpassung des Netzes mit Backpropagation Berechnung der Anpassung der Gewichte: mk = R mk = k Z m, m = 0,,...,M, k =,...,K mit nm = R nm Lernrate k = 2 y k f k X g T k 0k k Z = s m X n, n = 0,,...,p, m =,...,M mk K s m = k= km k T 0m m X nm Aktualisierung der Gewichte: neu mk alt = mk mk neu alt nm = nm nm 25

26 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente neuronale Netze 26

27 Probleme Wahl der Startwerte für die Gewichte - alle Gewichte identisch 0 => Modell ist in allen Komponenten symmetrisch => der Algorithmus wiederholt sich ohne tatsächlich etwas zu bewirken - zu hohe Werte => eventuell schlechte Ergebnisse - Zufallswerte nahe 0 => Modell ist zu Beginn fast linear, wird nicht-linear, wenn Gewichte größer werden 27

28 Probleme Anzahl der verdeckten Neuronen und Schichten - zu viele verdeckte Neuronen => zu viele Parameter => das neuronale Netz ist zu flexibel => Überanpassung - zu wenige verdeckte Neuronen => zu wenige Parmeter => das neuronale Netz ist nicht komplex genug => kann nicht richtig trainiert werden - häufig: # verdeckte Neuronen {5,...,00} (steigt mit Anzahl der Eingabewerte und der Trainingseinheiten) - # verdeckte Schichten abhängig von - Hintergrundwissen - Ergebnissen von Experimenten 28

29 Probleme Beispiel: 29

30 Probleme Überanpassung Modell im globalen Minimum der Fehlerfunktion R oft überangepasst ~> rechtzeitiger Abbruch des Verfahrens ~> Weight-Decay-Methode zur Fehlerfunktion wird ein Strafterm addiert: R(θ) + λj(θ), wobei J = 2 mk 2 2 mk nm nm und 0 ein Tuningparameter mk = R J mk = R mk mk nm = R J nm = R nm nm => Zu große Werte für λ lassen die Gewichte gegen 0 schrumpfen. 30

31 Probleme Skalierung der Eingabewerte ~> bestimmt die effektive Skalierung der Gewichte in der untersten Schicht => kann einen großen Einfluss auf die Qualität des Endergebnisses haben ~> die Eingabewerte werden z.b. so genormt, dass gilt Mittelwert = 0 Standardabweichung = => Gleichbehandlung der Eingabewerte im Regulierungsprozess => ermöglicht sinnvolle Wahl eines Intervalls für die Startwerte der Gewichte ~> man wählt in diesem Fall zufällige Gewichte aus dem Intervall [-0,7; +0,7] 3

32 Probleme Multiple Minima Die Fehlerfunktion R(θ) ist nicht konvex ~> besitzt viele lokale Minima => Endergebnis hängt stark von der Wahl der Anfangswerte der Gewichte ab => Experimentieren zu Beginn notwendig => wähle dasjenige Netz, das den kleinsten Fehler verspricht Alternative : verwende die durchschnittlichen Vorhersagen aus allen Netzen als endgültige Vorhersage Alternative 2: bagging wie, Netze werden jedoch mit zufällig gestörten Trainingsdaten trainiert 32

33 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente neuronale Netze 33

34 Beispiel: Klassifikation handgeschriebener Zahlen Beispiel: Klassifikation handgeschriebener Ziffern von 0 9 (Erkennen von Mustern) Erzeugung der Eingabemuster: - Einscannen handgeschriebener Ziffern, Auflösung 6x6 Pixel Umfang: - Trainingsmenge: 320 Ziffern - Testmenge: 60 Ziffern Es werden fünf verschiedene Netze trainiert und anschließend verglichen. 34

35 Beispiel: Klassifikation handgeschriebener Zahlen Net-: Netz ohne verdeckte Schicht Eingabeschicht: Pro Ziffer 256 Eingabewerte Ausgabeschicht: 0 Neuronen, für die Ziffern 0-9 f k X geschätzte Wahrscheinlichkeit, dass Bild X zur Klasse k gehört, k {0,,...,9} : # Gewichte = # Verknüpfungen = x6 Erfolgsquote: 80% 35

36 Beispiel: Klassifikation handgeschriebener Zahlen Net-2: Netz mit einer verdeckten Schicht, deren 2 Neuronen vollständig verknüpft sind # Gewichte = # Verknüpfungen = = x6 Erfolgsquote: 87% 36

37 Beispiel: Klassifikation handgeschriebener Zahlen Net-3: Netz mit zwei verdeckten Schichten, die lokal verknüpft sind # Gewichte = # Verknüpfungen = = 46 5x5 4x4 8x = x3 6x6 Erfolgsquote: 88,5% 37

38 Beispiel: Klassifikation handgeschriebener Zahlen Net-4: Netz mit zwei verdeckten Schichten, die lokal verknüpft sind + weight sharing auf einer Ebene # Verknüpfungen # Gewichte = = = = 86 4x4 5x5 2x 8x = = x3 6x6 Erfolgsquote: 94% 38

39 Beispiel: Klassifikation handgeschriebener Zahlen Net-4: Netz mit zwei verdeckten Schichten, die lokal verknüpft sind + weight sharing auf zwei Ebenen # Verknüpfungen # Gewichte = = = = 264 4x 4x = = x 8x8 3x3 5x5 Erfolgsquote: 98,4% 6x6 39

40 Beispiel: Klassifikation handgeschriebener Zahlen Ergebnis: Verknüpfungen Gewichte Erfolgsquote Net ,00% Net ,00% Net ,50% Net ,00% Net ,40% => Net-5 liefert die besten Ergebnisse 40

41 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente neuronale Netze 4

42 Rekurrente neuronale Netze Rekurrente neuronale Netze - mindestens eine zyklische Verbindung - jeder Verknüpfung wird eine bestimmte Verzögerungszeit zugewiesen (Vielfaches einer festgelegten Zeiteinheit) Beispiel: Verzögerungszeit C g kt Inputs und Outputs zum Zeitpunkt kt: T: Zeiteinheit 0 A B C u kt u 2 kt u kt k =,2,3,... A B Inputs Output u 2 [(k-)t] y B [(k-)t] y A kt y A kt y B kt y A kt g kt u kt u 2 kt 42

43 Quellen T. Hastie, R. Tibshirani, J. Friedman. - The elements of statistical learning G. Dreyfus. - Neural Networks Methodology and Applications

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze? Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

Neuronale Netze SS 2007. Universität Ulm. Anna Wallner. Betreuer: Malte Spiess. Seminar Statistische Lerntheorie und ihre Anwendungen

Neuronale Netze SS 2007. Universität Ulm. Anna Wallner. Betreuer: Malte Spiess. Seminar Statistische Lerntheorie und ihre Anwendungen Seminar Statistische Lerntheorie und ihre Anwendungen Ausarbeitung zum Vortrag vom 15. Mai 2007 Neuronale Netze SS 2007 Universität Ulm Anna Wallner Betreuer: Malte Spiess Inhaltsverzeichnis 1 Motivation

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14.

Neuronale Netze in der Phonetik: Feed-Forward Netze. Pfitzinger, Reichel IPSK, LMU München {hpt 14. Neuronale Netze in der Phonetik: Feed-Forward Netze Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 14. Juli 2006 Inhalt Typisierung nach Aktivierungsfunktion Lernen in einschichtigen

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12

Mustererkennung: Neuronale Netze. D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Mustererkennung: Neuronale Netze D. Schlesinger ()Mustererkennung: Neuronale Netze 1 / 12 Feed-Forward Netze y 1 y 2 y m...... x 1 x 2 x n Output Schicht i max... Zwischenschicht i... Zwischenschicht 1

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

11. Neuronale Netze 1

11. Neuronale Netze 1 11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt

Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik. 8. Aufgabenblatt Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Albayrak, Fricke (AOT) Oer, Thiel (KI) Wintersemester 2014 / 2015 8. Aufgabenblatt

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen 6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1

Mehr

Neuronale Netze Aufgaben 3

Neuronale Netze Aufgaben 3 Neuronale Netze Aufgaben 3 martin.loesch@kit.edu (0721) 608 45944 MLNN IN FLOOD3 2 Multi Layer Neural Network (MLNN) Netzaufbau: mehrere versteckte (innere) Schichten Lernverfahren: Backpropagation-Algorithmus

Mehr

Grundlagen zu neuronalen Netzen. Kristina Tesch

Grundlagen zu neuronalen Netzen. Kristina Tesch Grundlagen zu neuronalen Netzen Kristina Tesch 03.05.2018 Gliederung 1. Funktionsprinzip von neuronalen Netzen 2. Das XOR-Beispiel 3. Training des neuronalen Netzes 4. Weitere Aspekte Kristina Tesch Grundlagen

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

Rekurrente / rückgekoppelte neuronale Netzwerke

Rekurrente / rückgekoppelte neuronale Netzwerke Rekurrente / rückgekoppelte neuronale Netzwerke Forschungsseminar Deep Learning 2018 Universität Leipzig 12.01.2018 Vortragender: Andreas Haselhuhn Neuronale Netzwerke Neuron besteht aus: Eingängen Summenfunktion

Mehr

Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien

Neuronale. Netze. Henrik Voigt. Neuronale. Netze in der Biologie Aufbau Funktion. Neuronale. Aufbau Netzarten und Topologien in der Seminar Literaturarbeit und Präsentation 17.01.2019 in der Was können leisten und was nicht? Entschlüsseln von Texten??? Bilderkennung??? in der in der Quelle: justetf.com Quelle: zeit.de Spracherkennung???

Mehr

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004

Perzeptronen. Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 Perzeptronen Katrin Dust, Felix Oppermann Universität Oldenburg, FK II - Department für Informatik Vortrag im Rahmen des Proseminars 2004 1/25 Gliederung Vorbilder Neuron McCulloch-Pitts-Netze Perzeptron

Mehr

Ein selbstmodellierendes System für die Wasserwirtschaft

Ein selbstmodellierendes System für die Wasserwirtschaft Ein selbstmodellierendes System für die Wasserwirtschaft Dipl.-Ing. Dr. ANDRADE-LEAL Wien, im Juli 2001 1 Einleitung, Motivation und Voraussetzungen Künstliche Intelligenz Neuronale Netze Experte Systeme

Mehr

Grundlagen neuronaler Netzwerke

Grundlagen neuronaler Netzwerke AUFBAU DES NEURONALEN NETZWERKS Enrico Biermann enrico@cs.tu-berlin.de) WS 00/03 Timo Glaser timog@cs.tu-berlin.de) 0.. 003 Marco Kunze makunze@cs.tu-berlin.de) Sebastian Nowozin nowozin@cs.tu-berlin.de)

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze

Mehr

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017

Kapitel 10. Maschinelles Lernen Lineare Regression. Welche Gerade? Problemstellung. Th. Jahn. Sommersemester 2017 10.1 Sommersemester 2017 Problemstellung Welche Gerade? Gegeben sind folgende Messungen: Masse (kg) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Kraft (N) 1.6 2.2 3.2 3.0 4.9 5.7 7.1 7.3 8.1 Annahme: Es gibt eine Funktion

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

Was sind Neuronale Netze?

Was sind Neuronale Netze? Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk

Mehr

6.2 Feed-Forward Netze

6.2 Feed-Forward Netze 6.2 Feed-Forward Netze Wir haben gesehen, dass wir mit neuronalen Netzen bestehend aus einer oder mehreren Schichten von Perzeptren beispielsweise logische Funktionen darstellen können Nun betrachten wir

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

Klassifikationsverfahren und Neuronale Netze

Klassifikationsverfahren und Neuronale Netze Klassifikationsverfahren und Neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck 9.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

MULTILAYER-PERZEPTRON

MULTILAYER-PERZEPTRON Einleitung MULTILAYER-PERZEPTRON Die Ausarbeitung befasst sich mit den Grundlagen von Multilayer-Perzeptronen, gibt ein Beispiel für deren Anwendung und zeigt eine Möglichkeit auf, sie zu trainieren. Dabei

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Neural Networks: Architectures and Applications for NLP

Neural Networks: Architectures and Applications for NLP Neural Networks: Architectures and Applications for NLP Session 02 Julia Kreutzer 8. November 2016 Institut für Computerlinguistik, Heidelberg 1 Overview 1. Recap 2. Backpropagation 3. Ausblick 2 Recap

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sebastian Morr 4. Juni 2008 Worum geht es? Die Natur hat uns 3,7 Milliarden Jahre Forschungszeit voraus. Toby Simpson Vorbild: Strukturen des Gehirns Ziel: Lernfähige Künstliche

Mehr

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Mehrere Neuronen, Assoziative Speicher und Mustererkennung. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Mehrere Neuronen, Assoziative Speicher und Mustererkennung Prof. Dr. rer. nat. Nikolaus Wulff Modell eines Neuron x x 2 x 3. y y= k = n w k x k x n Die n binären Eingangssignale x k {,}

Mehr

Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser

Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser Praktikum Simulationstechnik Rene Schneider, Benjamin Zaiser 11.11.2008 CSM Master: Praktikum Simulationstechnik, rs034, bz003 2 Befehlsübersicht Begriffsdefinition / Neuronale Netze: / / 11.11.2008 CSM

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Statistical Learning

Statistical Learning Statistical Learning M. Gruber KW 42 Rev.1 1 Neuronale Netze Wir folgen [1], Lec 10. Beginnen wir mit einem Beispiel. Beispiel 1 Wir konstruieren einen Klassifikator auf der Menge, dessen Wirkung man in

Mehr

Konvergenz von Hopfield-Netzen

Konvergenz von Hopfield-Netzen Matthias Jauernig 1. August 2006 Zusammenfassung Die nachfolgende Betrachtung bezieht sich auf das diskrete Hopfield-Netz und hat das Ziel, die Konvergenz des Verfahrens zu zeigen. Leider wird dieser Beweis

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Übersicht Neuronale Netze Motivation Perzeptron Grundlagen für praktische Übungen

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme Analytisch lösbare Optimierungsaufgaben Das Chaos-Spiel gründet auf der folgenden Vorschrift: Man startet von einem beliebigen Punkt aus geht auf einer Verbindung mit einem von drei zufällig gewählten

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Fakultät Informatik, Institut für Technische Informatik, Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Künstliche Neuronale Netze Hauptseminar Martin Knöfel Dresden, 16.11.2017 Gliederung

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. 5. Aufgabenblatt: Neural Network Toolbox 1 Neuronale Netze, Fuzzy Control, Genetische Algorithmen Prof. Jürgen Sauer 5. Aufgabenblatt: Neural Network Toolbox 1 A. Mit Hilfe der GUI vom Neural Network erstelle die in den folgenden Aufgaben geforderten

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training eines Künstlich Neuronalen Netzes (KNN) zur Approximation einer Kennlinie in JavaNNS 28.01.2008

Mehr

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Neuronale Netze WS 2014/2015 Vera Demberg Neuronale Netze Was ist das? Einer der größten Fortschritte in der Sprachverarbeitung und Bildverarbeitung der letzten Jahre:

Mehr

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle

Mustererkennung. Übersicht. Unüberwachtes Lernen. (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren Gaussian-Mixture Modelle Mustererkennung Unüberwachtes Lernen R. Neubecker, WS 01 / 01 Übersicht (Un-) Überwachtes Lernen Clustering im Allgemeinen k-means-verfahren 1 Lernen Überwachtes Lernen Zum Training des Klassifikators

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

Leipziger Institut für Informatik. Wintersemester Seminararbeit. im Studiengang Informatik der Universität Leipzig

Leipziger Institut für Informatik. Wintersemester Seminararbeit. im Studiengang Informatik der Universität Leipzig Leipziger Institut für Informatik Wintersemester 2017 Seminararbeit im Studiengang Informatik der Universität Leipzig Forschungsseminar Deep Learning Begriffsbildung, Konzepte und Überblick Verfasser:

Mehr

Radiale-Basisfunktionen-Netze. Rudolf Kruse Neuronale Netze 120

Radiale-Basisfunktionen-Netze. Rudolf Kruse Neuronale Netze 120 Radiale-Basisfunktionen-Netze Rudolf Kruse Neuronale Netze 2 Radiale-Basisfunktionen-Netze Eigenschaften von Radiale-Basisfunktionen-Netzen (RBF-Netzen) RBF-Netze sind streng geschichtete, vorwärtsbetriebene

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Nichtlineare Klassifikatoren

Nichtlineare Klassifikatoren Nichtlineare Klassifikatoren Mustererkennung und Klassifikation, Vorlesung No. 11 1 M. O. Franz 12.01.2008 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Einige überwachte Lernverfahren. Perzeptron, Mehrschicht-Perzeptronen und die Backpropagation-Lernregel

Einige überwachte Lernverfahren. Perzeptron, Mehrschicht-Perzeptronen und die Backpropagation-Lernregel Einige überwachte Lernverfahren Perzeptron, Mehrschicht-Perzeptronen und die Backpropagation-Lernregel Funktionsweise eines künstlichen Neurons x w k Neuron k x 2 w 2k net k f y k x n- w n-,k x n w n,k

Mehr

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze

Teil III: Wissensrepräsentation und Inferenz. Kap.5: Neuronale Netze Vorlesung Künstliche Intelligenz Wintersemester 2008/09 Teil III: Wissensrepräsentation und Inferenz Kap.5: Neuronale Netze Dieses Kapitel basiert auf Material von Andreas Hotho Mehr Details sind in der

Mehr

Reinforcement Learning

Reinforcement Learning Reinforcement Learning 1. Allgemein Reinforcement Learning 2. Neuronales Netz als Bewertungsfunktion 3. Neuronales Netz als Reinforcement Learning Nils-Olaf Bösch 1 Allgemein Reinforcement Learning Unterschied

Mehr

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Neuronale Netze. Einführung i.d. Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Neuronale Netze Einführung in die Wissensverarbeitung 2 VO 708.560+ 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut für

Mehr

Universität Leipzig. Fakultät für Mathematik und Informatik. Forschungsseminar Deep Learning. Prof. Dr. Erhard Rahm. Wintersemester 2017/18

Universität Leipzig. Fakultät für Mathematik und Informatik. Forschungsseminar Deep Learning. Prof. Dr. Erhard Rahm. Wintersemester 2017/18 Universität Leipzig Fakultät für Mathematik und Informatik Forschungsseminar Deep Learning Prof. Dr. Erhard Rahm Wintersemester 2017/18 Rekurrente / rückgekoppelte neuronale Netze Hausarbeit Vorgelegt

Mehr

Eine kleine Einführung in neuronale Netze

Eine kleine Einführung in neuronale Netze Eine kleine Einführung in neuronale Netze Tobias Knuth November 2013 1.2 Mensch und Maschine 1 Inhaltsverzeichnis 1 Grundlagen neuronaler Netze 1 1.1 Kopieren vom biologischen Vorbild...... 1 1.2 Mensch

Mehr

Einfaches Framework für Neuronale Netze

Einfaches Framework für Neuronale Netze Einfaches Framework für Neuronale Netze Christian Silberbauer, IW7, 2007-01-23 Inhaltsverzeichnis 1. Einführung...1 2. Funktionsumfang...1 3. Implementierung...2 4. Erweiterbarkeit des Frameworks...2 5.

Mehr

Grundlagen Neuronaler Netze

Grundlagen Neuronaler Netze Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht

Mehr

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON

BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON BACKPROPAGATION & FEED-FORWARD DAS MULTILAYER PERZEPTRON EINFÜHRUNG IN KÜNSTLICHE NEURONALE NETZE Modul Leitung Technischer Datenschutz und Mediensicherheit Nils Tekampe Vortrag Jasmin Sunitsch Abgabe

Mehr

Klassifikation von Multidimensionale Zeitreihen mit Hilfe von Deep Learning

Klassifikation von Multidimensionale Zeitreihen mit Hilfe von Deep Learning Master Informatik - Grundseminar Klassifikation von Multidimensionale Zeitreihen mit Hilfe von Deep Learning Manuel Meyer Master Grundseminar WS 2014 / 2015 Betreuender Professor: Prof. Dr.-Ing. Andreas

Mehr

Automatische Spracherkennung

Automatische Spracherkennung Automatische Spracherkennung 3 Vertiefung: Drei wichtige Algorithmen Teil 3 Soweit vorhanden ist der jeweils englische Fachbegriff, so wie er in der Fachliteratur verwendet wird, in Klammern angegeben.

Mehr

RL und Funktionsapproximation

RL und Funktionsapproximation RL und Funktionsapproximation Bisher sind haben wir die Funktionen V oder Q als Tabellen gespeichert. Im Allgemeinen sind die Zustandsräume und die Zahl der möglichen Aktionen sehr groß. Deshalb besteht

Mehr

10. Neuronale Netze 1

10. Neuronale Netze 1 10. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Ausarbeitung zum Hauptseminar Machine Learning

Ausarbeitung zum Hauptseminar Machine Learning Ausarbeitung zum Hauptseminar Machine Learning Matthias Seidl 8. Januar 2004 Zusammenfassung single-layer networks, linear separability, least-squares techniques Inhaltsverzeichnis 1 Einführung 2 1.1 Anwendungen

Mehr

Das Modell: Nichtlineare Merkmalsextraktion (Preprozessing) + Lineare Klassifikation

Das Modell: Nichtlineare Merkmalsextraktion (Preprozessing) + Lineare Klassifikation Das Modell: Nichtlineare Merkmalsextraktion (Preprozessing) + Lineare Klassifikation Hochdimensionaler Eingaberaum {0,1} Z S quadratisch aufgemalt (zwecks besserer Visualisierung) als Retina bestehend

Mehr

Intelligente Algorithmen Einführung in die Technologie

Intelligente Algorithmen Einführung in die Technologie Intelligente Algorithmen Einführung in die Technologie Dr. KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Natürlich sprachliche

Mehr

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff

Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2. Tom Schelthoff Weitere Untersuchungen hinsichtlich der Anwendung von KNN für Solvency 2 Tom Schelthoff 30.11.2018 Inhaltsverzeichnis Deep Learning Seed-Stabilität Regularisierung Early Stopping Dropout Batch Normalization

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke

Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Der Sprung in die Zukunft! Einführung in neuronale Netzwerke Inhalt 1. Warum auf einmal doch? 2. Welche Einsatzgebiete gibt es? 3. Was sind neuronale Netze und wie funktionieren sie? 4. Wie lernen neuronale

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Neuro-Info Notizen. Markus Klemm.net WS 2016/2017. Inhaltsverzeichnis. 1 Hebbsche Lernregel. 1 Hebbsche Lernregel Fälle Lernrate...

Neuro-Info Notizen. Markus Klemm.net WS 2016/2017. Inhaltsverzeichnis. 1 Hebbsche Lernregel. 1 Hebbsche Lernregel Fälle Lernrate... Neuro-Info Notizen Marus Klemm.net WS 6/7 Inhaltsverzeichnis Hebbsche Lernregel. Fälle........................................ Lernrate..................................... Neural Gas. Algorithmus.....................................

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Evolutionäre Algorithmen: Überlebenskampf und Evolutionäre Strategien Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überblick Einleitung Adaptive Filter Künstliche

Mehr

KNN für XOR-Funktion. 6. April 2009

KNN für XOR-Funktion. 6. April 2009 KNN für XOR-Funktion G.Döben-Henisch Fachbereich Informatik und Ingenieurswissenschaften FH Frankfurt am Main University of Applied Sciences D-60318 Frankfurt am Main Germany Email: doeben at fb2.fh-frankfurt.de

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2012 / 2013 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Analyse komplexer Szenen mit Hilfe von Convolutional Neural Networks

Analyse komplexer Szenen mit Hilfe von Convolutional Neural Networks Analyse komplexer Szenen mit Hilfe von Convolutional Anwendungen 1 Vitalij Stepanov HAW-Hamburg 24 November 2011 2 Inhalt Motivation Alternativen Problemstellung Anforderungen Lösungsansätze Zielsetzung

Mehr

Einführung in die Neuroinformatik Lösungen zum 5. Aufgabenblatt

Einführung in die Neuroinformatik Lösungen zum 5. Aufgabenblatt Einführung in die Neuroinformatik Lösungen zum 5. Aufgabenblatt 7. Aufgabe : Summe {} Man sieht leicht ein, dass ein einzelnes Perzeptron mit Gewichten c, c 2, c 3 und Schwelle θ das Problem nicht lösen

Mehr

7. Vorlesung Neuronale Netze

7. Vorlesung Neuronale Netze Soft Control (AT 3, RMA) 7. Vorlesung Neuronale Netze Grundlagen 7. Vorlesung im Aufbau der Vorlesung 1. Einführung Soft Control: Definition und Abgrenzung, Grundlagen "intelligenter" Systeme 2. Wissensrepräsentation

Mehr

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Ein Schwellenwertelement (Threshold Logic Unit, TLU) ist eine Verarbeitungseinheit für Zahlen mitneingängenx,...,x n und einem

Mehr

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 8 Aufgabe 1 Probabilistische Inferenz (32 Punkte) In einer medizinischen Studie werden zwei Tests zur Diagnose von Leberschäden verglichen. Dabei wurde folgendes festgestellt: Test 1 erkennt

Mehr