Numerisches Programmieren
|
|
- Heiko Bruhn
- vor 2 Jahren
- Abrufe
Transkript
1 Technische Universität München SoSe 213 Institut für Informatik Prof. Dr. Thomas Huckle Dipl.-Inf. Christoph Riesinger Dipl.-Math. Jürgen Bräckle Numerisches Programmieren 2. Programmieraufgabe: Lineare Gleichungssysteme & PageRank Einführung Für Suchmaschinen ist es interessant, die Bedeutung einer Website zu kennen. Das von Google verwendete PageRank-Verfahren betrachtet dazu die Links zwischen den Seiten. Das Grundprinzip lautet: Je mehr Links auf eine Seite verweisen, umso bedeutender ist diese Seite. Je bedeutender die verweisenden Seiten sind, desto größer ist der Effekt. Dieses Prinzip führt zu einem System linearer Gleichungen, das in dieser Aufgabe gelöst werden soll. PageRank Wie in der Einführung erwähnt soll der Rang einer Seite von der Anzahl der eingehenden Links und dem Rang der verlinkenden Seiten abhängen. Wir betrachten nun jemanden, der durch das Web surft, indem er zufällig Links folgt. Dieser Zufallssurfer wird sich desto häufiger auf einer bestimmten Webseite aufhalten, umso mehr Links auf sie verweisen, und umso bedeutender die vorherige Seite ist. Anhand der Aufenthaltswahrscheinlichkeit (=Rang p j ) eines Zufallssurfers auf einer Seite j kann nun eine Rangliste der Seiten aufgestellt werden. Um das zufällige Surfen auf insgesamt n Seiten zu simulieren, stellen wir zunächst eine Matrix A IR n n auf, in der das Element a ij die Wahrscheinlichkeit angibt, von Seite j auf Seite i zu gelangen. Da es sich um Wahrscheinlichkeiten handelt, muss für die Spaltensummen n i=1 a ij = 1 gelten. Außerdem soll jedem Link mit gleicher Wahrscheinlichkeit gefolgt werden, es gilt also { 1 falls j auf i linkt a ij = #Links die von j ausgehen sonst.
2 Wir nehmen an, dass jede Seite auf sich selbst verweist; dies verhindert insbesondere eine Division durch. Im bisherigen Modell könnte es passieren, dass einige Seiten eine Insel bilden und nur untereinander, aber nicht zum Rest des Internets verlinken. Um zu verhindern, dass der Surfer auf einer solchen Insel gefangen bleibt, lassen wir ihn mit einer Wahrscheinlichkeit ρ [, 1] irgendeine Seite (z.b. aus seinen Bookmarks) besuchen, anstatt einem Link zu folgen. Dadurch ergibt sich eine modifizierte Wahrscheinlichkeits-Matrix à mit ã ij = (1 ρ) a ij + ρ/n. Der Aufenthaltsort des Surfers ist zunächst stark von der Ausgangsseite abhängig. Wir hoffen aber, dass sich die Aufenthaltswahrscheinlichkeiten nach hinreichend langer Zeit auf ein Gleichgewicht einpendeln, das von der Ausgangsseite unabhängig ist. 1 Falls wir die Wahrscheinlichkeiten p j, sich auf der Seite j zu befinden, als Vektor p notieren, so sind die Wahrscheinlichkeiten nach einem weiteren Schritt zufälligen Surfens Ãp. Das gesuchte Gleichgewicht p verändert sich nicht mehr nach einem Surf-Schritt, also erfüllt es à p = p. Gesucht ist also ein Eigenvektor p von à zum Eigenwert 1.2 Es gilt à p = p à p I p = (à I) p =, d.h. p ist eine Lösung des linearen Gleichungssystems (à I)p =. (1) Da jedoch auch jedes Vielfache λ p ein Eigenvektor ist, ist die Lösung nicht eindeutig, d.h. (à I) ist nicht invertierbar und der normale Gauß-Algorithmus kann keine Lösung finden. Ein mögliches Lösungsverfahren eines solchen singulären Systems ist eine modifizierte Version des Gauß-Algorithmus, welcher im folgenden Abschnitt vorgestellt wird. Sei p nun eine Lösung des Systems (1). Durch Normierung von p erhält man die gesuchten Aufenthaltswahrscheinlichkeiten 3 n p = λp mit λ = 1/ p j j=1 ( p erfüllt nun n p j = 1). j=1 Basierend auf diesen Werten findet das PageRank-Verfahren eine sinnvolle Sortierung der Webbseiten. 1 Bei dem Modell handelt es sich um eine Markov-Kette. Das gesuchte Gleichgewicht ist eine stationäre Verteilung. 2 1 ist immer Eigenwert von Ã, da per Konstruktion von à (Spaltensumme 1) (1,, 1) EV von ÃT zum EW 1 ist und à und ÃT dasselbe char. Polynom haben. 3 Die von à beschriebene Markov-Kette ist ergodisch. Die stationäre Verteilung p ist daher eindeutig.
3 Verfahren zur Lösung von Linearen Gleichungssystemen In diesem Abschnitt werden nun einige Löser linearer Gleichungssysteme vorgestellt: die Rückwärtssubstitution für obere Dreiecksmatrizen, die Gauß-Elimination für allgemeine invertierbare Systeme und ein modifizierter Gauß-Algorithmus für singuläre Systeme. Rückwärtssubstitution a 11 a 12 a 1n a 22 a 2n.... a nn x 1. x n = b 1. b n (2) Ein Gleichungssystem der Form (2) mit einer oberen Dreiecksmatrix lässt sich leicht zeilenweise von unten nach oben lösen. Beim Lösen der i-ten Zeile sind x i+1,..., x n bereits bekannt, wodurch die einzige verbleibende Unbekannte x i sofort bestimmt werden kann. Gauß-Elimination mit Spalten-Pivotsuche Die Gauß-Elimination ist ein Verfahren um lineare Gleichungssysteme in die leicht lösbare obere Dreiecksform zu bringen. Im k-ten Schritt der Gauß-Elimination müssen alle Elemente der k-ten Spalte unterhalb der Hauptdiagonalen zu Null werden. Dazu wird von jeder Zeile i > k die mit a ik a kk multiplizierte k-te Zeile abgezogen. Dies ist nur möglich, falls a kk. Zudem sollte 1 a kk möglichst klein sein, um Rechenfehler nicht zu verstärken. Die Spalten-Pivotsuche ermittelt daher vor jedem Eliminationsschritt die Zeile j k, die das betragsgrößte Element a jk, j k enthält (bei Gleichstand die Zeile mit kleinstem Index). Falls k j werden die Zeilen k und j vertauscht. Im folgenden Beispiel ist die erste Spalte schon fertig bearbeitet, d.h. es muss nun auf der zweiten Spalte die Pivot-Suche durchgeführt werden. Von den zu untersuchenden Matrixelementen ist das in der dritten Zeile das betragsmäßig größte, die zweite Zeile wird daher mit der dritten Zeile vertauscht:
4 Modifizierter Gauß-Algorithmus Gegeben sei nun das System Ap = (3) mit einer singulären Matrix A. Wir verwenden eine Abwandlung des Gauß- Algorithmus mit Spalten-Pivotsuche, um ein p zu bestimmen, das (3) löst. Dazu werden zunächst die üblichen Schritte der Gauß-Elimination ausgeführt. Aufgrund der Nicht-Invertierbarkeit der Matrix A kann dieses Vorgehen nicht bis zum Ende fortgesetzt werden. Die Gauß-Schritte enden, wenn kein Pivotelement gefunden werden kann, d.h. wenn alle in Frage kommenden Elemente sind (in unserem Fall < 1E 1). Das umgeformte LGS hat zu diesem Zeitpunkt also folgende Struktur: T v p. } {{ } :=Â =., (4) wobei T eine invertierbare obere Dreiecksmatrix ist. Löst man T x = v durch Rückwärtssubstitution nach x, erhält man mit eine Lösung von (4), da gilt: Âp = = x T v 1 v + p := (x, 1,... ) T 4 ( v = ) =. T x + v x ist hier der obere Teil des Vektors p
5 Beschreibung des Programmgerüsts Das auf der Vorlesungsseite zur Verfügung gestellte Programmgerüst enthält: Gauss: Diese Klasse soll um Funktionen zur Lösung von linearen Gleichungssystemen erweitert werden. Zum einfachen Testen dieser Funktionen enthält sie bereits eine Methode zur Multiplikation einer Matrix mit einem Vektor (matrixvectormult()). PageRank: Die Klasse PageRank bietet Methoden zur Generierung der Matrix der Übergangswahrscheinlichkeiten Ã, zur Ermittlung des Gleichgewichts der Aufenthaltswahrscheinlichkeiten p und der daraus resultierenden Reihenfolge der Webseiten. In Form einer Link-Matrix L erhalten diese Methoden die Informationen zu den Links zwischen den Webseiten. LinkMatrix: Eine Link-Matrix { beschreibt die Link-Verbindungen zwischen den Webseiten, d.h. L ij = 1 falls j auf i linkt sonst webseiten: Dieser Ordner enthält Beispiele für Link-Matrizen und Webseiten Crawler: Der Webcrawler durchforstet, ausgehend von einer Startadresse, das Internet über Hyperlinks und ermöglicht das Speichern von Link-Informationen in Form einer Link-Matrix. GUI: Mit der GUI lassen sich Link-Matrizen erstellen. Von einer gegebenen Menge an Addressen aus startend besuchen Crawler verlinkte Webseiten und speichern die gesammelten Informationen in einer Ausgabedatei. Util: Diese Klasse bietet Test- und Textausgabemethoden.
6 Aufgaben Im Folgenden werden die zu implementierenden Methoden aufgelistet. Details finden Sie jeweils in den Kommentaren zu den einzelnen Methoden. Überlegen Sie sich zu allen Methoden Testbeispiele und testen Sie unbedingt jede einzelne Methode direkt nach der Erstellung. Sie können zusätzlich die zur Verfügung gestellte Testklasse Test verwenden. Es ersetzt aber nicht das Verwenden eigener Testbeispiele. Programmieren Sie in der Klasse Gauss die gegebenen Methodenrümpfe backsubst, solve und solvesing. Programmieren Sie in der Klasse PageRank die gegebenen Methodenrümpfe buildprobabilitymatrix und rank. Formalien und Hinweise Das Programmgerüst erhalten Sie auf den Webseiten zur Vorlesung. Ergänzen Sie das Programmgerüst bitte nur an den dafür vorgegebenen Stellen! Falls Sie die Struktur der Programme an anderer Stelle verändern, können wir sie evtl. nicht mehr testen. Beseitigen Sie vor Abgabe Ihres Programms alle Ausgaben an die Konsole und reichen Sie bis zum 7. Juni 213, 12: Uhr über Moodle ein. Reichen Sie nur die Dateien Gauss.java und PageRank.java ein. Bitte laden Sie Ihre java-dateien als flaches tgz-archiv hoch. Der Dateiname ist beliebig wählbar, bei der Erweiterung muss es sich jedoch um.tgz oder.tar.gz handeln. Ein solches Archiv können Sie beispielsweise mit dem Linux-Tool tar erstellen, indem Sie die laut Aufgabenstellung zu bearbeitenden java-dateien in ein sonst leeres Verzeichnis legen und dort anschließend den Befehl > tar cvvzf numpro_aufg2.tgz *.java ausführen. In jeder Gruppe sollte nur ein Teammitglied eine Lösung einreichen. Wir empfehlen Ihnen, die Programme unter Linux (Rechnerhalle) zu testen. Bitte beachten Sie: Alle Abgaben, die nicht den formalen Kriterien genügen, werden grundsätzlich mit Punkten bewertet!
Numerisches Programmieren
Technische Universität München WS /3 Institut für Informatik Prof Dr Hans-Joachim Bungartz Dipl-Inf Christoph Riesinger Dipl-Inf Dipl-Math Jürgen Bräckle Numerisches Programmieren Programmieraufgabe: Polnominterpolation,
Numerisches Programmieren
Technische Universität München SS 2012 Institut für Informatik Prof Dr Thomas Huckle Dipl-Inf Christoph Riesinger Dipl-Math Alexander Breuer Dipl-Math Dipl-Inf Jürgen Bräckle Dr-Ing Markus Kowarschik Numerisches
Kapitel 15. Lösung linearer Gleichungssysteme
Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren
Ohne Mathematik undenkbar!
Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als
Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix
Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das
Einführung in die Vektor- und Matrizenrechnung. Matrizen
Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:
5 Eigenwerte und die Jordansche Normalform
Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n
Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel
Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3
1 Lineare Gleichungssysteme
MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden
Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.
Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen
Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23.
Google s PageRank Eine Anwendung von Matrizen und Markovketten Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. September 2009 Dr. Werner Sandmann Institut für Mathematik Technische Universität
Wie Google Webseiten bewertet. François Bry
Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google
Lineare Gleichungssysteme
Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der
1.9 Eigenwerte und Eigenvektoren
.9. EIGENWERTE UND EIGENVEKTOREN 0.9 Eigenwerte und Eigenvektoren Alles in diesem Abschnitt bezieht sich auf quadratische reelle oder komplexe n n-matrizen. Statt E n (n n-einheitsmatrix) wird kurz E geschrieben..
PageRank-Algorithmus
Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.
Lineare Gleichungssysteme
Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder
Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme
Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
W-Rechnung und Statistik für Ingenieure Übung 11
W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik
5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung
5. Vorlesung Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung Seite 120 The Ranking Problem Eingabe: D: Dokumentkollektion Q: Anfrageraum
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren
KAPITEL 3. Lineare Gleichungssysteme, direkte Lösungsverfahren Beispiel 3.2. Gesucht u(x), das eine Differentialgleichung vom Typ u (x) + λ(x)u(x) = f(x), x [0,], mit den Randbedingungen u(0) = u() = 0
Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung
Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter
Lineare Gleichungssysteme
Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
Diskrete Modellierung
Diskrete Modellierung Wintersemester 2013/14 Prof. Dr. Isolde Adler Letzte Vorlesung: Korrespondenz zwischen der Page-Rank-Eigenschaft und Eigenvektoren zum Eigenwert 1 der Page-Rank-Matrix Markov-Ketten
Das Lösen linearer Gleichungssysteme
Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.
Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems
Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:
Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es
Lineare Gleichungssysteme und Gauß'scher Algorithmus
Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen
Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.
Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Aufgabe 1: Malerarbeiten
Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
MLAN1 1 MATRIZEN 1 0 = A T =
MLAN1 1 MATRIZEN 1 1 Matrizen Eine m n Matrix ein rechteckiges Zahlenschema a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n a m1 a m2 a m3 amn mit m Zeilen und n Spalten bestehend aus m n Zahlen Die Matrixelemente
1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema
1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und
Suchmaschinen und Markov-Ketten 1 / 42
Suchmaschinen und Markov-Ketten 1 / 42 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort oder
4 Lineare Algebra (Teil 2): Quadratische Matrizen
4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,
Kevin Caldwell. 18.April 2012
im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig
Semestralklausur zur Vorlesung. Web Mining. Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7.
Semestralklausur zur Vorlesung Web Mining Prof. J. Fürnkranz Technische Universität Darmstadt Sommersemester 2004 Termin: 22. 7. 2004 Name: Vorname: Matrikelnummer: Fachrichtung: Punkte: (1).... (2)....
Der Rang einer Matrix A. Beispiel
Der Rang einer Matrix A ist gleich Anzahl der Zeilen ungleich 0, nachdem die Matrix durch elementare Zeilenoperationen in Zeilenstufenform gebracht worden ist. Bezeichnung: ranga oder rga. Beispiel A =
Copyright, Page 1 of 5 Die Determinante
wwwmathematik-netzde Copyright, Page 1 of 5 Die Determinante Determinanten sind ein äußerst wichtiges Instrument zur Untersuchung von Matrizen und linearen Abbildungen Außerhalb der linearen Algebra ist
Kap 5: Rang, Koordinatentransformationen
Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
Leitfaden Lineare Algebra: Determinanten
Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv
6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte
Numerik I Version: 240608 40 6 Lösung linearer Gleichungssysteme I: LR-Zerlegung und Verwandte Die zwei wichtigsten Aufgaben der linearen Algebra: Lösung linearer Gleichungssysteme: Ax = b, wobei die n
8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten
Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A
Grundlagen der Monte Carlo Simulation
Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte
Algorithmus zur Berechnung der Jordannormalform
Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................
Lineare Gleichungssysteme
Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang
4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung
4.5 Überbestimmte Gleichungssysteme, Gauß sche Ausgleichrechnung In vielen Anwendungen treten lineare Gleichungssysteme auf, die eine unterschiedliche Anzahl von Gleichungen und Unbekannten besitzen: Ax
Praktische Informatik I Der Imperative Kern Mathematiknachhilfe
Praktische Informatik I Der Imperative Kern Mathematiknachhilfe Prof. Dr. Stefan Edelkamp Institut für Künstliche Intelligenz Technologie-Zentrum für Informatik und Informationstechnik (TZI) Am Fallturm
1 Matrizenrechnung zweiter Teil
MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten
45 Eigenwerte und Eigenvektoren
45 Eigenwerte und Eigenvektoren 45.1 Motivation Eigenvektor- bzw. Eigenwertprobleme sind wichtig in vielen Gebieten wie Physik, Elektrotechnik, Maschinenbau, Statik, Biologie, Informatik, Wirtschaftswissenschaften.
Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya
Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.
Elemente der Analysis II
Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel
Lineare Algebra. Teil III. Inhaltsangabe
Teil III Lineare Algebra Inhaltsangabe 3 Lineare Algebra 22 3.1 Einführung.......................... 22 3.2 Matrizen und Vektoren.................... 23 3.3 Spezielle Matrizen...................... 24
1 Singulärwertzerlegung und Pseudoinverse
Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese
Tutorium: Diskrete Mathematik. Matrizen
Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)
Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren
Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
6 Lösungsverfahren für lineare Gleichungssysteme
6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html
Invertierbarkeit von Matrizen
Invertierbarkeit von Matrizen Lineare Algebra I Kapitel 4 24. April 2013 Logistik Dozent: Olga Holtz, MA 417, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de
Lösen von linearen Gleichungssystemen mit zwei Unbekannten:
Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom
Skript zur Vorlesung. Lineare Algebra. Prof. Dr.-Ing. Katina Warendorf. 2. Oktober 2014
Skript zur Vorlesung Prof. Dr.-Ing. Katina Warendorf 2. Oktober 2014 erstellt von Sindy Engel erweitert von Prof. Dr.-Ing. Katina Warendorf Inhaltsverzeichnis 1 Vektoren 4 1.1 Grundbegriffe.................................
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
LINEARE GLEICHUNGSSYSTEME. Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie. x + y + z = 1
LINEARE GLEICHUNGSSYSTEME 1. Ein kurzes Vorwort Wir besprechen hier, wie MathematikerInnen an das Lösen linearer Gleichungssysteme wie 2 x 1 + 2 x 2 = 3 6 a + 4 b = 3 (a) (b) 4 x 1 + 3 x 2 = 8 3 a + 2
AplusixEditor : Editor für Aplusix 3 Benutzerhandbuch
1. Einleitung AplusixEditor : Editor für Aplusix 3 Benutzerhandbuch Mai 2011 Deutsche Übersetzung von Marion Göbel verfaßt mit epsilonwriter Der Übungs-Editor ermöglicht das Erstellen und Bearbeiten der
A Matrix-Algebra. A.1 Definition und elementare Operationen
A Matrix-Algebra In diesem Anhang geben wir eine kompakte Einführung in die Matrizenrechnung bzw Matrix-Algebra Eine leicht lesbare Einführung mit sehr vielen Beispielen bietet die Einführung in die Moderne
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr
1 Transponieren, Diagonal- und Dreiecksmatrizen
Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
1. Was sind Aufgaben?... 1 2. Aufgaben einrichten... 2 3. Ansicht für die Teilnehmer/innen... 3
AG elearning Service und Beratung für E-Learning und Mediendidaktik ZEIK Zentrale Einrichtung für Informationsverarbeitung und Kommunikation Moodle an der Universität-Potsdam How-To: Aufgaben Inhalt: 1.
MC-Serie 11: Eigenwerte
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung
Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben
Technische Universität Kaiserslautern Prof Dr Sven O Krumke Dr Sabine Büttner MSc Marco Natale Praktische Mathematik: Lineare und Netzwerk-Optimierung (SS 2015) Praktikumsaufgaben Aufgabe 1 (Konvertieren
Lineare Gleichungssysteme
Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare
Aufgaben zu Kapitel 14
Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt
Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1
Prof. Dr. G. Wagner Ingenieurmathematik Begleittext Seite 1 Kapitel 3 Lineare Gleichungssysteme 3.1. Einleitung Beispiel 1 3 Kinder haben eingekauft. Franz hat 4 Lakritzen, 2 Schokoriegel und 5 Kaugummis
Menü auf zwei Module verteilt (Joomla 3.4.0)
Menü auf zwei Module verteilt (Joomla 3.4.0) Oft wird bei Joomla das Menü in einem Modul dargestellt, wenn Sie aber z.b. ein horizontales Hauptmenü mit einem vertikalen Untermenü machen möchten, dann finden
V DETERMINANTEN In diesem Kapitel entwickeln wir die Theorie der Determinanten Die folgenden Beispiele sollen die Einfuhrung dieses Begries motivieren
SKRIPTUM { LINEARE ALGEBRA II JB COOPER Inhaltsverzeichnis: x Determinanten x Eigenwerte x Euklidische Raume x8 Dualitat, Tensorprodukte, Alternierende Formen Anhang: ) Mengen, Abbildungen ) Gruppen )
7.1 Matrizen und Vektore
7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit
Lineare Gleichungssysteme
Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein
Lineare Gleichungssysteme I (Matrixgleichungen)
Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
Kapitel 17. Determinanten
Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n
Eigenwerte und Eigenvektoren
Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen
Matrizen und Determinanten
Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von
1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.
Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume?
Vorlesung Diskrete Strukturen Graphen: Wieviele Bäume? Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2013/14 Isomorphie Zwei Graphen (V 1, E 1 ) und (V
Die Top 10 der Algorithmen Der QR-Algorithmus
Die Top 10 der Algorithmen Der QR-Algorithmus Hans Hansen TU Chemnitz WS 04/05 17. Januar 2005 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Geschichte 3 2 Die Grundidee 3 3 Ähnlichkeitstransformationen