Aufbau und Beschreibung Neuronaler Netzwerke

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Aufbau und Beschreibung Neuronaler Netzwerke"

Transkript

1 Aufbau und Beschreibung r 1

2 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2

3 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser (Axon) Synapsen 3

4 Biologisches Vorbild Das Neuron Informationen können im Nervensystem durch zwei Arten von elektrochemischen Signalen weiter geleitet werden: durch lokale Potentiale und Aktionspotentiale (Lokale Potentiale sind passive Signale, die durch externe Stimulation der Membran, der Dendriten oder des Zellkörpers hervorgerufen wird, z.b. Sinnesrezeptoren auf der Netzhaut des Auges). Aktionspotentiale entstehen, wenn die Membran vom Ruhepotential ausgehend depolarisiert wird. Jede Zelle hat hier ihren eigenen Schwellenwert, der auch eine Funktion der Zeit sein kann. Wird dieser Zellenschwellwert überschritten, so kippt das Ruhepotential unweigerlich in ein positives Potential um, dessen Maximum bei ca. +30 mv liegt. Je intensiver ein Stimulus ist, um so größer ist erstens die Anzahl der Neuronen, in denen Impulse auftreten, und mit zunehmender Intensität steigt die Zahl der Nervenimpulse, die er auslöst. 4

5 Biologisches Vorbild Das Neuron Wenn die Reizintensität unter dem Schwellwert des Neurons bleibt, hat dies lediglich zur Folge, dass das Ruhepotential ansteigt. Steigt sie über den Schwellwert wird das Neuron eine Folge von Spikes feuern. (Als Spike wird das Aktionspotential bezeichnet, da es an eine Spitze erinnert). Wenn ein Aktionspotential seine Reise entlang des Axons hinter sich gebracht hat und die Endknöpfchen erreicht hat, muss die Information an das nächste Neuron weiter gegeben werden. Aber zwei Neuronen berühren sich niemals; zwischen ihnen besteht immer ein kleiner Spalt. Diese Anschlussstelle wird als Synapse bezeichnet. 5

6 Biologisches Vorbild Das Neuron Um den Spalt zu überbrücken und neurale Botschaften zum nächsten Neuron zu bringen, wird der elektrische Impuls in einen chemischen Prozess transformiert. Chemische Trägerstoffe transportieren ihn von einer Seite der Synapse, der präsynaptischen Membran des Endknöpfchens, über den Spalt an die postsynaptische Membran der Dendriten oder des Zellkörpers des nächsten Neurons. Dort kann er ein lokales Potential auslösen, das abermals entlang des Axons zur nächsten Synapse wandert, usw. Einige Synapsen sind exzitatorisch (erregend): Der Neurotransmitter veranlasst das postsynaptische Neuron, Impulse in einer höheren Rate zu generieren. Andere sind inhibitorisch (hemmend): Die Transmittersubstanz reduziert die Impulsrate oder verhindert neue Impulse in der postsynaptischen Zelle. 6

7 Mathematisches Modell Eingabe anderer Neuronen Propagierungsfunktion: Sie verarbeitet die Eingaben zur Netzeingabe (oft gewichtete Summe) f propg :{o j 1,, o j n } {w ij1,,w ij n } net i net i = f propg {o j1,,o jn,w ij 1,,w ijn } n net i = o j w ij j=1 Aktivierungsfunktion: Sie erzeugt aus der Netzeingabe und der alten Aktivierung die neue Aktivierung. a i t = f act net i t, a i t 1, θ i f act :net i t a i t 1 θ i a j t Ausgabefunktion: Sie erzeugt aus der Aktivierung die Ausgabe (oft Identität) f out : a i o i f out a i = a i, also a i = o i Ausgabe zu anderen Neuronen 7

8 Mathematisches Modell Definition Neuron: Ein künstliches Neuron ist ein Tupel (x, w, f_act, f_out, o) bestehend aus einem Eingabevektor x = (x1,..., xn), einem Gewichtsvektor w = (w1,..., wn), einer Aktivierungsfunktion f_act mit f_act: IRn x IRn ---> IR und einer Ausgabefunktion f_out, für die f_out: IR --> IR gilt. Dabei wird durch f_out ( f_act( x, w)) = o der Ausgabewert des Neurons erzeugt, der an die nachfolgenden Neuronen über die Axonkollaterale weitergeleitet wird. Definition s Netz: Ein s Netz ist ein Paar (N, V) mit einer Menge N von Neuronen und einer Menge V von Verbindungen. Es besitzt die Struktur eines gerichteten Graphen, für den die folgenden Einschränkungen und Zusätze gelten: Die Knoten des Graphen heißen Neuronen. Die Kanten heißen Verbindungen. Jedes Neuron kann eine beliebige Menge von Verbindungen empfangen, über die es seine Eingabe erhält. Jedes Neuron kann genau eine Ausgabe über eine beliebige Menge von Verbindungen aussenden. Das Netz erhält aus Verbindungen, die der "Außenwelt" entspringen, Eingaben und gibt seine Ausgaben über in der "Außenwelt" endende Verbindungen ab. 8

9 Mathematisches Modell Grundaufbau s Netzwerk : Gewichtete Verbindungen wds Schichten: 3 verschiedene Schichttypen x 1 x 2 o 1 Eingabeschicht (Input Layer) Neuronen dieser Schicht nehmen Informationen als Rezeptoren aus der Umgebung auf, geben diese über die Aktivation an das Netz weiter und haben keine Gewichtung (Eingabeunits). Vermittlungsschicht (Hidden Layer) Alle Schichten zwischen Ein- und Ausgabeschicht, auf deren Aktivation nicht unmittelbar zugegriffen werden kann. x 3 x n Input Layer k Hidden Layer Output Layer o m Ausgabeschicht (Output Layer) Diese Schicht macht die Ergebnisse als Aktoren des Netzes nach aussen hin sichtbar. Gewichtung wds (d = destination s = source) wds = 0 : keine Neuronenverbindung wds < 0 : hemmende Neuronenverbindung wds > 0 : anregende Neuronenverbindung 9

10 Mathematisches Modell Aktivierungsfunktion : Aktivierungs- und Ausgabefunktion können auch als Transferfunktion zusammengefasst werden. Der Schwellwert θ eines Neurons ist diesem genau zugeordnet und markiert die Stelle der größten Steigung der Aktivierungsfunktion. Die Aktivierungsfunktion eines Neurons verarbeitet den alten Aktivierungszustand ( also a( t 1) ), den aktuellen Aktivierungszustand ( a(t) ) und die Netzeingabe ( net(t) ). Die Aktivierung eines Neurons zu einem bestimmten Zeitpunkt hängt also davon ab, wie aktiviert es bereits war und welche Netzeingaben es von außen erhalten hat. 10

11 Mathematisches Modell Das Bias Neuron : Um die Arbeit mit einem neuronalen Netzwerk signifikant zu vereinfachen und den Schwellwert θ nicht immer explizit einzugeben und anpassen zu müssen, wird ein Bias Neuron hinzugefügt. Das Bias-Neuron ist ein zusätzliches Neuron in der Inputschicht, sowie in den Hiddenschichten. Es gibt keine Verbindung zu einem Bias-Neuron. Die Ausgabe jedes Bias-Neurons ist konstant 1. Da die Ausgangsgewichte der Bias-Neuronen ebenfalls durch die Lernregel modifiziert werden, entspricht das Bias einem variablen Schwellenwert. Anstatt der Schwellwertgleichung: 1 net i n = j =1 n o j w ij θ i 0 bzw. o j w ij j =1 θ i θ1 θ2 Nun gilt die vereinfachte Form mit variablen Schwellenwert: net i n 1 = j=1 o j w ij n 1 0 bzw. j=1 o j w ij 0 11

12 Grundmodelle Topologieübersicht : Netze Feed Forward Rückgekoppelt Vollständig Verbunden ShortCut Connections Direkt Indirekt Lateral 12

13 Grundmodelle Feed Forward Netze : Allgemein: i 1 i 2 Ein Feed Forward Netz besitzt klar abgetrennte Schichten von Neuronen: Eine Eingabeschicht, eine Ausgabeschicht und beliebig viele, von aussen nicht sichtbare Vermittlungsschichten. Verbindungen sind nur zu Neuronen der jeweils nächsten Schicht erlaubt. Feed Forward Netze in denen ein Neuron zu jeweils jedem Neuron der nächsten Schicht verbundene ist, nennt man auch vollverknüpft. h 1 h 2 h 3 Feed Forward Netz mit ShortCut Connections: o 1 o 2 Es gibt auch Feed Forward Netze, die Verbindungen zulassen, welche mehrere Ebenen überspringen. Aber auch hier gilt, dass diese Verbindungen dürfen ausschliesslich in Richtung der Ausgabeschicht zeigen. 13

14 Grundmodelle Rückgekoppelte Netze : Allgemein: i 1 i 2 h 1 h 2 h 3 o 1 o 2 Man spricht von einem rückgekoppelten Netz, wenn ein Neuron mit seinen Ausgaben in der Lage ist, sich auf direktem oder indirektem Wege selbst zu beeinflussen. Direkte Rückkopplung: Erweiterung einer gewichteten Verbindung vom Neuron zu sich selbst. Somit kann sich das Neuron selbst direkt hemmen oder bestärken. i 1 i 2 14 Indirekte Rückkopplung: Es sind gewichtete Verbindung entgegen der Richtung zur Ausgabeschicht erlaubt und ein Neuron kann sich so auf indirektem Wegen selbst beeinflussen, indem es das nachfolgende Neuron hemmt oder bestärkt und dieses zurückwirkt. h 1 h 2 h 3 o 1 o 2

15 Grundmodelle Rückgekoppelte Netze : i 1 i 2 Laterale Kopplung: h 1 h 2 h 3 Gewichtete Verbindungen von Neuronen innerhalb einer Ebene nennt man laterale Rückkopplung. Oft hemmt dann jedes Neuronen die anderen der Schicht und verstärkt sich selbst. Es wird dann nur das stärkste Neuron aktiv. (Winner takes ist all Prinzip) o 1 o 2 15

16 Grundmodelle Vollständig verbundene Netze : i 1 i 2 h 1 h 2 h 3 Vollständiger Verbund: Prinzipiell darf jedes Neuron mit jedem anderen Neuron des s verbunden werden. Diese Verbindungen müssen symmetrisch sein. Berühmtester Vertreter sind selbstorganisierende Karten. o 1 o 2 16

17 !!! Danke schön!!! 17

C1/4 - Modellierung und Simulation von Neuronen

C1/4 - Modellierung und Simulation von Neuronen C 1 /4 - Modellierung und Simulation von Neuronen April 25, 2013 Motivation Worum geht es? Motivation Worum geht es? Um Neuronen. Motivation Worum geht es? Um Neuronen. Da ist u.a. euer Gehirn draus Motivation

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Facharbeit. Ratsgymnasium Bielefeld Schuljahr 2004/2005. aus dem Fach Biologie. Thema: Künstliche neuronale Netze

Facharbeit. Ratsgymnasium Bielefeld Schuljahr 2004/2005. aus dem Fach Biologie. Thema: Künstliche neuronale Netze Ratsgymnasium Bielefeld Schuljahr 2004/2005 Facharbeit aus dem Fach Biologie Thema: Künstliche neuronale Netze Verfasser: Joa Ebert Leistungskurs: Biologie Kursleiter: Herr Bökamp Abgabetermin: 25.02.2005

Mehr

Universität Klagenfurt

Universität Klagenfurt Universität Klagenfurt Neuronale Netze Carmen Hafner Elisabeth Stefan Raphael Wigoutschnigg Seminar in Intelligent Management Models in Transportation und Logistics 623.900, WS 05 Univ.-Prof. Dr.-Ing.

Mehr

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40 Allgemeine (Künstliche) Neuronale Netze Rudolf Kruse Neuronale Netze 40 Allgemeine Neuronale Netze Graphentheoretische Grundlagen Ein (gerichteter) Graph ist ein Tupel G = (V, E), bestehend aus einer (endlichen)

Mehr

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24.

Neuronale Netze in der Phonetik: Grundlagen. Pfitzinger, Reichel IPSK, LMU München {hpt 24. Neuronale Netze in der Phonetik: Grundlagen Pfitzinger, Reichel IPSK, LMU München {hpt reichelu}@phonetik.uni-muenchen.de 24. Mai 2006 Inhalt Einführung Maschinelles Lernen Lernparadigmen Maschinelles

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen

Erregungsübertragung an Synapsen. 1. Einleitung. 2. Schnelle synaptische Erregung. Biopsychologie WiSe Erregungsübertragung an Synapsen Erregungsübertragung an Synapsen 1. Einleitung 2. Schnelle synaptische Übertragung 3. Schnelle synaptische Hemmung chemische 4. Desaktivierung der synaptischen Übertragung Synapsen 5. Rezeptoren 6. Langsame

Mehr

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger Proseminar Machine Learning Neuronale Netze: mehrschichtige Perzeptrone Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger 27.Mai 2006 Inhaltsverzeichnis 1 Biologische Motivation 2 2 Neuronale

Mehr

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1

Übung 6 Vorlesung Bio-Engineering Sommersemester Nervenzellen: Kapitel 4. 1 Bitte schreiben Sie Ihre Antworten direkt auf das Übungsblatt. Falls Sie mehr Platz brauchen verweisen Sie auf Zusatzblätter. Vergessen Sie Ihren Namen nicht! Abgabe der Übung bis spätestens 21. 04. 08-16:30

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

Einführung in Neuronale Netze

Einführung in Neuronale Netze Einführung in Neuronale Netze Thomas Ruland Contents 1 Das menschliche Gehirn - Höchstleistungen im täglichen Leben 2 2 Die Hardware 2 2.1 Das Neuron 2 2.2 Nachahmung in der Computertechnik: Das künstliche

Mehr

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung -

Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Aufbau und Funktionweise der Nervenzelle - Wiederholung Vorlesung - Fragen zur Vorlesung: Welche Zellen können im Nervensystem unterschieden werden? Aus welchen Teilstrukturen bestehen Neuronen? Welche

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Abbildungen Schandry, 2006 Quelle: www.ich-bin-einradfahrer.de Abbildungen Schandry, 2006 Informationsvermittlung im Körper Pioniere der Neurowissenschaften: Santiago Ramón y Cajal (1852-1934) Camillo

Mehr

BK07_Vorlesung Physiologie. 05. November 2012

BK07_Vorlesung Physiologie. 05. November 2012 BK07_Vorlesung Physiologie 05. November 2012 Stichpunkte zur Vorlesung 1 Aktionspotenziale = Spikes Im erregbaren Gewebe werden Informationen in Form von Aktions-potenzialen (Spikes) übertragen Aktionspotenziale

Mehr

Ein selbstmodellierendes System für die Wasserwirtschaft

Ein selbstmodellierendes System für die Wasserwirtschaft Ein selbstmodellierendes System für die Wasserwirtschaft Dipl.-Ing. Dr. ANDRADE-LEAL Wien, im Juli 2001 1 Einleitung, Motivation und Voraussetzungen Künstliche Intelligenz Neuronale Netze Experte Systeme

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Natürliche und künstliche neuronale Netze

Natürliche und künstliche neuronale Netze Kapitel 2 Natürliche und künstliche neuronale Netze 2.1 Informationsverarbeitung im Gehirn In diesem Abschnitt soll ein sehr knapper und durchaus unvollständiger Überblick gegeben werden, um den Bezug

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Neuronale Signalverarbeitung

Neuronale Signalverarbeitung neuronale Signalverarbeitung Institut für Angewandte Mathematik WWU Münster Abschlusspräsentation am 08.07.2008 Übersicht Aufbau einer Nervenzelle Funktionsprinzip einer Nervenzelle Empfang einer Erregung

Mehr

Einführung in. Neuronale Netze

Einführung in. Neuronale Netze Grundlagen Neuronale Netze Einführung in Neuronale Netze Grundlagen Neuronale Netze Zusammengestellt aus: Universität Münster: Multimediales Skript Internetpräsentation der MFH Iserlohn (000) U. Winkler:

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

Einführung in Neuronale Netze

Einführung in Neuronale Netze Wintersemester 2005/2006 VO 181.138 Einführung in die Artificial Intelligence Einführung in Neuronale Netze Oliver Frölich Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme

Mehr

Modul MED-CNS008: Grundlagen der Modellierung neuronaler Systeme. VL4, , Uhr, PC-Pool, IMSID, Bachstr.18, Gebäude 1

Modul MED-CNS008: Grundlagen der Modellierung neuronaler Systeme. VL4, , Uhr, PC-Pool, IMSID, Bachstr.18, Gebäude 1 Modul MED-CNS008: Grundlagen der Modellierung neuronaler Systeme VL4, 11.5.2012, 10.00 Uhr, PC-Pool, IMSID, Bachstr.18, Gebäude 1 Lehrender: Dirk Hoyer, dirk.hoyer@med.uni-jena.de, Tel. 9325795 2.2 Rückgekoppelte

Mehr

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop

Reizleitung in Nervenzellen. Nervenzelle unter einem Rasterelektronenmikroskop Reizleitung in Nervenzellen Nervenzelle unter einem Rasterelektronenmikroskop Gliederung: 1. Aufbau von Nervenzellen 2. Das Ruhepotential 3. Das Aktionspotential 4. Das Membranpotential 5. Reizweiterleitung

Mehr

Übertragung zwischen einzelnen Nervenzellen: Synapsen

Übertragung zwischen einzelnen Nervenzellen: Synapsen Übertragung zwischen einzelnen Nervenzellen: Synapsen Kontaktpunkt zwischen zwei Nervenzellen oder zwischen Nervenzelle und Zielzelle (z.b. Muskelfaser) Synapse besteht aus präsynaptischen Anteil (sendendes

Mehr

Zentrales Nervensystem

Zentrales Nervensystem Zentrales Nervensystem Funktionelle Neuroanatomie (Struktur und Aufbau des Nervensystems) Neurophysiologie (Ruhe- und Aktionspotenial, synaptische Übertragung) Fakten und Zahlen (funktionelle Auswirkungen)

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen

7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7. Das periphere Nervensystem: 7.1. Die Rückenmarknerven (Die Spinalnerven): Siehe Bild Nervenbahnen 7.2. Die Hirnnerven: Sie stammen aus verschiedenen Zentren im Gehirn. I - XII (Parasympathikus: 3,7,9,10)

Mehr

Simulation neuronaler Netzwerke mit TIKAPP

Simulation neuronaler Netzwerke mit TIKAPP Überblick Michael Hanke Sebastian Krüger Institut für Psychologie Martin-Luther-Universität Halle-Wittenberg Forschungskolloquium, SS 2004 Überblick Fragen 1 Was sind neuronale Netze? 2 Was ist TIKAPP?

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

Lernverfahren von Künstlichen Neuronalen Netzwerken

Lernverfahren von Künstlichen Neuronalen Netzwerken Lernverfahren von Künstlichen Neuronalen Netzwerken Untersuchung und Vergleich der bekanntesten Lernverfahren und eine Übersicht über Anwendung und Forschung im Bereich der künstlichen neuronalen Netzen.

Mehr

1 Bau von Nervenzellen

1 Bau von Nervenzellen Neurophysiologie 1 Bau von Nervenzellen Die funktionelle Einheit des Nervensystems bezeichnet man als Nervenzelle. Dendrit Zellkörper = Soma Zelllkern Axon Ranvier scher Schnürring Schwann sche Hüllzelle

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Computational Intelligence 1 / 31. Computational Intelligence Künstliche Neuronale Netze Geschichte 3 / 31

Computational Intelligence 1 / 31. Computational Intelligence Künstliche Neuronale Netze Geschichte 3 / 31 1 / 31 Gliederung 1 Künstliche Neuronale Netze Geschichte Natürliches Neuron Künstliches Neuron Typen von Neuronen Geschichte Künstliche Neuronale Netze Geschichte 3 / 31 1943 Warren McCulloch (Neurologe),

Mehr

Neuronale Netze in der Robotik

Neuronale Netze in der Robotik Seminarvortrag Neuronale Netze in der Robotik Datum: 18.01.2002 Vortragende: Elke von Lienen Matrikelnummer: 302489 Studiengang: Informatik Inhaltsverzeichnis Einleitung 3 Biologisches Vorbild 4 Künstliche

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze? Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic

Mehr

Einführung in die Methoden der Künstlichen Intelligenz

Einführung in die Methoden der Künstlichen Intelligenz www.is.cs.uni-fra ankfurt.de Einführung in die Methoden der Künstlichen Intelligenz Vorlesung 7 Künstliche Neuronale Netze 2. Mai 2009 Andreas D. Lattner, Ingo J. Timm, René Schumann? Aldebaran Robotics

Mehr

Das Neuron (= Die Nervenzelle)

Das Neuron (= Die Nervenzelle) Das Neuron (= Die Nervenzelle) Die Aufgabe des Neurons besteht in der Aufnahme, Weiterleitung und Übertragung von Signalen. Ein Neuron besitzt immer eine Verbindung zu einer anderen Nervenzelle oder einer

Mehr

KNN für XOR-Funktion. 6. April 2009

KNN für XOR-Funktion. 6. April 2009 KNN für XOR-Funktion G.Döben-Henisch Fachbereich Informatik und Ingenieurswissenschaften FH Frankfurt am Main University of Applied Sciences D-60318 Frankfurt am Main Germany Email: doeben at fb2.fh-frankfurt.de

Mehr

Was sind Neuronale Netze?

Was sind Neuronale Netze? Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk

Mehr

Nanostrukturphysik II Michael Penth

Nanostrukturphysik II Michael Penth 16.07.13 Nanostrukturphysik II Michael Penth Ladungstransport essentiell für Funktionalität jeder Zelle [b] [a] [j] de.academic.ru esys.org giantshoulders.wordpress.com [f] 2 Mechanismen des Ionentransports

Mehr

Implementationsaspekte

Implementationsaspekte Implementationsaspekte Überlegungen zur Programmierung Neuronaler Netzwerke Implementationsprinzipien Trennung der Aspekte: Datenhaltung numerische Eigenschaften der Objekte Funktionalität Methoden der

Mehr

3. Neuronenmodelle. 1. Einleitung zur Modellierung. 2. Hodgkin-Huxley-Modell. 3. Grundmodell in kontinuierlicher und diskreter Zeit

3. Neuronenmodelle. 1. Einleitung zur Modellierung. 2. Hodgkin-Huxley-Modell. 3. Grundmodell in kontinuierlicher und diskreter Zeit 3. Neuronenmodelle 1. Einleitung zur Modellierung 2. Hodgkin-Huxley-Modell 3. Grundmodell in kontinuierlicher und diskreter Zeit 4. Transferfunktionen (Kennlinien) für Neuronen 5. Neuronenmodelle in Anwendungen

Mehr

Glia- sowie Nervenzellen (= Neuronen) sind die Bausteine des Nervensystems. Beide Zellarten unterscheiden sich vorwiegend in ihren Aufgaben.

Glia- sowie Nervenzellen (= Neuronen) sind die Bausteine des Nervensystems. Beide Zellarten unterscheiden sich vorwiegend in ihren Aufgaben. (C) 2014 - SchulLV 1 von 5 Einleitung Du stehst auf dem Fußballfeld und dein Mitspieler spielt dir den Ball zu. Du beginnst loszurennen, denn du möchtest diesen Ball auf keinen Fall verpassen. Dann triffst

Mehr

Hopfield Netze. Neuronale Netze WS 2016/17

Hopfield Netze. Neuronale Netze WS 2016/17 Hopfield Netze Neuronale Netze WS 2016/17 Rekursive Netze Definition: Ein rekursives Netz enthält mindestens eine Feedback-Schleife Gegensatz: Feedforward-Netze Beispiel: Hopfield-Netze, Boltzmann-Maschinen

Mehr

Grundlagen Neuronaler Netze

Grundlagen Neuronaler Netze Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht

Mehr

Neuronale Netze (I) Biologisches Neuronales Netz

Neuronale Netze (I) Biologisches Neuronales Netz Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sibylle Schwarz Westsächsische Hochschule Zwickau Dr. Friedrichs-Ring 2a, RII 263 http://wwwstud.fh-zwickau.de/~sibsc/ sibylle.schwarz@fh-zwickau.de SS 2011 1 Softcomputing Einsatz

Mehr

Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie. - Erregungsausbreitung -

Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie. - Erregungsausbreitung - Das Wichtigste Das Wichtigste: 3 Grundlagen der Erregungs- und Neurophysiologie - Erregungsausbreitung - Das Wichtigste: 3.4 Erregungsleitung 3.4 Erregungsleitung Elektrotonus Die Erregungsausbreitung

Mehr

Prüfungsprotokoll Diplomprüfung Mathematische Aspekte neuronaler Netze

Prüfungsprotokoll Diplomprüfung Mathematische Aspekte neuronaler Netze Prüfungsprotokoll Diplomprüfung Mathematische Aspekte neuronaler Netze Prüfer: Prof.Dr.Johann Boos Datum: 29.08.2001 Dauer: 30min Note: 1.0 So Sie wollten uns was über zweischichtige neuronale Feed-Forward

Mehr

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung

abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung abiweb NEUROBIOLOGIE 17. März 2015 Webinar zur Abiturvorbereitung Bau Nervenzelle Neuron (Nervenzelle) Dentrit Zellkörper Axon Synapse Gliazelle (Isolierung) Bau Nervenzelle Bau Nervenzelle Neurobiologie

Mehr

Postsynaptische Potenziale

Postsynaptische Potenziale Postsynaptisches Potenzial Arbeitsblatt Nr 1 Postsynaptische Potenziale Links ist eine Versuchsanordnung zur Messung der Membranpotenziale an verschiedenen Stellen abgebildet. Das Axon links oben wurde

Mehr

Neuronale Netze. 11.Januar.2002

Neuronale Netze. 11.Januar.2002 Neuronale Netze Stefan Otto Matrikelnummer: 301127 Studiengang: Informatik ProSeminar WS 2001/2002 Institut für Informatik Technische Universität Clausthal 11.Januar.2002 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis

Mehr

Massive Parallelität : Neuronale Netze

Massive Parallelität : Neuronale Netze Massive Parallelität : Neuronale Netze PI2 Sommer-Semester 2005 Hans-Dieter Burkhard Massive Parallelität : Neuronale Netze Knoten: Neuronen Neuronen können erregt ( aktiviert ) sein Kanten: Übertragung

Mehr

Kapitel 05.02: Die Nervenzelle

Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 1 Kapitel 05.02: Die Nervenzelle Kapitel 05.02: Die Nervenzelle 2 Inhalt Kapitel 05.02: Die Nervenzelle...1 Inhalt... 2 Informationsweiterleitung im menschlichen Körper...3

Mehr

Grundlagen Künstlicher Neuronaler Netze

Grundlagen Künstlicher Neuronaler Netze FernUniversität in Hagen Fachbereich Elektrotechnik und Informationstechnik Lehrgebiet Informationstechnik Seminar Computational Intelligence in der Prozessautomatisierung 7. Juli 2003 Grundlagen Künstlicher

Mehr

Unterrichtsvorhaben I: Bau, Funktion, Lage und Verlauf von Nervenzellen

Unterrichtsvorhaben I: Bau, Funktion, Lage und Verlauf von Nervenzellen Inhaltsverzeichnis Gk Qualifikationsphase Inhaltsfeld 4: Neurobiologie... 1 Unterrichtsvorhaben I: Bau, Funktion, Lage und Verlauf von Nervenzellen... 1 24 Unterrichtsstunden=8 Wochen Kontext: Vom Reiz

Mehr

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor.

NaCl. Die Originallinolschnitte, gedruckt von Marc Berger im V.E.B. Schwarzdruck Berlin, liegen als separate Auflage in Form einer Graphikmappe vor. NaCl Künstlerische Konzeption: Xenia Leizinger Repros: Roman Willhelm technische Betreuung und Druck: Frank Robrecht Schrift: Futura condensed, Bernhard Modern Papier: Igepa Design Offset naturweiß 120

Mehr

Zentrales Nervensystem

Zentrales Nervensystem Zentrales Nervensystem Funktionelle Neuroanatomie (Struktur und Aufbau des Nervensystems) Evolution des Menschen Neurophysiologie (Ruhe- und Aktionspotenial, synaptische Übertragung) Fakten und Zahlen

Mehr

Aufbau der Eigenimplementierung

Aufbau der Eigenimplementierung Table of contents 1 2 Aufbau... 2 1.1 Feed Forward Netze...3 1.2 Self Organizing Maps... 5 Training... 6 2.1 Feed Forward Netze...7 2.2 Self Organizing Maps... 8 Nachdem wir uns entschlossen hatten, keine

Mehr

Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie

Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie Können neuronale Netze Vorhersagen treffen? Eine Anwendung aus der Stahlindustrie 1. Erzeugung von Stahl im Lichtbogenofen 2. Biologische neuronale Netze 3. Künstliche neuronale Netze 4. Anwendung neuronaler

Mehr

Synaptische Übertragung und Neurotransmitter

Synaptische Übertragung und Neurotransmitter Proseminar Chemie der Psyche Synaptische Übertragung und Neurotransmitter Referent: Daniel Richter 1 Überblick Synapsen: - Typen / Arten - Struktur / Aufbau - Grundprinzipien / Prozesse Neurotransmitter:

Mehr

Neuroinformatik I. Günther Palm Friedhelm Schwenker Abteilung Neuroinformatik

Neuroinformatik I. Günther Palm Friedhelm Schwenker Abteilung Neuroinformatik Neuroinformatik I Günther Palm Friedhelm Schwenker Abteilung Neuroinformatik Vorlesung: Do 10-12 Uhr Raum H21 / Übung: Fr 12-14 Raum 121 und 122 Übungsaufgaben sind schriftlich zu bearbeiten (Schein bei

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sebastian Morr 4. Juni 2008 Worum geht es? Die Natur hat uns 3,7 Milliarden Jahre Forschungszeit voraus. Toby Simpson Vorbild: Strukturen des Gehirns Ziel: Lernfähige Künstliche

Mehr

auch: Konnektionismus; subsymbolische Wissensverarbeitung

auch: Konnektionismus; subsymbolische Wissensverarbeitung 10. Künstliche Neuronale Netze auch: Konnektionismus; subsymbolische Wissensverarbeitung informationsverarbeitende Systeme, bestehen aus meist großer Zahl einfacher Einheiten (Neuronen, Zellen) einfache

Mehr

Unterschied zwischen aktiver und passiver Signalleitung:

Unterschied zwischen aktiver und passiver Signalleitung: Unterschied zwischen aktiver und passiver Signalleitung: Passiv: Ein kurzer Stromimpuls wird ohne Zutun der Zellmembran weitergeleitet Nachteil: Signalstärke nimmt schnell ab Aktiv: Die Zellmembran leitet

Mehr

CLINICAL DECISION SUPPORT SYSTEMS

CLINICAL DECISION SUPPORT SYSTEMS CLINICAL DECISION SUPPORT SYSTEMS INHALTSVERZEICHNIS 1/2 Diagnosefindung Prävention Medikamente (Auswahl, Dosierung etc.) INHALTSVERZEICHNIS 2/2 Supervised, Unsupervised Bayes-Netzwerke Neuronale Netze

Mehr

Das Ruhemembranpotential eines Neurons

Das Ruhemembranpotential eines Neurons Das Ruhemembranpotential eines Neurons An diesem Ungleichgewicht sind 4 Arten von Ionen maßgeblich beteiligt: - Natriumionen (Na + ) (außen viel) - Kaliumionen (K + ) (innen viel) - Chloridionen (Cl -

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

Synaptische Verschaltung

Synaptische Verschaltung Synaptische Verschaltung 16.1.2006 http://www.uni-oldenburg.de/sinnesphysiologie/ 15246.html Vorläufiges Vorlesungsprogramm 17.10.05 Motivation 24.10.05 Passive Eigenschaften von Neuronen 31.10.05 Räumliche

Mehr

Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe. besteht aus 2 Bestandteilen:

Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe. besteht aus 2 Bestandteilen: Anatomie/Physiologie 19.05.04 (Dr. Shakibaei) Nervengewebe besteht aus 2 Bestandteilen: Nervenzelle ( Neuron : Signal aufnehmen, verarbeiten und weiterleiten) Gliazelle, Stützzelle: div. metabolische Funktionen

Mehr

Zelltypen des Nervensystems

Zelltypen des Nervensystems Zelltypen des Nervensystems Im Gehirn eines erwachsenen Menschen: Neurone etwa 1-2. 10 10 Glia: Astrozyten (ca. 10x) Oligodendrozyten Mikrogliazellen Makrophagen Ependymzellen Nervenzellen Funktion: Informationsaustausch.

Mehr

Transmitterstoff erforderlich. und Tremor. Potenziale bewirken die Erregungsübertragung zwischen den Nervenzellen. Begriffen

Transmitterstoff erforderlich. und Tremor. Potenziale bewirken die Erregungsübertragung zwischen den Nervenzellen. Begriffen 4 Kapitel 2 Nervensystem 2 Nervensystem Neurophysiologische Grundlagen 2.1 Bitte ergänzen Sie den folgenden Text mit den unten aufgeführten Begriffen Das Nervensystem besteht aus 2 Komponenten, dem und

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Yacin Bessas yb1@informatik.uni-ulm.de Proseminar Neuronale Netze 1 Einleitung 1.1 Kurzüberblick Die Selbstorganisierenden Karten, auch Self-Organizing (Feature) Maps, Kohonen-

Mehr

Seminararbeit Thema: Die Anwendung der Kohonen-Karte am Beispiel einer Zuflussregelung an Autobahnen

Seminararbeit Thema: Die Anwendung der Kohonen-Karte am Beispiel einer Zuflussregelung an Autobahnen Seminararbeit Thema: Die Anwendung der Kohonen-Karte am Beispiel einer Zuflussregelung an Autobahnen Referenten: Louisa Navratiel (Matrikelnr.: 1276396) Maik Buczek (Matrikelnr.: 1360613) Abgabedatum:09.03.2004

Mehr

Beide bei Thieme ebook

Beide bei Thieme ebook Beide bei Thieme ebook Neurophysiologie 1) Funktionelle Anatomie 2) Entstehung nervaler Potentiale 3) Erregungsfortleitung 4) Synaptische Übertragung 5) Transmitter und Reflexe 6) Vegetatives Nervensystem

Mehr

TONY BUZAN BARRY BUZAN DAS MIND-MAP BUCH DIE BESTE METHOD E ZUR STEIGERUNG IHRES GEISTIGEN POTENZIALS

TONY BUZAN BARRY BUZAN DAS MIND-MAP BUCH DIE BESTE METHOD E ZUR STEIGERUNG IHRES GEISTIGEN POTENZIALS TONY BUZAN BARRY BUZAN DAS MIND-MAP BUCH DIE BESTE METHOD E ZUR STEIGERUNG IHRES GEISTIGEN POTENZIALS Inhalt Dank 7 Besonderer Dank 9 Vorwort 13 Einleitung 15 Teil 1 Die unendliche Kraft und das grenzenlose

Mehr

Matthias Birnstiel Modul Nervensystem Medizinisch wissenschaftlicher Lehrgang Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung

Matthias Birnstiel Modul Nervensystem Medizinisch wissenschaftlicher Lehrgang Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung Matthias Birnstiel Modul Nervensystem Medizinisch wissenschaftlicher Lehrgang CHRISANA Wissenschaftliche Lehrmittel, Medien, Aus- und Weiterbildung Inhaltsverzeichnis des Moduls Nervensystem Anatomie des

Mehr

Kapitel VI Neuronale Netze

Kapitel VI Neuronale Netze Kapitel VI Neuronale Netze (basierend auf Material von Andreas Hotho) 1 Agenda 1. Einführung & Grundbegriffe - Motivation & Definition - Vorbild Biologie - Historie der NN - Überblick über verschiedene

Mehr

Computational Intelligence I Künstliche Neuronale Netze

Computational Intelligence I Künstliche Neuronale Netze Computational Intelligence I Künstliche Neuronale Nete Universität Dortmund, Informatik I Otto-Hahn-Str. 6, 44227 Dortmund lars.hildebrand@uni-dortmund.de Inhalt der Vorlesung 0. Organisatorisches & Vorbemerkungen.

Mehr

Structurally Evolved Neural Networks for Forecasting

Structurally Evolved Neural Networks for Forecasting Structurally Evolved Neural Networks for Forecasting - Strukturierte neuronale Netze für Vorhersagen Institut für Informatik - Ausgewählte Kapitel aus dem Bereich Softcomputing Agenda Grundlagen Neuronale

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

Entwicklung von Methoden zum Nachweis von ökologisch erzeugten Produkten am Beispiel der Lachszucht - Neronale Netzanalyse -

Entwicklung von Methoden zum Nachweis von ökologisch erzeugten Produkten am Beispiel der Lachszucht - Neronale Netzanalyse - Entwicklung von Methoden zum Nachweis von ökologisch erzeugten Produkten am Beispiel der Lachszucht - Neronale Netzanalyse - Development of Methods to Detect Products Made from Organic Salmon FKZ: 02OE073/1

Mehr

Messung des Ruhepotentials einer Nervenzelle

Messung des Ruhepotentials einer Nervenzelle Messung des Ruhepotentials einer Nervenzelle 1 Extrazellulär Entstehung des Ruhepotentials K+ 4mM Na+ 120 mm Gegenion: Cl- K + kanal offen Na + -kanal zu Na + -K + Pumpe intrazellulär K+ 120 mm Na+ 5 mm

Mehr

Biologische Grundlagen der Elektrogenese

Biologische Grundlagen der Elektrogenese Proseminar: Elektrophysiologie kognitiver Prozesse WS 2008/2009 Dozentin: Dr. Nicola Ferdinand Referent: Michael Weigl Biologische Grundlagen der Elektrogenese Ein Überblick Zum Einstieg Die Gliederung

Mehr

Kapitel VI Neuronale Netze

Kapitel VI Neuronale Netze Agenda Kapitel VI Neuronale Netze (basierend auf Material von Andreas Hotho) 1. - Motivation & Definition - Vorbild Biologie - Historie der NN - Überblick über verschiedene Netzwerktypen 2. 3. 4. Beispiele

Mehr

(künstliche) Neuronale Netze. (c) Till Hänisch 2003,2015, DHBW Heidenheim

(künstliche) Neuronale Netze. (c) Till Hänisch 2003,2015, DHBW Heidenheim (künstliche) Neuronale Netze (c) Till Hänisch 2003,2015, DHBW Heidenheim Literatur zusätzlich zum Lit. Verz. Michael Negnevitsky, Artificial Intelligence, Addison Wesley 2002 Aufbau des Gehirns Säugetiergehirn,

Mehr

Die neuronale Synapse

Die neuronale Synapse Die neuronale Synapse AB 1-1, S. 1 Arbeitsweise der neuronalen Synapse Wenn am synaptischen Endknöpfchen ein Aktionspotenzial ankommt, öffnen sich spannungsgesteuerte Calciumkanäle. Da im Zellaußenmedium

Mehr