Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Größe: px
Ab Seite anzeigen:

Download "Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg"

Transkript

1 Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22

2 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron) 2 Berechnen logischer Funktionen mit MCCULLOCH-PITTS-Neuronen 3 Was berechnen MCCULLOCH-PITTS-Neuronen? 4 Beispiel für ein Neuronen-Netzwerk (Lehrstuhl Informatik 8) Perzeptronen 2 / 22

3 MCCULLOCH-PITTS-Neuronen MCCULLOCH-PITTS-Neuronen simulieren biologische Neuronen exakter als Perzeptronen, weil aktivierende und hemmende Eingänge unterschieden werden. Spezialisierung der allgemeinen Definition von Perzeptronen: x 1 x 2 g f f(g(x 1, x 2,..., x n )) x 3 y 1 y 2 Binäre Gewichte : w i {0, 1} (1 i n) (Lehrstuhl Informatik 8) Perzeptronen 3 / 22

4 MCCULLOCH-PITTS-Neuronen x 1, x 2,..., x n heißen aktivierende Eingänge. y 1, y 2,..., y m heißen hemmende Eingänge. Wenn m 1 und mindestens ein y i (1 i m) den Wert 1 hat, gilt: f(x 1,..., x n, y 1,..., y m ) = 0. Wenn kein hemmender Eingang auf 1 steht, dann gilt: 1, falls x i > θ. f(x 1,..., x n, y 1,..., y m ) = 1 i n 0, sonst Aktivierende Eingänge wurden als Komponenten eines Vektors interpretiert; was ist mit den hemmenden Eingängen? Hemmende Eingänge werden als Komponenten mit negativem Vorzeichen dargestellt; sie senken die Aktivierung des Neurons. (Lehrstuhl Informatik 8) Perzeptronen 4 / 22

5 Absolute und relative Hemmung Absolute Hemmung: der Schwellwert interessiert nicht. Relative Hemmung: der Schwellwert wird nur verringert; d.h. das Neuron feuert eventuell trotzdem. Absolute Hemmung ist mit Hilfe relativer Hemmung darstellbar: Simulation absoluter Hemmung durch geeignete Schwellwerte Angenommen, es gibt n aktivierende Eingänge und das Neuron hat den Schwellwert m. Ist m > n, kann das Neuron nicht feuern und hemmende Kanten sind deshalb uninteressant. Sonst besteht der Spielraum n m, den Schwellwert zu erreichen oder zu übersteigen. Eine absolut hemmende Kante kann dann durch eine relative hemmende mit dem Gewicht (n m + 1) simuliert werden. Denn die maximale Aktivierung ist dann n n + m 1 < m. (Lehrstuhl Informatik 8) Perzeptronen 5 / 22

6 Absolute und relative Hemmung Relative Hemmung lässt sich mit zwei weiteren Neuronen durch absolute Hemmung simulieren. Skizze der Konstruktion: x x y 1 y 1 x+y+z z 1 1 z : Neuron feuert : unteres Neuron feuert, auch wenn das obere blockt (z = 1!) (Lehrstuhl Informatik 8) Perzeptronen 6 / 22

7 MCCULLOCH-PITTS-Neuronen und Perzeptronen Aus Perzeptronen kann man ungewichtete Neuronen bauen: Konstruktion ungewichteter Neuronen aus Perzeptronen 1 Alle Schwellwerte werden mit dem Hauptnenner multipliziert. Damit gibt es nur noch ganzzahlige Gewichte. 2 Ein Gewicht von n wird durch n ungewichtete Leitungen ersetzt. 3 Kommen relativ hemmende Leitungen mit Gewicht w j vor, ist der Schwellwert im neuen Neuron statt auf m + 1 auf m + w j zu setzen. Daraus ergibt sich folgende Äquivalenzaussage Gewichtete Netze mit relativ hemmenden Verbindungen können in äquivalente ungewichtete McCulloch-Pitts-Netze transformiert werden und umgekehrt. (Lehrstuhl Informatik 8) Perzeptronen 7 / 22

8 AND-Gatter Die logische Funktion AND kann mit einem Neuron und zwei Eingängen realisiert werden: w 1 = 1, w 2 = 1, θ = 2 Die Graphik zeigt, dass gerade (1, 1) noch über der Schwelle liegt: (Lehrstuhl Informatik 8) Perzeptronen 8 / 22

9 OR-Gatter Die logische Funktion OR kann mit einem Neuron und zwei Eingängen realisiert werden: w 1 = 1, w 2 = 1, θ = 1 Die Graphik zeigt, dass gerade (0, 0) unterhalb der Schwelle liegt: (Lehrstuhl Informatik 8) Perzeptronen 9 / 22

10 Das XOR-Problem XOR Ein Beispiel für eine Funktion, die ein Perzeptronen-Neuron nicht berechnen kann: Für die XOR-Funktion in den zwei Variablen x 1 und x 2 gilt folgendes System von Ungleichungen: für x 1 = 0, x 2 = 0: w 1 x 1 + w 2 x 2 = 0 < θ für x1 = 1, x 2 = 0: w 1 x 1 + w 2 x 2 θ für x1 = 0, x 2 = 1: w 1 x 1 + w 2 x 2 θ für x 1 = 1, x 2 = 1: w 1 x 1 + w 2 x 2 = 0 < θ Nun ist aber w1 x 1 + w 2 x 2 = w 1 für x 1 = 1, x 2 = 0 und w1 x 1 + w 2 x 2 = w 2 für x 1 = 0, x 2 = 1 Es soll also gelten: 0 > θ, w 1 θ, w 2 θ, w 1 + w 2 < θ. (Lehrstuhl Informatik 8) Perzeptronen 10 / 22

11 Das XOR-Problem Daraus resultiert die folgende Darstellung: Das Gleichungssystem ist nicht lösbar, denn es müsste w 1 + w 2 < θ und zugleich w 1 + w 2 2θ gelten. (Lehrstuhl Informatik 8) Perzeptronen 11 / 22

12 Das XOR-Problem Es gibt auch keine Lösung für die Berechnung von XOR, die sich durch eine einzige Separierung des R 2 erreichen läßt: Die XOR-Funktion ist das einfachste Beispiel einer Funktion, die nicht mit einem MCCULLOCH-PITTS-Neuron berechnet werden kann. Diese Tatsache wirft die Frage auf, wie die Klasse der mit MCCULLOCH-PITTS-Neuronen berechenbaren Funktionen charakterisiert werden kann. (Lehrstuhl Informatik 8) Perzeptronen 12 / 22

13 Ohne hemmende Eingänge Satz Definition: Eine logische Funktion f mit n Argumenten heißt monoton, wenn 1 x = (x 1,..., x n ) hat mehr Positionen x i mit 1 belegt als y = (y 1,..., y n ) und 2 f(x) f(y). MCCULLOCH-PITTS-Neuronen ohne hemmende Eingänge berechnen monotone logische Funktionen. Beweis per Widerspruch: Sei x = (1, 1,..., 1) und f(x) = 0. Dann gibt es keinen größeren Vektor. Damit die Monotoniebedingung nicht verletzt wird, müssen alle anderen Funktionswerte auch 0 sein. Also: x y f(x) f(y). (Lehrstuhl Informatik 8) Perzeptronen 13 / 22

14 Ohne hemmende Eingänge Der Widerspruch zielt darauf ab, dass es keine Aktivierungsfunktion eines MCCULLOCH-PITT-Neurons ohne hemmende Eingänge geben kann mit: x > y f(x) < f(y) Das ist richtig, denn f(x) f(y) = Da x > y, ist 1 i n 1 i n (x i = 1) = n x > Also gilt: (x i y i ) = 1 i n 1 i n Dies widerlegt nun die Annahme. 1 i n x i 1 i n (x i y i ). (y i = 1) = n y y i = n x n y > 0 (Lehrstuhl Informatik 8) Perzeptronen 14 / 22

15 Mit hemmenden Eingängen Hemmende Eingänge ermöglichen nicht-montone Funktionen: 0 x 1 f(x 1 ) f ist nicht monoton: (1) > (0), aber f(1) < f(0). (Lehrstuhl Informatik 8) Perzeptronen 15 / 22

16 Mit hemmenden Eingängen Verallgemeinerung der Beobachtung auf n Eingänge: Es gibt 2 2n Abbildungen {0, 1} n {0, 1}. Denn 1 Es gibt 2 n Vektoren (x 1, x 2,..., x n ) {0, 1} n. 2 Es gibt 2 mögliche Werte für jeden Vektor. {, } bilden eine logische Basis. Dafür gibt es MCCULLOCH-PITTS-Neuronen. Wie lassen sich andere Funktionen aus der Basis bilden? Konstruktive Methode: MCCULLOCH-PITTS-Neuronen für komplexe logische Funktionen 1 Stelle die boolsche Funktion als Wertetabelle auf! 2 Baue decoder für jeden input x mit f(x) = 1! 3 Bilde OR-Schaltung aus den decodern! (Lehrstuhl Informatik 8) Perzeptronen 16 / 22

17 Mit hemmenden Eingängen Details zu Schritt 2 Zu jedem x = (x 1,..., x i,..., x n ) gibt es n Eingänge: 1 x i = 0: Setze einen hemmenden Eingang in das Neuron ein! 2 x i = 1: Setzt einen aktivierenden Eingang ein! Schwellwert: θ 1 i n (x i = 1). Fazit: Satz Mit einem MCCULLOCH-PITTS-Netzwerk aus zwei Ebenen kann jede logische Funktion {0, 1} n {0, 1} berechnet werden. (Lehrstuhl Informatik 8) Perzeptronen 17 / 22

18 Beispiel: XOR Schritt 1: Wertetabelle Schritt 2: Decoder bauen x = 1, y = 0 x x y x xor y x x = 0, y = y y (Lehrstuhl Informatik 8) Perzeptronen 18 / 22

19 Beispiel: XOR Schritt 3: OR-Schaltung aus den Decodern bauen x y (Lehrstuhl Informatik 8) Perzeptronen 19 / 22

20 XOR mit Perzeptronen Anwenden der Umbauanleitung Anzahl an aktivierenden Eingängen: 1 Schwellwert: 1 Daraus ergibt sich: Gewicht der relativ hemmenden Kante: ( ) = 1 Maximale Aktivierung: = 0 Resultierendes Perzeptron x x y Aktivierung = = = = 0 y Das Neuron feuert tatsächlich nur für die Eingabe (x, y) = (1, 0). (Lehrstuhl Informatik 8) Perzeptronen 20 / 22

21 Wie arbeitet das XOR-Netz? Die erste Schicht verarbeitet Eingabevektoren x {0, 1} 2 : x 1 x 2 Neuron 1 Neuron Die zweite Schicht klassifiziert die Ausgaben von Neuron 1 und Neuron 2: Neuron 1 Neuron 2 Neuron (Lehrstuhl Informatik 8) Perzeptronen 21 / 22

22 Wie arbeitet das XOR-Netz? Neuron 1 und Neuron 2 berechnen einen Merkmalsvektor für alle möglichen Eingaben. Es gibt 3 Klassen: 1 Beide Eingabesymbole sind gleich. 2 Nur das erste Eingabesymbol ist eine 1. 3 Nur das zweite Eingabesymbol ist eine 1. Das dritte Neuron berechnet die beide Klassen: 1 Beide Eingabesymbole sind gleich. 2 Die Eingabesymbole sind unterschiedlich. Insgesamt wird so XOR berechnet: (x 1 x 2 ) ( x 1 x 2 ) Neuron 1 Neuron 3 Neuron 2 Die Idee der Schichtung von Berechnungen werden wir verallgemeinern, um mehr Funktionen als nur logische zu berechnen zu können. (Lehrstuhl Informatik 8) Perzeptronen 22 / 22

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

Computational Intelligence I Künstliche Neuronale Netze

Computational Intelligence I Künstliche Neuronale Netze Computational Intelligence I Künstliche Neuronale Nete Universität Dortmund, Informatik I Otto-Hahn-Str. 6, 44227 Dortmund lars.hildebrand@uni-dortmund.de Inhalt der Vorlesung 0. Organisatorisches & Vorbemerkungen.

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016

Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 2016 Fakultät für Informatik Übung zu Kognitive Systeme Sommersemester 1 M. Sperber (matthias.sperber@kit.edu) S. Nguyen (thai.nguyen@kit.edu) Übungsblatt 3 Maschinelles Lernen und Klassifikation Abgabe online

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

2. Berechnungsmächtigkeit von Zellularautomaten. Ziele Simulation von Schaltwerken Simulation von Turingmaschinen

2. Berechnungsmächtigkeit von Zellularautomaten. Ziele Simulation von Schaltwerken Simulation von Turingmaschinen 2. Berechnungsmächtigkeit von Zellularautomaten Ziele Simulation von Schaltwerken Simulation von Turingmaschinen Beispiel WIREWORLD Elektronen laufen über Drähte von einem Gatter zum nächsten 2.3 Satz

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2009 / 2010 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training des XOR-Problems mit einem Künstlichen Neuronalen Netz (KNN) in JavaNNS 11.04.2011 2_CI2_Deckblatt_XORbinaer_JNNS_2

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie

Stefan Schmid TU Berlin & T-Labs, Berlin, Germany. Reduktionen in der Berechenbarkeitstheorie Stefan Schmid TU Berlin & T-Labs, Berlin, Germany Reduktionen in der Berechenbarkeitstheorie Problem: Wie komme ich von hier zum Hamburger Hbf? 2 Beispiel P1 Wie komme ich von hier zum Hamburger Hbf? kann

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Simulation neuronaler Netzwerke mit TIKAPP

Simulation neuronaler Netzwerke mit TIKAPP Überblick Michael Hanke Sebastian Krüger Institut für Psychologie Martin-Luther-Universität Halle-Wittenberg Forschungskolloquium, SS 2004 Überblick Fragen 1 Was sind neuronale Netze? 2 Was ist TIKAPP?

Mehr

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr

der einzelnen Aussagen den Wahrheitswert der zusammengesetzten Aussage falsch falsch falsch falsch wahr falsch wahr falsch falsch wahr wahr wahr Kapitel 2 Grundbegriffe der Logik 2.1 Aussagen und deren Verknüpfungen Eine Aussage wie 4711 ist durch 3 teilbar oder 2 ist eine Primzahl, die nur wahr oder falsch sein kann, heißt logische Aussage. Ein

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen

Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Protokoll zum Praktikum des Moduls Technische Informatik an der JLU Gießen Technische Informatik Versuch 2 Julian Bergmann, Dennis Getzkow 8. Juni 203 Versuch 2 Einführung Im Versuch 2 sollte sich mit

Mehr

Machine Learning - Maschinen besser als das menschliche Gehirn?

Machine Learning - Maschinen besser als das menschliche Gehirn? Machine Learning - Maschinen besser als das menschliche Gehirn? Seminar Big Data Science Tobias Stähle 23. Mai 2014 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

Das Perzeptron. Künstliche neuronale Netze. Sebastian Otte. 1 Grundlegendes. 2 Perzeptron Modell

Das Perzeptron. Künstliche neuronale Netze. Sebastian Otte. 1 Grundlegendes. 2 Perzeptron Modell Fachbereich Design Informatik Medien Studiengang Master Informatik Künstliche neuronale Netze Das Perzeptron Sebastian Otte Dezember 2009 1 Grundlegendes Als Perzeptron bezeichnet man eine Form von künstlichen

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )

0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 ) Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

23.1 Constraint-Netze

23.1 Constraint-Netze Grundlagen der Künstlichen Intelligenz 1. April 2015 2. Constraint-Satisfaction-Probleme: Constraint-Netze Grundlagen der Künstlichen Intelligenz 2. Constraint-Satisfaction-Probleme: Constraint-Netze Malte

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik.

Verwendet man zur Darstellung nur binäre Elemente ( bis lat.: zweimal) so spricht man von binärer Digitaltechnik. Kursleiter : W. Zimmer 1/24 Digitale Darstellung von Größen Eine Meßgröße ist digital, wenn sie in ihrem Wertebereich nur eine endliche Anzahl von Werten annehmen kann, also "abzählbar" ist. Digital kommt

Mehr

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)? Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen

6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen 6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus

Mehr

Flächenberechnung mittels Untersummen und Obersummen

Flächenberechnung mittels Untersummen und Obersummen Flächenberechnung mittels Untersummen und Obersummen Ac Einstieg: Fläche unter einer Normalparabel mit f(x) = x 2 Wir approximieren durch Rechtecksflächen, wobei zunächst senkrecht zur x-achse 10 Streifen

Mehr

Fundamente der Computational Intelligence

Fundamente der Computational Intelligence Wintersemester 2005/06 Fundamente der Computational Intelligence (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering Kapitel 2: Fuzzy Systeme Inhalt Fuzzy Mengen

Mehr

Wiederholung der Algebra Klassen 7-10

Wiederholung der Algebra Klassen 7-10 PKG Oberstufe 0.07.0 Wiederholung der Algebra Klassen 7-0 06rr5 4. (a) Kürze so weit wie möglich: 4998 (b) Schreibe das Ergebnis als gemischte Zahl und als Dezimalbruch: (c) Schreibe das Ergebnis als Bruch:

Mehr

Kapitel LF: IV. IV. Neuronale Netze

Kapitel LF: IV. IV. Neuronale Netze Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas LF: IV-39 Machine Learning c

Mehr

Kapitel LF: IV. Multilayer-Perzeptrons und Backpropagation. Multilayer-Perzeptrons und Backpropagation. LF: IV Machine Learning c STEIN 2005-06

Kapitel LF: IV. Multilayer-Perzeptrons und Backpropagation. Multilayer-Perzeptrons und Backpropagation. LF: IV Machine Learning c STEIN 2005-06 Kapitel LF: IV IV. Neuronale Netze Perzeptron-Lernalgorithmus Gradientenabstiegmethode Multilayer-Perzeptrons und ackpropagation Self-Organizing Feature Maps Neuronales Gas 39 Multilayer-Perzeptrons und

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Aufgabensammlung. a) Berechnen Sie den Basis- und Kollektorstrom des Transistors T 4. b) Welche Transistoren leiten, welche sperren?

Aufgabensammlung. a) Berechnen Sie den Basis- und Kollektorstrom des Transistors T 4. b) Welche Transistoren leiten, welche sperren? Aufgabensammlung Digitale Grundschaltungen 1. Aufgabe DG Gegeben sei folgende Schaltung. Am Eingang sei eine Spannung von 1,5V als High Pegel und eine Spannung von 2V als Low Pegel definiert. R C = 300Ω;

Mehr

Nichtdeterministische Platzklassen

Nichtdeterministische Platzklassen Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein

Mehr

Einführung in die technische Informatik

Einführung in die technische Informatik Einführung in die technische Informatik hristopher Kruegel chris@auto.tuwien.ac.at http://www.auto.tuwien.ac.at/~chris Logische Schaltungen System mit Eingängen usgängen interne Logik die Eingänge auf

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Universität zu Köln Seminar: Künstliche Intelligenz II Dozent: Claes Neuefeind SS 2012. Neuronale Netze. Von Deasy Sukarya & Tania Bellini

Universität zu Köln Seminar: Künstliche Intelligenz II Dozent: Claes Neuefeind SS 2012. Neuronale Netze. Von Deasy Sukarya & Tania Bellini Universität zu Köln Seminar: Künstliche Intelligenz II Dozent: Claes Neuefeind SS 2012 Neuronale Netze Von Deasy Sukarya & Tania Bellini Einführung Symbolische vs. Sub-symbolische KI Symbolische KI: Fokussierung

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Effiziente Algorithmen I

Effiziente Algorithmen I H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Laborbericht Projekt 3 / NPA

Laborbericht Projekt 3 / NPA Laborbericht Projekt 3 / NPA Themenbereich / Projekt: Messreihe Sensorik II Aufgabenstellung: Widerstandsmessungen an Phototransistor SFH 309 mit Overheadprojektor (OHP) zur Dimensionierung von Kollektorvorwiderstand

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1

A.3. A.3 Spezielle Schaltnetze. 2002 Prof. Dr. Rainer Manthey Informatik II 1 Spezielle Schaltnetze Spezielle Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Übersicht in diesem Abschnitt: : Vorstellung einiger wichtiger Bausteine vieler elektronischer Schaltungen, die sich

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Übung Theoretische Grundlagen

Übung Theoretische Grundlagen Übung Theoretische Grundlagen Berechenbarkeit/Entscheidbarkeit Nico Döttling November 26, 2009 INSTITUT FÜR KRYPTOGRAPHIE UND SICHERHEIT KIT University of the State of Baden-Wuerttemberg and National Laboratory

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sebastian Morr 4. Juni 2008 Worum geht es? Die Natur hat uns 3,7 Milliarden Jahre Forschungszeit voraus. Toby Simpson Vorbild: Strukturen des Gehirns Ziel: Lernfähige Künstliche

Mehr

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen

M_G7 EF Pvn Klausurvorbereitung: Lösungen 13. Oktober Klausurvorbereitung. Lösungen Klausurvorbereitung Lösungen I. Funktionen Funktionen und ihre Eigenschaften S. 14 Aufg. 2 f(-2)=0,5 f(0,1)=-10 f(78)= 1 78 g(-2)=-7 g(0,1)=-2,8 g(78)=153 h(-2)=57 h(0,1)=23,82 h(78)=11257 D f = R/{0}

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Taylorentwicklung von Funktionen einer Veränderlichen

Taylorentwicklung von Funktionen einer Veränderlichen Taylorentwicklung von Funktionen einer Veränderlichen 17. Januar 2013 KAPITEL 1. MATHEMATISCHE GRUNDLAGEN 1 Kapitel 1 Mathematische Grundlagen 1.1 Stetigkeit, Differenzierbarkeit und C n -Funktionen Der

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

Die Taylorreihe einer Funktion

Die Taylorreihe einer Funktion Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Lösungsvorschläge Blatt Z1

Lösungsvorschläge Blatt Z1 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt Z1 Zürich, 2. Dezember 2016 Lösung zu Aufgabe Z1 Wir zeigen L qi /

Mehr

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung:

Lernmaterialblatt Mathematik. Vektorrechnung eine Einführung. Anwendung Mathematik I. Einleitung: Vektorrechnung eine Einführung Einleitung: Um beispielsweise das Dreieck ABC in der Abbildung an die Position A'B'C' zu verschieben, muss jeder Punkt um sieben Einheiten nach rechts und drei nach oben

Mehr

GLEICHUNGEN MIT PARAMETERN

GLEICHUNGEN MIT PARAMETERN Mathematik-Olympiaden in Rheinland-Pfalz GLEICHUNGEN MIT PARAMETERN Fortgeschrittene Die Aufgaben auf diesem Arbeitsblatt haben alle eine elegante Lösungsidee. Bei vielen Gleichungen ist nach Anwenden

Mehr

5.4 Vektorgeometrie. 1 Repetition der Vektorgeometrie I Freie Vektoren, Ortsvektoren Die skalare Multiplikation eines Vektors...

5.4 Vektorgeometrie. 1 Repetition der Vektorgeometrie I Freie Vektoren, Ortsvektoren Die skalare Multiplikation eines Vektors... 5.4 Vektorgeometrie Inhaltsverzeichnis Repetition der Vektorgeometrie I. Freie Vektoren, Ortsvektoren................................... Die skalare Multiplikation eines Vektors.............................3

Mehr

11.1 Kontextsensitive und allgemeine Grammatiken

11.1 Kontextsensitive und allgemeine Grammatiken Theorie der Informatik 7. April 2014 11. Kontextsensitive und Typ-0-Sprachen Theorie der Informatik 11. Kontextsensitive und Typ-0-Sprachen 11.1 Kontextsensitive und allgemeine Grammatiken Malte Helmert

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

Numerisches Programmieren

Numerisches Programmieren Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches

Mehr

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph

Graphentheorie. Maximale Flüsse. Maximale Flüsse. Maximale Flüsse. Rainer Schrader. 31. Oktober Gliederung. sei G = (V, A) ein gerichteter Graph Graphentheorie Rainer Schrader Zentrum ür Angewandte Inormatik Köln 31. Oktober 2007 1 / 30 2 / 30 Gliederung maximale Flüsse Schnitte Edmonds-Karp-Variante sei G = (V, A) ein gerichteter Graph sei c eine

Mehr

Aufgaben. zu Inhalten der 5. Klasse

Aufgaben. zu Inhalten der 5. Klasse Aufgaben zu Inhalten der 5. Klasse Universität Klagenfurt, Institut für Didaktik der Mathematik (AECC-M) September 2010 Zahlbereiche Es gibt Gleichungen, die (1) in Z, nicht aber in N, (2) in Q, nicht

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2008 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2008 REALSCHULABSCHLUSS. Mathematik. Arbeitszeit: 180 Minuten Mathematik Arbeitszeit: 80 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite von 6 Pflichtaufgaben Pflichtaufgabe (erreichbare BE: 0) a) Berechnen Sie auf Hundertstel

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Wiederholung zu Flüssen

Wiederholung zu Flüssen Universität Konstanz Methoden der Netzwerkanalyse Fachbereich Informatik & Informationswissenschaft SS 2008 Prof. Dr. Ulrik Brandes / Melanie Badent Wiederholung zu Flüssen Wir untersuchen Flüsse in Netzwerken:

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6

Hochschule Bremerhaven Medizintechnik Mathcad Kapitel 6 6. Diagramme mit Mathcad In diesem Kapitel geht es um andere, als X Y Diagramme. 6.. Kreisdiagramme. Schritt: Die darzustellende Funktion muß zunächst als Funktion definiert werden, zum Beispiel f(x):=

Mehr

Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung

Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung Vom Chip zum Gehirn Elektronische Systeme zur Informationsverarbeitung Johannes Schemmel Forschungsgruppe Electronic Vision(s) Lehrstuhl Prof. K. Meier Ruprecht-Karls-Universität Heidelberg Mitarbeiter:

Mehr

Rekursiv aufzählbare Sprachen

Rekursiv aufzählbare Sprachen Kapitel 4 Rekursiv aufzählbare Sprachen 4.1 Grammatiken und die Chomsky-Hierarchie Durch Zulassung komplexer Ableitungsregeln können mit Grammatiken größere Klassen als die kontextfreien Sprachen beschrieben

Mehr

Labor Mikroelektronik. Prof. Dr.-Ing. Frank Kesel Dipl.-Ing.(FH) Manuel Gaiser Dipl.-Ing.(FH) Uwe Halmich. Versuch 2: CMOS-Inverter

Labor Mikroelektronik. Prof. Dr.-Ing. Frank Kesel Dipl.-Ing.(FH) Manuel Gaiser Dipl.-Ing.(FH) Uwe Halmich. Versuch 2: CMOS-Inverter Labor Mikroelektronik Prof. Dr.-Ing. Frank Kesel Dipl.-Ing.(FH) Manuel Gaiser Dipl.-Ing.(FH) Uwe Halmich Versuch 2: CMOS-Inverter Stand: 19.4.2010 1 Aufgabenstellung Sie sollen in diesem Versuch einen

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Syntax von LOOP-Programmen

Syntax von LOOP-Programmen LOOP-Berechenbarkeit Syntax von LOOP-Programmen Definition LOOP-Programme bestehen aus: Variablen: x 0, x 1, x 2, x 3,... Konstanten: 0, 1, 2, 3,... Trennsymbolen:; und := Operationen: + und Befehlen:

Mehr

Anhang B. Regression

Anhang B. Regression Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden

Mehr