Numerisches Programmieren
|
|
- Adolph Heintze
- vor 2 Jahren
- Abrufe
Transkript
1 Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches Programmieren 3 Programmieraufgabe: Direkte Lösung linearer Gleichungssysteme Direkte Lösung linearer Gleichungssysteme Gauß-Elimination Ziel dieser Programmieraufgabe ist die Implementierung von Verfahren zur Lösung von Systemen linearer Gleichungen Man will also zu gegebenem ein x IR n finden mit A = (a i,j ) 0 i,j<n IR n,n b = (b i ) 0 i<n IR n A x = b Zunächst soll das Gauß-Eliminationsverfahren mit Spaltenpivotsuche implementiert werden Im ersten Schritt des Gauß-Eliminationsverfahrens müssen alle Elemente der ersten Spalte unterhalb der Hauptdiagonalen zu Null werden Dies wird dadurch erreicht, dass von jeder Zeile i die erste Zeile multipliziert mit a i,0 a 0,0 abgezogen wird Die Pivotsuche setzt noch vor diesem Schritt an und sorgt dafür, dass kein Element unter dem Hauptdiagonalenelement a 0,0 betragsmäsig gröser ist als a 0,0 Dazu wird a 0,0 mit sämtlichen Elementen darunter verglichen Falls es ein betragsmäsig Gröseres gibt werden die beiden zugehörigen Zeilen vertauscht Die Pivotsuche wird in jeder Spalte durchgeführt bevor die Einträge unter dem Hauptdiagonalenelement eliminiert werden Im folgenden Beispiel ist die erste Spalte schon fertig bearbeitet D h, es muss nun auf der zweiten Spalte die Pivotsuche durchgeführt werden Von den zu untersuchenden Matrixelementen ist das in der dritten Zeile das betragsmäsig Grösste, die zweite Zeile wird daher mit der dritten Zeile vertauscht:
2 Licht Aus Die Ausgangssituation des Spiels Licht Aus 1 ist ein 5x5 Lichtboard an, auf dem einige Lichter eingeschaltet, die restlichen ausgeschaltet sind Durch Klicken auf ein Licht ändert sich dessen Zustand War das Licht an, wird es durch den Klick ausgeschaltet War das Licht aus, wird es umgekehrt durch den Klick eingeschaltet Simultan passiert das Gleiche auch mit den vier Nachbarlichtern: oben, unten, links und rechts Ziel des Spiels ist es, alle Lichter mit möglichst wenigen Klicks auszuschalten Abbildung 1 zeigt die mitgelieferte Lichterboard Java Anwendung, die als Ausgangspunkt für die Programmieraufgabe dient Abbildung 1: Links: Ausgeschaltetes Lichtboard Rechts: Licht 11 wurde geklickt Man kann selbstveständlich - ausgehend von einem Lichtermuster - die Lösung (falls überhaupt vorhanden) durch manuelles Klicken finden Es gibt aber auch eine Möglichkeit, die Lösung zu berechen Dies soll Inhalt dieser Aufgabe sein Eine vollständige Beschreibung der Lösung kann man hier 2 finden Kurz zusammengefasst wird folgendermaßen vorgegangen: Das Lichterboard kann als eine Kette mit 5 5 = 25 binären Einträgen dargestellt werden Eine 1 bedeutet, dass das Licht an der ensprechende Stelle an ist, eine 0 dass es aus ist: Ein Klick auf das Lichterboard kann ebenso von 25 binären Einträgen dargestellt werden Sind zb alle Lichter auf dem Board aus, würde durch das Klicken auf das Licht im linken oberen Eck (Licht 0) das folgende Board entstehen: a 0 : also Licht 0, 1 und 5 wären danach eingeschaltet Alle anderen 24 möglichen Klickaktionen können analog dargestellt werden An dieser stelle ahnt man vielleicht schon, dass das Resultat einer Klickaktion nichts anderes als eine XOR-Operation zwischen den binären Ketten des Boards und der Klickaktion ist Beispiel: 1 Out (game) 2 jkhoury/gamehtml board: XOR a 0 : =
3 Die Klickaktionen a 0 bis a 24 können in einer beliebige Reihenfolge angewendet werden, denn (board XOR a 1 ) XOR a 2 = (board XOR a 2 ) XOR a 1 (Kommutativität und Assoziativität) Das Problem kann man folgendermaßen formuliert werden (Addition ist hier ein XOR): c 0 a 0 + c 1 a 1 + +c 24 a 24 + y = 0 Die Interpretation davon lautet: Welche von den 25 Klickaktionen a 0 bis a 24 muss auf das Ausgangboard y angewandt werden, um am Ende zum Zustand 0 (alles aus) zu gelangen? c i = 1 bedeutet hier, dass die Klickaktion a i angewandt wird, c i = 0 bedeutet, dass die Klickaktion a i nicht angewandt wird Nach einem XOR mit y (Äquivalenzumformung) kommen wir auf: c 0 a 0 + c 1 a 1 + +c 24 a 24 = y Nun kann man das Ganze als ein Lineares Gleichungssystem schreiben: wobei Mx = y A I I A I M = 0 I A I 0 A = I = I A I I A Die Lösungskette x gibt dann an, welche Klicks benötigt werden, um das ganze Board auszuschalten Bandmatrizen Für ein Gleichungssystem mit n Gleichungen benötigt die Gauß-Elimination einen Rechenaufwand von O(n 3 ) Operationen Für Bandmatrizen lässt sich der Rechenaufwand aber erheblich reduzieren Bandmatrizen sind Matrizen, bei denen nur auf der Hauptdiagonalen und einigen Nebendiagonalen Elemente ungleich Null sind: a 0,0 a 1,pA 1 a qa 1,1 an pa,n 1 a n 1,n qa a n 1,n 1 Die untere Bandbreite q A ist die Anzahl der Nebendiagonalen unterhalb der Hauptdiagonalen inklusive der Hauptdiagonalen Die obere Bandbreite p A ist analog definiert Die Gesamtbandbreite des Bandes ist somit p A + q A 1 Ein Gleichungssystem einer solchen Struktur lässt sich mit O(n p A q A ) Operationen lösen 3
4 LR-Zerlegung ( = LU-Zerlegung) Ein Nachteil des Gauß-Eliminationsverfahrens ist, dass man das komplette Gleichungssystem erneut lösen muss, selbst wenn sich nur der Vektor b ändert, die Matrix A aber gleich bleibt Hier bietet die LR-Zerlegung einen Vorteil Zunächst wird die Matrix A in die beiden Matrizen L und R zerlegt Dazu wird nur die Matrix A verwendet, b muss noch nicht festgelegt sein Danach kann man für verschiedene b durch Anwenden der Vorwärts- und Rückwärts- Substitution die Lösung berechnen ohne die Matrix A erneut zerlegen zu müssen In der Vorlesung wurde die LR-Zerlegung vollbesetzter Matrizen vorgestellt Im Rahmen dieser Programmieraufgabe soll die LR-Zerlegung von Bandmatrizen implementiert werden Dazu soll die Klasse BandMatrix verwendet werden Diese benötigt zur Speicherung der Bandmatrix nur O(n (p + q 1)) Speicherplatz, auf die Matrixelemente kann aber über die übliche Matrixindizierung zugegriffen werden Es darf aber natürlich nur auf solche Matrixelemente zugegriffen werden, die auch wirklich im Bereich des Bandes liegen Wird die LR-Zerlegung auf einer solchen Matrix durchgeführt, so sind die entstehenden Matrizen L und R auch Bandmatrizen L ist hierbei eine Bandmatrix mit q L = q A und p L = 1 und R ist eine Bandmatrix mit q R = 1 und p R = p A Führt man zb die LR-Zerlegung der Matrix A =, p A = q A = 2 durch, so haben die Matrizen L und R folgende Struktur: L = , R = Splines Als Anwendungsbeispiel des Gleichungssystemlösers für Bandmatrizen soll eine Funktion mit Splines interpoliert werden Die Grundidee ist, eine Funktion, von der die Funktionswerte nur an bestimmten Stellen (den sogenannten Stützstellen) bekannt sind, durch eine Interpolationsfunktion darzustellen Die Interpolationsfunktion geht dabei auf jeden Fall durch die gegebenen Stützpunkte Der übrige Verlauf der Interpolationsfunktion hängt vom verwendeten Interpolationsverfahren ab In diesem Beispiel ist dieses Verfahren eben die Spline-Interpolation Dabei werden zusätzlich zu den Stützpunkten noch die Ableitungen an den beiden Intervallgrenzen vorgegeben Ziel ist die Berechnung der Ableitung an sämtlichen 4
5 Stützstellen Die Bestimmung der Ableitungen entspricht der Lösung des folgenden linearen Gleichungssystems (vgl Tutorien und Vorlesung): y 1 y 2 y n 2 y n 1 = 3 h y 2 y 0 h 3 y 0 y 3 y 1 y n 1 y n 3 y n y n 2 h 3 y n Die Matrix A dieses LGS ist eine Bandmatrix mit q A = p A = 2 Durch Vorgabe eines Arrays mit n + 1 Stützwerten, den Intervallgrenzen x 0 und x n sowie den Ableitungen an den Intervallgrenzen y 0 und y n wird das LGS eindeutig lösbar In der Klasse Spline sollen Methoden implementiert werden, die zu den eben genannten Daten einen Vektor mit den Ableitungen y 1 bis y n 1 berechnen 5
6 Konkrete Aufgaben Im Folgenden werden die zu implementierenden Methoden aufgelistet Details zur Implementierung finden Sie jeweils in den Kommentaren zu den einzelnen Methoden Klasse Gauss, Methode loese: Gauß-Elimination mit Spaltenpivotsuche Klasse Gauss, Methode loesebinaer: Für die Lösung des Spiels Light Aus! muss eine Gauss Elimination für binäre Matrizen implementiert werden Tipp: Dies ist sehr ähnlich zur klassischen Gauss Elimination Es wird lediglich überall dort der XOR- Operator verwendet, wo sonst klassich der Additions-Operator zum Einsatz kommt Klasse LRZerlegung, Methode zerlege: LR-Zerlegung der Matrix A Klasse LRZerlegung, Methode substitution: Vorwärts- und Rückwärts-Substitution Klasse Spline, Konstruktor: Bandmatrix und zugehörige LR-Zerlegung erzeugen Klasse Spline, Methode loese: Baut aus den Stützwerten und Randbedingungen den Vektor b auf und berechnet die Ableitungen Formalien Das Programmgerüst erhalten Sie auf den Webseiten zur Vorlesung Ergänzen Sie das Programmgerüst bitte nur an den dafür vorgegebenen Stellen! Falls Sie die Struktur der Programme eigenmächtig verändern, können wir sie evtl nicht mehr testen Beseitigen Sie vor Abgabe Ihres Programms alle Ausgaben an die Konsole, die Sie eventuell zu Debugging- oder Testzwecken eingefügt haben Bitte laden Sie hier Ihre java-dateien als flaches tgz-archiv hoch Der Dateiname ist beliebig wählbar, bei der Erweiterung muss es sich jedoch um tgz oder targz handeln Ein solches Archiv können Sie beispielsweise mit dem Linux-Tool tar erstellen, indem Sie die laut Aufgabenstellung zu bearbeitenden java-dateien in ein sonst leeres Verzeichnis legen und dort anschließend den Befehl > tar cvvzf numpro_aufg3tgz *java ausführen Bei dieser Aufgabe kann es in Windows zu Problemen beim Testen von Rechenoperationen auf der Konsole kommen Wir empfehlen daher, die Programme unter Linux (Rechnerhalle) zu testen Bitte reichen Sie Ihre Abgabe bis zum 22 Juni 2012, 17:30 Uhr über Moodle ein Bitte beachten Sie: Alle Abgaben, die nicht den formalen Kriterien genügen, werden grundsätzlich mit 0 Punkten bewertet! 6
Numerisches Programmieren
Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare
Numerisches Programmieren
Technische Universität München WS /3 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Inf Dipl-Math Jürgen Bräckle Numerisches Programmieren Programmieraufgabe: Polnominterpolation,
LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.
Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems
1 Lineare Gleichungssysteme
MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden
Elemente der Analysis II
Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel
5 Eigenwerte und die Jordansche Normalform
Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n
Kapitel 15. Lösung linearer Gleichungssysteme
Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
Einführung in die Vektor- und Matrizenrechnung. Matrizen
Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:
Ohne Mathematik undenkbar!
Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen
Technische Informatik - Eine Einführung
Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine
KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren
KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0
Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben
Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren
Informationsverarbeitung im Bauwesen
V14 1 / 30 Informationsverarbeitung im Bauwesen Markus Uhlmann Institut für Hydromechanik WS 2009/2010 Bemerkung: Verweise auf zusätzliche Information zum Download erscheinen in dieser Farbe V14 2 / 30
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung
Lineare Algebra (Mathe I) für Wirtschaftsinformatiker; Zusammenfassung Artur Trzewik sw562@uni-essen.de v1., 26.3.1998 korrigiert 16. Februar 2 Zusammenfassung Warnung: für die Richtigkeit der Definitionnen
Nichtlineare Optimierung ohne Nebenbedingungen
Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
Einführung in die Informatik I
Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
Aufgabe 1: Malerarbeiten
Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:
OPERATIONS-RESEARCH (OR)
OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:
Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.
Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst
Lineare Gleichungssysteme I (Matrixgleichungen)
Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst
Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)
Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009
Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.
Reihungen. Martin Wirsing. in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03
Reihungen Martin Wirsing in Zusammenarbeit mit Matthias Hölzl und Nora Koch 11/03 2 Ziele Die Datenstruktur der Reihungen verstehen: mathematisch und im Speicher Grundlegende Algorithmen auf Reihungen
Übungen zu Grundlagen der Informatik I WS 2004/05
Übungen zu GdI I Übungen zu Grundlagen der Informatik I WS 2004/05 Thorsten.Meinl@informatik.uni-erlangen.de 1 What's up today Zeiten und Termine Philosophie der Übungsaufgaben Übungsverwaltung Erste Schritte
Praktische Informatik I Der Imperative Kern Mathematiknachhilfe
Praktische Informatik I Der Imperative Kern Mathematiknachhilfe Prof. Dr. Stefan Edelkamp Institut für Künstliche Intelligenz Technologie-Zentrum für Informatik und Informationstechnik (TZI) Am Fallturm
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten
2 Lineare Gleichungssysteme
Beispiel.5: Funktion von Runge (V) Beispiel Martin-Luther-Universität Halle-Wittenberg, NWF III, Institut für Mathematik Martin Arnold: Grundkurs Numerische Mathematik (WiS 27/8) Abbildung.3: Interpolation
Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel
Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3
6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte
Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n
Übung: Verwendung von Java-Threads
Übung: Verwendung von Java-Threads Ziel der Übung: Diese Übung dient dazu, den Umgang mit Threads in der Programmiersprache Java kennenzulernen. Ein einfaches Java-Programm, das Threads nutzt, soll zum
Objektorientierter Software-Entwurf Grundlagen 1 1. Analyse Design Implementierung. Frühe Phasen durch Informationssystemanalyse abgedeckt
Objektorientierter Software-Entwurf Grundlagen 1 1 Einordnung der Veranstaltung Analyse Design Implementierung Slide 1 Informationssystemanalyse Objektorientierter Software-Entwurf Frühe Phasen durch Informationssystemanalyse
Kevin Caldwell. 18.April 2012
im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Lineare Gleichungssysteme
Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare
Lösen von linearen Gleichungssystemen mit zwei Unbekannten:
Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom
In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch
Kapitel Matrizen in C++ In der Computersprache C ist die Standardmethode zur Behandlung von Matrizen durch 1 const int n=10; 3 double a[n][n]; gegeben. Allerdings gibt es bei dieser Methode eine Reihe
Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.
Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die
6 Lösungsverfahren für lineare Gleichungssysteme
6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html
Lineare Gleichungssysteme und Gauß'scher Algorithmus
Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier
1.9 Eigenwerte und Eigenvektoren
.9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..
Numerisches Programmieren, Übungen
Technische Universität München SoSe 0 Institut für Informatik Prof Dr Thomas Huckle Dipl-Math Jürgen Bräckle Nikola Tchipev, MSc Numerisches Programmieren, Übungen Musterlösung Übungsblatt: Zahlendarstellung,
Bildverarbeitung Herbstsemester 2012. Kanten und Ecken
Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
LEHRSTUHL FÜR DATENBANKEN
LEHRSTUHL FÜR DATENBANKEN Informatik II für Verkehrsingenieure Java & Eclipse Installationsguide Prof. Dr.-Ing. Wolfgang Lehner > Was ist Eclipse? Eine sogenannte Integrierte Entwicklungsumgebung (engl.
Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen
Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:
Ingenieurinformatik Diplom-FA (Teil 2, C-Programmierung)
Hochschule München, FK 03 SS 2014 Ingenieurinformatik Diplom-FA (Teil 2, C-Programmierung) Zulassung geprüft: (Grundlagenteil) Die Prüfung ist nur dann gültig, wenn Sie die erforderliche Zulassungsvoraussetzung
Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004
Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu
Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt
Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph. D. Dipl.-inform. Oliver Kayser-Herold Praktikum Wissenschaftliches Rechnen 3. Aufgabenblatt Wir
Fotografie * Informatik * Mathematik * Computer-Algebra * Handreichung für Lehrer
BIKUBISCHE INTERPOLATION AM BEISPIEL DER DIGITALEN BILDBEARBEITUNG - AUFGABENSTELLUNG FÜR SCHÜLER Problem Bei Veränderung der Größe eines Digitalbildes sind entweder zuviel Pixel (Verkleinerung) oder zuwenig
Leitfaden Lineare Algebra: Determinanten
Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv
Einführung in die Programmierung (EPR)
Goethe-Center for Scientific Computing (G-CSC) Goethe-Universität Frankfurt am Main Einführung in die Programmierung (EPR) (Übung, Wintersemester 2014/2015) Dr. S. Reiter, M. Rupp, Dr. A. Vogel, Dr. K.
Computer Graphik (CS231) - Installation der Software
UNIVERSITÄT BASEL Prof. Dr. Thomas Vetter Departement Mathematik und Informatik Spiegelgasse 1 CH 4051 Basel Tobias Maier (tobias.maier@unibas.ch) Jasenko Zivanov (jasenko.zivanov@unibas.ch) Marc Schmidlin
2 Windows- Grundlagen
2 Windows- Grundlagen 2.1 Der Windows-Desktop Windows bezeichnet den gesamten Monitorbildschirm des Computers inklusive der Taskleiste als Schreibtisch oder als Desktop. Zum besseren Verständnis möchte
Übungen zur Softwaretechnik
Technische Universität München Fakultät für Informatik Lehrstuhl IV: Software & Systems Engineering Markus Pister, Dr. Bernhard Rumpe WS 2002/2003 Lösungsblatt 9 17. Dezember 2002 www4.in.tum.de/~rumpe/se
Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min
Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe
Lineare Algebra - alles was man wissen muß
Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger
Theoretische Grundlagen der Informatik WS 09/10
Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3
Zahlenmauern. Dr. Maria Koth. Ausgehend von dieser einfachen Bauvorschrift ergibt sich eine Vielzahl an möglichen Aufgabenstellungen.
Zahlenmauern Dr. Maria Koth Zahlenmauern sind nach einer einfachen Regel gebaut: In jedem Feld steht die Summe der beiden darunter stehenden Zahlen. Ausgehend von dieser einfachen Bauvorschrift ergibt
Fachgebiet Informationssysteme Prof. Dr.-Ing. N. Fuhr. Programmierung Prof. Dr.-Ing. Nobert Fuhr. Programmierprojekt
Gudrun Fischer Sascha Kriewel Abgabe: 10. Februar, 23:59 programmierung@is.informatik.uni-duisburg.de Programmierprojekt Formalia Das Projekt zur Vorlesung ist eine praktische Programmieraufgabe, die einzeln
Mathematik für Informatiker II. Beispiellösungen zur Probeklausur. Aufgabe 1. Aufgabe 2 (5+5 Punkte) Christoph Eisinger Sommersemester 2011
Mathematik für Informatiker II Christoph Eisinger Sommersemester 211 Beispiellösungen zur Probeklausur Aufgabe 1 Gegeben sind die Polynome f, g, h K[x]. Zu zeigen: Es gibt genau dann Polynome h 1 und h
Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b
Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und
6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum
6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte
Umgekehrte Kurvendiskussion
Umgekehrte Kurvendiskussion Bei einer Kurvendiskussion haben wir eine Funktionsgleichung vorgegeben und versuchen ihre 'Besonderheiten' herauszufinden: Nullstellen, Extremwerte, Wendepunkte, Polstellen
Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra
Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)
Dateiname Name(n) und Matrikelnr. des/der Bearbeiter Tel.-Nr. und E-Mail-Adresse für den Fall, dass die Diskette nicht lesbar ist.
Matrizenrechner Schreiben Sie ein CProgramm, das einen Matrizenrechner für quadratische Matrizen nachbildet. Der Matrizenrechner soll mindestens folgende Berechnungen beherrschen: Transponieren, Matrizenaddition,
Excel-Kurs (Stephan Treffler, HS Erding)
Excel-Kurs (Stephan Treffler, HS Erding) Der Excel-Kurs geht davon aus, dass Schüler der 9.Jahrgangsstufe grundsätzlich mit Excel umgehen können und über das Menü und die verschiedenen Funktionen Bescheid
Drei-Schichten-Architektur. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 16: 3-Schichten-Architektur 1 Fachkonzept - GUI
Universität Osnabrück Drei-Schichten-Architektur 3 - Objektorientierte Programmierung in Java Vorlesung 6: 3-Schichten-Architektur Fachkonzept - GUI SS 2005 Prof. Dr. F.M. Thiesing, FH Dortmund Ein großer
Theoretische Grundlagen der Informatik
Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik
klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s
Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen
Diese Ansicht erhalten Sie nach der erfolgreichen Anmeldung bei Wordpress.
Anmeldung http://www.ihredomain.de/wp-admin Dashboard Diese Ansicht erhalten Sie nach der erfolgreichen Anmeldung bei Wordpress. Das Dashboard gibt Ihnen eine kurze Übersicht, z.b. Anzahl der Beiträge,
In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe?
Aufgabe 1: Das Stanzblech: Löcher In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Bei dieser Aufgabe kann rückwärts gearbeitet
Wie Google Webseiten bewertet. François Bry
Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen
Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel
7 Die Determinante einer Matrix
7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =
V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,
Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen
1. Methode der Finiten Elemente
1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung
Schnelle Lösung großer Gleichungssysteme
Schnelle Lösung großer Gleichungssysteme Anton Schüller 1 Ulrich Trottenberg 1,2 Roman Wienands 2 1 Fraunhofer-Institut Algorithmen und Wissenschaftliches Rechnen SCAI 2 Mathematisches Institut der Universität
Teil II. Nichtlineare Optimierung
Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene
Institut fu r Informatik
Technische Universita t Mu nchen Institut fu r Informatik Lehrstuhl fu r Bioinformatik Einfu hrung in die Programmierung fu r Bioinformatiker Prof. B. Rost, L. Richter WS 2013 Aufgabenblatt 3 18. November
Handbuch Datenpunktliste - Auswerte - Tools
Handbuch Datenpunktliste - Auswerte - Tools zur Bearbeitung von Excel Datenpunktlisten nach VDI Norm 3814 für Saia PCD Systeme alle Rechte bei: SBC Deutschland GmbH Siemensstr. 3, 63263 Neu-Isenburg nachfolgend
ARBEITSUNTERLAGEN ZUR VORLESUNG UND ÜBUNG AN DER UNIVERSITÄT DES SAARLANDES LINEARE OPTIMIERUNG
¾ REITSUNTERLGEN ZUR VORLESUNG UND ÜUNG N DER UNIVERSITÄT DES SRLNDES LINERE OPTIMIERUNG IM SS Lineare Optimierung (SS ). ufgabe (Graphische Lineare Optimierung) Nach einem anstrengenden Semester steht
x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt
- 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +
0, v 6 = 2 2. 1, v 4 = 1. 2. span(v 1, v 5, v 6 ) = span(v 1, v 2, v 3, v 4, v 5, v 6 ) 4. span(v 1, v 2, v 4 ) = span(v 2, v 3, v 5, v 6 )
Aufgabe 65. Ganz schön span(n)end. Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 aus Aufgabe P 6: M = v =, v =, v =, v 4 =, v 5 =, v 6 = Welche der folgenden Aussagen sind wahr? span(v,
Der Einsatz von Computeralgebrasystemen in Abiturprüfungen
Der Einsatz von Computeralgebrasystemen in Abiturprüfungen Dr. Gilbert Greefrath Ausgangslage Zentrale Prüfungen mit (und ohne) CAS Aufgabeninhalt und -kontext Verwendung verschiedener Werkzeuge Erfahrungen
Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011
Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.
Z = 60! 29!31! 1,1 1017.
Aufgabe : Eine Hochzeitsgesellschaft besteht aus 60 Personen. a Wieviele verschiedene Möglichkeiten für Sitzordnungen gibt es? b Nehmen Sie nun an, dass 9 Gäste aus dem Familien- und Freundeskreis der
Leitprogramm Bubblesort
Leitprogramm Bubblesort Dr. Rainer Hauser Inhalt 1 Übersicht...1 2 Input-Block I: Der Sortieralgorithmus Bubblesort...2 3 Input-Block II: Die Effizienz von Bubblesort...6 4 Zusammenfassung...8 5 Lernkontrolle...9
Vorlesung. Funktionen/Abbildungen 1
Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.
Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.
ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische
Thomas Gewering Benjamin Koch Dominik Lüke
HEINZ NIXDORF INSTITUT Universität Paderborn Technische Informatik für Ingenieure WS 2010/2011 Übungsblatt Nr. 1 11. Oktober 2010 Übungsgruppenleiter: Matthias Fischer Mouns Almarrani Rafał Dorociak Michael
Wirtschafts-Informatik-Wietzorek Ulmweg 7 73117 Wangen 31.10.2009. Programm zur komfortablen Datenauswertung der JTL-WAWI Betaversion
Cubeinfo Programm zur komfortablen Datenauswertung der JTL-WAWI Betaversion Kurzbeschreibung Diese Software ist Freeware und darf weitergegeben werden. Zum Öffen der ZIP- Files benötigen Sie ein Kennwort,
Ein Word-Dokument anlegen
34 Word 2013 Schritt für Schritt erklärt Ein Word-Dokument anlegen evor Sie einen Text in Word erzeugen können, müssen Sie zunächst einmal ein neues Dokument anlegen. Die nwendung stellt zu diesem Zweck