Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und"

Transkript

1 Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion lineare Funktion sigmoide Funktion Künstliche Neuronale Netze: Aufbau: gerichteter Graph mit Kantengewichten (Gewichtsmatrix) Feed-Forward-Netze Training (schrittweise Minimierung der quadratischen Abweichung auf der Trainingsmenge): -Regel für Ein-Schicht-Feed-Forward-Netze mit linearer oder Schwellwert-Aktivierung Backpropagation für Mehr-Schicht-Feed-Forward-Netze mit sigmoider Aktivierung 86

2 Anwendung von KNN Anwendungen: Klassifikation: Ein-Schicht-FFN mit Schwellwert-Aktivierung und Training mit -Regel speziell entworfenene Mehr-Schicht-FFN mit Schwellwert-Aktivierung Mehr-Schicht-FFN mit sigmoider Aktivierung und Backpropagation-Training Beispiele: Boolesche Funktionen Zuordnung zu Risikoklassen optische Zeichenerkennung (z.b. Buchstaben, abstrahiert von Schriftart) englische Ausspracheregeln (NETTALK) Erkennung akustischer Signale (z.b. Stimmen) Approximation reeller Funktionen: FFN mit linearer Aktivierung (Ausgabeschicht) 87

3 Radiale-Basisfunktions-Netze Anwendung zur Klassifizierung von Mustern (Merkmalsvektoren) Idee: Musterklassen haben Zentren (Schwerpunkte), alle Eingabevektoren nahe dazu gehören zur selben Klasse 2-Schicht-FFN mit vollständig verbundenen Schichten Eingaben x R m Ausgaben y R n eine versteckte Schicht h (mit l Neuronen) enthält oft mehr Neuronen als die Eingabeschicht Neuronen der verschiedenen Schichten haben verschiedene Aktivierungsfunktionen: versteckte Schicht: nichtlinear Ausgabeschicht: linear Netz berechnet eine Funktion f : R m R n 88

4 Versteckte Neuronen im RBF-Netz Idee: Eingangsgewichte eines Neurons j der versteckten Schicht interpretiert als Koordinaten eines Punktes (w 1j,..., w mj ) R m (Zentrum einer Klasse) Eingangsfunktion I j : R m R des Neurons j berechnet Abstand des Eingabevektors (x 1,..., x m ) vom Zentrum (w 1j,..., w mj ) R m Aktivierungfunktion: radiale Basisfunktion A j : R R nimmt größten Wert im Zentrum an fällt mit wachsendem Abstand vom Zentrum das Neuron der versteckten Schicht am aktivsten, welches das zum Eingabevektor nächste Zentrum repräsentiert 89

5 Abstandsfunktionen (Eingabefunktionen der versteckten Neuronen im RBF-Netz) Abstandsfunktion d : R 2m R mit den Eigenschaften: x, y R m : d(x, y) = 0 gdw. x = y x, y R m : d(x, y) = d(y, x) (kommutativ) x, y, z R m : d(x, y) + d(y, z) d(x, z) (Dreiecksungleichung) Beispiele: I(x 1,..., x m ) = d k (x, w j ) = k m k=1 (w kj x k ) k für k = 2: I(x 1,..., x m ) = d 2 (x, w j ) = m k=1 (w kj x k ) 2 Euklidischer Abstand zwischen Eingangs- und Gewichtsvektor für k = 1: I(x 1,..., x m ) = d 1 (x, w j ) = m k=1 w kj x k Manhattan-Metrik für k : I(x 1,..., x m ) = max{ w kj x k i {1,..., m}} Maximum-Metrik 90

6 Radiale Funktionen Radiale Funktion f : R 0 [0, 1] mit den folgenden Eigenschaften: aus x < y folgt f (x) f (y) (monoton fallend) f (0) = 1 lim x f (x) = 0 (verschwindet im Grenzwert) Beispiele: Schwellwertfunktion (fallend) { 0 falls x > θ f θ (x) = 1 sonst linear f m (x) = max(0, 1 mx) Gauß-Funktion f c (x) = e cx 2 91

7 Ausgabeneuronen im RBF-Netz Eingaben (von der versteckten Schicht): h R l Gewichte: W R l n Ausgaben: y R n Eingabefunktion: gewichtete Summe Aktivierungsfunktion: Identität (linear) Ausgabefunktion: Identität (Schwellwertneuronen mit linearer Aktivierung) 92

8 RBF-Netze: Beispiele Netz für erste Schicht (RBF): Zentrum w 1,h = w 2,h = 1, Eingabefunktion: Euklidische Metrik Aktivierung: Stufenfunktion Radius θ h = 1/2 zweite Schicht: Gewicht w h,y = 1, Eingabefunktion: gewichtete Summe Aktivierung: linear Schwellwert θ y = Netz für : Idee: x 1 x 2 (x 1 x 2 ) (x 1 x 2 ) erste Schicht (RBF): Zentren w1,h1 = w 2,h1 = 1, w 1,h2 = w 2,h2 = 0, Eingabefunktion: Euklidische Metrik Aktivierung: Stufenfunktion Radien θ h1 = θ h2 = 1/2 zweite Schicht: Gewichte wh1,y = w h2,y = 1, Eingabefunktion: gewichtete Summe Aktivierung: linear Schwellwert θ y = 0 93

9 RBF-Netze zur Approximation von Funktionen Approximation einer Funktion f : R R durch Linearkombination (gewichtete Summe) von radialen Funktionen, z.b. stückweise konstante Funktionen (Stufen) stückweise lineare Funktionen Gauß-Funktionen Zwei-Schicht-FF-Netz: ein Eingabeneuron x k versteckte Neuronen h 1,..., h k jedes für eine Basisfunktion ein Ausgabeneuron y 94

10 Beispiel Approximation n-stelliger Boolescher Funktionen: n Eingabeneuronen x i 2 n versteckte Neuronen h i Eingangsgewichte (jede mögliche Eingabe als Zentrum) Eingangsfunktion: Euklidische oder Manhattan-Metrik Aktivierung: Stufenfunktion alle Radien 1/2 ein Ausgabeneuron y zu bestimmende Gewichte w i, Schwellwert 0 95

11 RBF-Netze Lernen übliches Vorgehen: Gewichte der ersten Schicht (Eingabe zu versteckten Neuronen): Bestimmung der Anfangspunkte der Zentren, z.b. gleichmäßig überdeckend alle Trainingsmuster durch zufällige Auswahl von Trainingsmustern durch Clustering-Techniken, z.b. unüberwachtes Training (später) direkte Berechnung oder überwachtes Training (z.b. Delta-Regel) der zweiten Schicht Bestimmung der Faktoren vor den Basisfunktionen 96

12 Eigenschaften von RBF-Netzen Vorteile: einfache Topologie schnelle Berechnung Netzausgabe außerhalb der Trainingsmenge gering Gewichte können direkt bestimmt werden (ohne Training) Nachteile: Qualität der Approximation durch Lage der Zentren bestimmt Lernerfolg hängt stark von der Start-Instanziierung der Gewichte der ersten Schicht (Zentren) ab Auswendiglernen der Trainingsdaten 97

13 Zusammenfassung RBF-Netze (kein biologisches Vorbild) zur Klassifikation zur Approximation von Funktionen jedes versteckte Neuron repräsentiert z.b. eine RBF-Funktion (z.b. Gauß-Glocke ) mit einem Zentrum Approximation der Funktion durch Linearkombination dieser RBF-Funktionen 98

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Eigenschaften neuronaler Netze: hohe Arbeitsgeschwindigkeit durch Parallelität, Funktionsfähigkeit auch nach Ausfall von Teilen des Netzes, Lernfähigkeit, Möglichkeit zur Generalisierung

Mehr

Radiale-Basisfunktionen-Netze. Rudolf Kruse Neuronale Netze 120

Radiale-Basisfunktionen-Netze. Rudolf Kruse Neuronale Netze 120 Radiale-Basisfunktionen-Netze Rudolf Kruse Neuronale Netze 2 Radiale-Basisfunktionen-Netze Eigenschaften von Radiale-Basisfunktionen-Netzen (RBF-Netzen) RBF-Netze sind streng geschichtete, vorwärtsbetriebene

Mehr

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen

Was bisher geschah. Lernen: überwachtes Lernen. biologisches Vorbild neuronaler Netze: unüberwachtes Lernen Was bisher geschah Lernen: überwachtes Lernen korrigierendes Lernen bestärkendes Lernen unüberwachtes Lernen biologisches Vorbild neuronaler Netze: Neuron (Zellkörper, Synapsen, Axon) und Funktionsweise

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Inhalt (Biologische) Neuronale Netze Schwellenwertelemente Allgemein Neuronale Netze Mehrschichtiges Perzeptron Weitere Arten Neuronaler Netze 2 Neuronale Netze Bestehend aus vielen Neuronen(menschliches

Mehr

Neuronale Netze mit mehreren Schichten

Neuronale Netze mit mehreren Schichten Neuronale Netze mit mehreren Schichten Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Neuronale Netze mit mehreren

Mehr

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron

Gliederung. Biologische Motivation Künstliche neuronale Netzwerke. Anwendungsbeispiele Zusammenfassung. Das Perzeptron Neuronale Netzwerke Gliederung Biologische Motivation Künstliche neuronale Netzwerke Das Perzeptron Aufbau Lernen und Verallgemeinern Anwendung Testergebnis Anwendungsbeispiele Zusammenfassung Biologische

Mehr

Thema 3: Radiale Basisfunktionen und RBF- Netze

Thema 3: Radiale Basisfunktionen und RBF- Netze Proseminar: Machine Learning 10 Juli 2006 Thema 3: Radiale Basisfunktionen und RBF- Netze Barbara Rakitsch Zusammenfassung: Aufgabe dieses Vortrags war es, die Grundlagen der RBF-Netze darzustellen 1 Einführung

Mehr

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134

Training von RBF-Netzen. Rudolf Kruse Neuronale Netze 134 Training von RBF-Netzen Rudolf Kruse Neuronale Netze 34 Radiale-Basisfunktionen-Netze: Initialisierung SeiL fixed ={l,...,l m } eine feste Lernaufgabe, bestehend ausmtrainingsbeispielenl=ı l,o l. Einfaches

Mehr

Einführung in neuronale Netze

Einführung in neuronale Netze Einführung in neuronale Netze Florian Wenzel Neurorobotik Institut für Informatik Humboldt-Universität zu Berlin 1. Mai 2012 1 / 20 Überblick 1 Motivation 2 Das Neuron 3 Aufbau des Netzes 4 Neuronale Netze

Mehr

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen

6.4 Neuronale Netze zur Verarbeitung von Zeitreihen 6.4 Neuronale Netze zur Verarbeitung von Zeitreihen Aufgabe: Erlernen einer Zeitreihe x(t + 1) = f(x(t), x(t 1), x(t 2),...) Idee: Verzögerungskette am Eingang eines neuronalen Netzwerks, z.b. eines m-h-1

Mehr

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20

Computational Intelligence 1 / 20. Computational Intelligence Künstliche Neuronale Netze Perzeptron 3 / 20 Gliederung / Künstliche Neuronale Netze Perzeptron Einschränkungen Netze von Perzeptonen Perzeptron-Lernen Perzeptron Künstliche Neuronale Netze Perzeptron 3 / Der Psychologe und Informatiker Frank Rosenblatt

Mehr

Kohonennetze Selbstorganisierende Karten

Kohonennetze Selbstorganisierende Karten Kohonennetze Selbstorganisierende Karten Julian Rith, Simon Regnet, Falk Kniffka Seminar: Umgebungsexploration und Wegeplanung mit Robotern Kohonennetze: Neuronale Netze In Dendriten werden die ankommenden

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten (engl. Self-Organizing Maps (SOMs)) Rudolf Kruse Neuronale Netze 169 Selbstorganisierende Karten Eine selbstorganisierende Karte oder Kohonen-Merkmalskarte ist ein neuronales

Mehr

Praktische Optimierung

Praktische Optimierung Wintersemester 27/8 Praktische Optimierung (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl für Algorithm Engineering Metamodellierung Inhalt Multilayer-Perceptron (MLP) Radiale Basisfunktionsnetze

Mehr

Seminar zum Thema Künstliche Intelligenz:

Seminar zum Thema Künstliche Intelligenz: Wolfgang Ginolas Seminar zum Thema Künstliche Intelligenz: Clusteranalyse Wolfgang Ginolas 11.5.2005 Wolfgang Ginolas 1 Beispiel Was ist eine Clusteranalyse Ein einfacher Algorithmus 2 bei verschieden

Mehr

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1

Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze Reinhard Eck 1 Der Backpropagation-Algorithmus als Beispiel für Lernalgorithmen künstlicher neuronaler Netze 2.04.2006 Reinhard Eck Was reizt Informatiker an neuronalen Netzen? Wie funktionieren Gehirne höherer Lebewesen?

Mehr

Neuronale Netze (I) Biologisches Neuronales Netz

Neuronale Netze (I) Biologisches Neuronales Netz Neuronale Netze (I) Biologisches Neuronales Netz Im menschlichen Gehirn ist ein Neuron mit bis zu 20.000 anderen Neuronen verbunden. Milliarden von Neuronen beteiligen sich simultan an der Verarbeitung

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014 Übersicht Stand der Kunst im Bilderverstehen: Klassifizieren und Suchen Was ist ein Bild in Rohform? Biologische

Mehr

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze.

Neuronale Netze (Konnektionismus) Einführung in die KI. Beispiel-Aufgabe: Schrifterkennung. Biologisches Vorbild. Neuronale Netze. Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn Adrian Neumann 16. Januar 2014 Übersicht Biologische Inspiration Stand der Kunst in Objekterkennung auf Bildern Künstliche Neuronale

Mehr

Selbstorganisierende Karten

Selbstorganisierende Karten Selbstorganisierende Karten Yacin Bessas yb1@informatik.uni-ulm.de Proseminar Neuronale Netze 1 Einleitung 1.1 Kurzüberblick Die Selbstorganisierenden Karten, auch Self-Organizing (Feature) Maps, Kohonen-

Mehr

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Unüberwachtes Lernen: Adaptive Vektor Quantisierung und Kohonen Netze Prof. Dr.-Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Überwachtes Lernen Alle bis lang betrachteten Netzwerke

Mehr

Klassifizieren und Visualisieren von Daten mit Selbstorganisierenden Karten

Klassifizieren und Visualisieren von Daten mit Selbstorganisierenden Karten Fachhochschule Brandenburg Fachbereich Informatik und Medien Klassifizieren und Visualisieren von Daten mit Selbstorganisierenden Karten Diplomkolloquium Sven Schröder Aufgabenstellung und Motivation Biologisches

Mehr

Computational Intelligence I Künstliche Neuronale Netze

Computational Intelligence I Künstliche Neuronale Netze Computational Intelligence I Künstliche Neuronale Nete Universität Dortmund, Informatik I Otto-Hahn-Str. 6, 44227 Dortmund lars.hildebrand@uni-dortmund.de Inhalt der Vorlesung 0. Organisatorisches & Vorbemerkungen.

Mehr

Hannah Wester Juan Jose Gonzalez

Hannah Wester Juan Jose Gonzalez Neuronale Netze Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Juan Jose Gonzalez Kurze Einführung Warum braucht man Neuronale Netze und insbesondere Supervised Learning? Das Perzeptron

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 20.07.2017 1 von 11 Überblick Künstliche Neuronale Netze Motivation Formales Modell Aktivierungsfunktionen

Mehr

Neuronale Netze. Anna Wallner. 15. Mai 2007

Neuronale Netze. Anna Wallner. 15. Mai 2007 5. Mai 2007 Inhalt : Motivation Grundlagen Beispiel: XOR Netze mit einer verdeckten Schicht Anpassung des Netzes mit Backpropagation Probleme Beispiel: Klassifikation handgeschriebener Ziffern Rekurrente

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Aufgaben der letzten Stunde Übersicht Neuronale Netze Motivation Perzeptron Multilayer

Mehr

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40

Allgemeine (Künstliche) Neuronale Netze. Rudolf Kruse Neuronale Netze 40 Allgemeine (Künstliche) Neuronale Netze Rudolf Kruse Neuronale Netze 40 Allgemeine Neuronale Netze Graphentheoretische Grundlagen Ein (gerichteter) Graph ist ein Tupel G = (V, E), bestehend aus einer (endlichen)

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Daniel Göhring Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen Informationsspeicherung

Mehr

Das Perzeptron. Künstliche neuronale Netze. Sebastian Otte. 1 Grundlegendes. 2 Perzeptron Modell

Das Perzeptron. Künstliche neuronale Netze. Sebastian Otte. 1 Grundlegendes. 2 Perzeptron Modell Fachbereich Design Informatik Medien Studiengang Master Informatik Künstliche neuronale Netze Das Perzeptron Sebastian Otte Dezember 2009 1 Grundlegendes Als Perzeptron bezeichnet man eine Form von künstlichen

Mehr

11. Neuronale Netze 1

11. Neuronale Netze 1 11. Neuronale Netze 1 Einführung (1) Ein künstliches neuronales Netz ist vom Konzept her eine Realisierung von miteinander verschalteten Grundbausteinen, sogenannter Neuronen, welche in rudimentärer Form

Mehr

Neuronale Netze (Konnektionismus)

Neuronale Netze (Konnektionismus) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung (Konnektionismus) sind biologisch motiviert können diskrete, reell-wertige und Vektor-wertige Funktionen berechnen, Einsatz z.b. für Klassifizierungsaufgaben

Mehr

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg

Andreas Scherer. Neuronale Netze. Grundlagen und Anwendungen. vieweg Andreas Scherer Neuronale Netze Grundlagen und Anwendungen vieweg Inhaltsverzeichnis Vorwort 1 1 Einführung 3 1.1 Was ist ein neuronales Netz? 3 1.2 Eigenschaften neuronaler Netze 5 1.2.1 Allgemeine Merkmale

Mehr

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn

Maschinelles Lernen: Neuronale Netze. Ideen der Informatik Kurt Mehlhorn Maschinelles Lernen: Neuronale Netze Ideen der Informatik Kurt Mehlhorn 16. Januar 2014, überarbeitet am 20. Januar 2017 Übersicht Stand der Kunst: Bilderverstehen, Go spielen Was ist ein Bild in Rohform?

Mehr

Grundlagen Neuronaler Netze

Grundlagen Neuronaler Netze Grundlagen Neuronaler Netze Neuronen, Aktivierung, Output, Netzstruktur, Lernziele, Training, Grundstruktur Der Begriff neuronales Netz(-werk) steht immer für künstliche neuronale Netzwerke, wenn nicht

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

weitere Modelle und Methoden

weitere Modelle und Methoden weitere Modelle und Methoden LVQ-Netze, competetive learning, counterpropagation, motorische karten, adaptive resonance theory LVQ Struktur Lernende Vektor-Quantisierung Input-Raum mit Distanz-Funktion

Mehr

Auch wenn Prof. Helbig die Prüfung nicht mehr lange abnimmt, hier ein kurzer Eindruck:

Auch wenn Prof. Helbig die Prüfung nicht mehr lange abnimmt, hier ein kurzer Eindruck: Diplomprüfung Informatik Kurs 1830 Neuronale Netze Prüfer: Prof. Dr. Helbig Beisitzer: Prodekan Prof. Dr. Hackstein Datum: 01.10.08 Note: 2,7 Auch wenn Prof. Helbig die Prüfung nicht mehr lange abnimmt,

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training des XOR-Problems mit einem Künstlichen Neuronalen Netz (KNN) in JavaNNS 11.04.2011 2_CI2_Deckblatt_XORbinaer_JNNS_2

Mehr

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor)

Neuronale Netze. Gehirn: ca Neuronen. stark vernetzt. Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) 29 Neuronale Netze Gehirn: ca. 10 11 Neuronen stark vernetzt Schaltzeit ca. 1 ms (relativ langsam, vgl. Prozessor) Mustererkennung in 0.1s 100 Schritte Regel 30 Was ist ein künstl. neuronales Netz? Ein

Mehr

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8

Schwellenwertelemente. Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Rudolf Kruse Neuronale Netze 8 Schwellenwertelemente Ein Schwellenwertelement (Threshold Logic Unit, TLU) ist eine Verarbeitungseinheit für Zahlen mitneingängenx,...,x n und einem

Mehr

Konzepte der AI Neuronale Netze

Konzepte der AI Neuronale Netze Konzepte der AI Neuronale Netze Franz Wotawa Institut für Informationssysteme, Database and Artificial Intelligence Group, Technische Universität Wien Email: wotawa@dbai.tuwien.ac.at Was sind Neuronale

Mehr

Grundlagen neuronaler Netzwerke

Grundlagen neuronaler Netzwerke AUFBAU DES NEURONALEN NETZWERKS Enrico Biermann enrico@cs.tu-berlin.de) WS 00/03 Timo Glaser timog@cs.tu-berlin.de) 0.. 003 Marco Kunze makunze@cs.tu-berlin.de) Sebastian Nowozin nowozin@cs.tu-berlin.de)

Mehr

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger

Proseminar Machine Learning. Neuronale Netze: mehrschichtige Perzeptrone. Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger Proseminar Machine Learning Neuronale Netze: mehrschichtige Perzeptrone Christina Schmiedl Betreuer: Christian Spieth, Andreas Dräger 27.Mai 2006 Inhaltsverzeichnis 1 Biologische Motivation 2 2 Neuronale

Mehr

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs)

Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) 6. Neuronale Netze Motivation Wir haben in den vorherigen Kapiteln verschiedene Verfahren zur Regression und Klassifikation kennengelernt (z.b. lineare Regression, SVMs) Abstrakt betrachtet sind alle diese

Mehr

Hopfield-Netze. Rudolf Kruse Neuronale Netze 192

Hopfield-Netze. Rudolf Kruse Neuronale Netze 192 Hopfield-Netze Rudolf Kruse Neuronale Netze 192 Hopfield-Netze Ein Hopfield-Netz ist ein neuronales Netz mit einem Graphen G = (U, C), das die folgenden Bedingungen erfüllt: (i)u hidden =,U in =U out =U,

Mehr

Entwicklung von Methoden zum Nachweis von ökologisch erzeugten Produkten am Beispiel der Lachszucht - Neronale Netzanalyse -

Entwicklung von Methoden zum Nachweis von ökologisch erzeugten Produkten am Beispiel der Lachszucht - Neronale Netzanalyse - Entwicklung von Methoden zum Nachweis von ökologisch erzeugten Produkten am Beispiel der Lachszucht - Neronale Netzanalyse - Development of Methods to Detect Products Made from Organic Salmon FKZ: 02OE073/1

Mehr

Aufbau und Beschreibung Neuronaler Netzwerke

Aufbau und Beschreibung Neuronaler Netzwerke Aufbau und Beschreibung r 1 Inhalt Biologisches Vorbild Mathematisches Modell Grundmodelle 2 Biologisches Vorbild Das Neuron Grundkomponenten: Zellkörper (Soma) Zellkern (Nukleus) Dendriten Nervenfaser

Mehr

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform.

kurze Wiederholung der letzten Stunde: Neuronale Netze Dipl.-Inform. Martin Lösch (0721) Dipl.-Inform. kurze Wiederholung der letzten Stunde: Neuronale Netze martin.loesch@kit.edu (0721) 608 45944 Labor Wissensrepräsentation Neuronale Netze Motivation Perzeptron Übersicht Multilayer Neural Networks Grundlagen

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Deep Learning (II) Nico Piatkowski und Uwe Ligges Informatik Künstliche Intelligenz 25.07.2017 1 von 14 Überblick Faltungsnetze Dropout Autoencoder Generative Adversarial

Mehr

Neuronale Netze. Prof. Dr. Rudolf Kruse Christoph Doell, M.Sc.

Neuronale Netze. Prof. Dr. Rudolf Kruse Christoph Doell, M.Sc. Neuronale Netze Prof. Dr. Rudolf Kruse Christoph Doell, M.Sc. Computational Intelligence Institut für Wissens- und Sprachverarbeitung Fakultät für Informatik kruse@iws.cs.uni-magdeburg.de Rudolf Kruse

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform.

(hoffentlich kurze) Einführung: Neuronale Netze. Dipl.-Inform. Martin Lösch. (0721) Dipl.-Inform. (hoffentlich kurze) Einführung: martin.loesch@kit.edu (0721) 608 45944 Überblick Einführung Perzeptron Multi-layer Feedforward Neural Network MLNN in der Anwendung 2 EINFÜHRUNG 3 Gehirn des Menschen Vorbild

Mehr

Kapitel ML:XII. XII. Other Unsupervised Learning. Nearest Neighbor Strategies. Self Organizing Maps Neural Gas. Association Analysis Rule Mining

Kapitel ML:XII. XII. Other Unsupervised Learning. Nearest Neighbor Strategies. Self Organizing Maps Neural Gas. Association Analysis Rule Mining Kapitel ML:XII XII. Other Unsupervised Learning Nearest Neighbor Strategies Self Organizing Maps Neural Gas Association Analysis Rule Mining Reinforcement Learning ML:XII-1 Unsupervised Others LETTMANN

Mehr

Künstliche Neuronale Netze

Künstliche Neuronale Netze Künstliche Neuronale Netze als Möglichkeit, einer Maschine das Lesen beizubringen Anja Bachmann 18.12.2008 Gliederung 1. Motivation 2. Grundlagen 2.1 Biologischer Hintergrund 2.2 Künstliche neuronale Netze

Mehr

Simulation neuronaler Netzwerke mit TIKAPP

Simulation neuronaler Netzwerke mit TIKAPP Überblick Michael Hanke Sebastian Krüger Institut für Psychologie Martin-Luther-Universität Halle-Wittenberg Forschungskolloquium, SS 2004 Überblick Fragen 1 Was sind neuronale Netze? 2 Was ist TIKAPP?

Mehr

Exponentialfunktion, Logarithmus

Exponentialfunktion, Logarithmus Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei

Mehr

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003

Softcomputing Biologische Prinzipien in der Informatik. Neuronale Netze. Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Softcomputing Biologische Prinzipien in der Informatik Neuronale Netze Dipl. Math. Maria Oelinger Dipl. Inform. Gabriele Vierhuff IF TIF 08 2003 Überblick Motivation Biologische Grundlagen und ihre Umsetzung

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Künstliche neuronale Netze Sebastian Morr 4. Juni 2008 Worum geht es? Die Natur hat uns 3,7 Milliarden Jahre Forschungszeit voraus. Toby Simpson Vorbild: Strukturen des Gehirns Ziel: Lernfähige Künstliche

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Neuronale Netze Aufgaben 3

Neuronale Netze Aufgaben 3 Neuronale Netze Aufgaben 3 martin.loesch@kit.edu (0721) 608 45944 MLNN IN FLOOD3 2 Multi Layer Neural Network (MLNN) Netzaufbau: mehrere versteckte (innere) Schichten Lernverfahren: Backpropagation-Algorithmus

Mehr

Einführung in. Neuronale Netze

Einführung in. Neuronale Netze Grundlagen Neuronale Netze Einführung in Neuronale Netze Grundlagen Neuronale Netze Zusammengestellt aus: Universität Münster: Multimediales Skript Internetpräsentation der MFH Iserlohn (000) U. Winkler:

Mehr

Klassifikation linear separierbarer Probleme

Klassifikation linear separierbarer Probleme Klassifikation linear separierbarer Probleme Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation linear

Mehr

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider

Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Praktikum Computational Intelligence 2 Ulrich Lehmann, Johannes Brenig, Michael Schneider Versuch: Training eines Künstlich Neuronalen Netzes (KNN) zur Approximation einer Kennlinie in JavaNNS 28.01.2008

Mehr

Proseminar Neuronale Netze Frühjahr 2004

Proseminar Neuronale Netze Frühjahr 2004 Proseminar Neuronale Netze Frühjahr 2004 Titel: Perzeptron Autor: Julia Grebneva, jg7@informatik.uni-ulm.de Einleitung In vielen Gebieten der Wirtschaft und Forschung, stellen sich oftmals Probleme, die

Mehr

Implementationsaspekte

Implementationsaspekte Implementationsaspekte Überlegungen zur Programmierung Neuronaler Netzwerke Implementationsprinzipien Trennung der Aspekte: Datenhaltung numerische Eigenschaften der Objekte Funktionalität Methoden der

Mehr

Künstliche neuronale Netze

Künstliche neuronale Netze Lösungen zum Buch: Wissensverarbeitung Kapitel 10 Künstliche neuronale Netze Lösung 10.1 (Maschinelles Lernen) a) Ein Computerprogramm lernt aus einer Erfahrung E bezüglich einer Aufgabenklasse T und einer

Mehr

5. Lernregeln für neuronale Netze

5. Lernregeln für neuronale Netze 5. Lernregeln für neuronale Netze 1. Allgemeine Lokale Lernregeln 2. Lernregeln aus Zielfunktionen: Optimierung durch Gradientenverfahren 3. Beispiel: Überwachtes Lernen im Einschicht-Netz Schwenker NI1

Mehr

Beaufsichtigtes Lernen

Beaufsichtigtes Lernen Vortragsausarbeitung Beaufsichtigtes Lernen Seminar NEURONALE NETZE Leiter: Dr. B. Freisleben Sommersemester 1993 Torsten Felzer Matr.-Nr.: 805 768 6. Semester Inf Alexandra Heidger Matr.-Nr.: 810 148

Mehr

(künstliche) Neuronale Netze. (c) Till Hänisch 2003, BA Heidenheim

(künstliche) Neuronale Netze. (c) Till Hänisch 2003, BA Heidenheim (künstliche) Neuronale Netze (c) Till Hänisch 2003, BA Heidenheim Literatur zusätzlich zum Lit. Verz. Michael Negnevitsky, Artificial Intelligence, Addison Wesley 2002 Warum? Manche Probleme (z.b. Klassifikation)

Mehr

Aufbau der Eigenimplementierung

Aufbau der Eigenimplementierung Table of contents 1 2 Aufbau... 2 1.1 Feed Forward Netze...3 1.2 Self Organizing Maps... 5 Training... 6 2.1 Feed Forward Netze...7 2.2 Self Organizing Maps... 8 Nachdem wir uns entschlossen hatten, keine

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Technische Universität. Fakultät für Informatik

Technische Universität. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik VI Neuronale Netze - Supervised Learning Proseminar Kognitive Robotik (SS12) Hannah Wester Betreuer: Dr. Florian

Mehr

Neuronale Netze. Christian Böhm.

Neuronale Netze. Christian Böhm. Ludwig Maximilians Universität München Institut für Informatik Forschungsgruppe Data Mining in der Medizin Neuronale Netze Christian Böhm http://dmm.dbs.ifi.lmu.de/dbs 1 Lehrbuch zur Vorlesung Lehrbuch

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr

Hochschule Regensburg. Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer

Hochschule Regensburg. Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer Hochschule Regensburg Übung 44_ Multilayer-Perzeptron: Entwurf, Implementierung Bacpropagation Spezielle Algorithmen (SAL) Lehrbeauftragter: Prof. Sauer Name: Vorname: Multilayer-Perzeptrons (MLPs) sind

Mehr

Seminararbeit Thema: Die Anwendung der Kohonen-Karte am Beispiel einer Zuflussregelung an Autobahnen

Seminararbeit Thema: Die Anwendung der Kohonen-Karte am Beispiel einer Zuflussregelung an Autobahnen Seminararbeit Thema: Die Anwendung der Kohonen-Karte am Beispiel einer Zuflussregelung an Autobahnen Referenten: Louisa Navratiel (Matrikelnr.: 1276396) Maik Buczek (Matrikelnr.: 1360613) Abgabedatum:09.03.2004

Mehr

Neuronale Netze in der Farbmetrik zur Bestimmung des Farbabstandes in der Qualitätsprüfung

Neuronale Netze in der Farbmetrik zur Bestimmung des Farbabstandes in der Qualitätsprüfung Neuronale Netze in der Farbmetrik zur Bestimmung des Farbabstandes in der Qualitätsprüfung Günter Faes DyStar GmbH & Co. Deutschland KG Kaiser-Wilhelm-Allee Postfach 10 04 80 D-51304 Leverkusen Telefon:

Mehr

Multi-Layer Neural Networks and Learning Algorithms

Multi-Layer Neural Networks and Learning Algorithms Multi-Layer Neural Networks and Learning Algorithms Alexander Perzylo 22. Dezember 2003 Ausarbeitung für das Hauptseminar Machine Learning (2003) mit L A TEX gesetzt Diese Ausarbeitung ist eine Weiterführung

Mehr

Was sind Neuronale Netze?

Was sind Neuronale Netze? Neuronale Netze Universität zu Köln SS 2010 Seminar: Künstliche Intelligenz II Dozent: Stephan Schwiebert Referenten: Aida Moradi, Anne Fleischer Datum: 23. 06. 2010 Was sind Neuronale Netze? ein Netzwerk

Mehr

Rekursionen (Teschl/Teschl 8.1/8.2)

Rekursionen (Teschl/Teschl 8.1/8.2) Rekursionen (Teschl/Teschl 8.1/8.2) treten in vielen Algorithmen auf: Eine Rekursion ist eine Folge von Zahlen a 0, a 1, a 2,.., bei der jedes a n aus seinen Vorgängern berechnet wird: Beispiele a n =

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

16. Differentialquotient, Mittelwertsatz

16. Differentialquotient, Mittelwertsatz 16. Differentialquotient, Mittelwertsatz Gegeben sei eine stetige Funktion f : R R. Wir suchen die Gleichung der Tangente t an die Kurve y = f(x) im Punkt (x, f(x ), x R. Das Problem dabei ist, dass vorderhand

Mehr

Algorithmen für Ad-hoc- und Sensornetze Nachtrag zu VL 06 Doubling Dimensions

Algorithmen für Ad-hoc- und Sensornetze Nachtrag zu VL 06 Doubling Dimensions Algorithmen für Ad-hoc- und Sensornetze Nachtrag zu VL 06 Doubling Dimensions Dr. rer. nat. Bastian Katz 0. Juni 009 (Version vom. Juni 009) Von Kreisen, Kugeln und Bällen Definition In einem metrischen

Mehr

1. XOR: Mit folgender Architektur geht es. x 1. x n-dimensionale Lernprobleme mit einer n-2-1-architektur lösen ...

1. XOR: Mit folgender Architektur geht es. x 1. x n-dimensionale Lernprobleme mit einer n-2-1-architektur lösen ... 1. XOR: Mit folgender Architektur geht es x 1 x 2 2. n-dimensionale Lernprobleme mit einer n-2-1-architektur lösen x 1 x 2... x 2 Loading-Problem: Für eine endliche Liste binärer Trainingspaare (x(1),d(1)),l,(x(k)d(k))

Mehr

Lernverfahren von Künstlichen Neuronalen Netzwerken

Lernverfahren von Künstlichen Neuronalen Netzwerken Lernverfahren von Künstlichen Neuronalen Netzwerken Untersuchung und Vergleich der bekanntesten Lernverfahren und eine Übersicht über Anwendung und Forschung im Bereich der künstlichen neuronalen Netzen.

Mehr

Neuronale Netze. 11.Januar.2002

Neuronale Netze. 11.Januar.2002 Neuronale Netze Stefan Otto Matrikelnummer: 301127 Studiengang: Informatik ProSeminar WS 2001/2002 Institut für Informatik Technische Universität Clausthal 11.Januar.2002 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für den Wahlteil Baden-Württemberg mit Tipps und Lösungen Inhaltsverzeichnis Analysis 1 Gebrochenrationale Funktion - Laptop... 7 2 Gebrochenrationale

Mehr

One-class Support Vector Machines

One-class Support Vector Machines One-class Support Vector Machines Seminar Wissensbasierte Systeme Dietrich Derksen 3. Januar 204 Motivation One-class Support Vector Machines: Detektion von Ausreißern (Systemfehlererkennung) Klassifikation

Mehr

Neuronale Netze zur Dokumentenklassifikation

Neuronale Netze zur Dokumentenklassifikation Neuronale Netze zur Dokumentenklassifikation Manuel Ihlenfeld 10. Mai 2005 Überblick Neuronale Netze können zum Erkennen und Klassifizieren von Mustern eingesetzt werden. Bei der Dokumentenklassifikation

Mehr

Seminar über Neuronale Netze und Maschinelles Lernen WS 06/07

Seminar über Neuronale Netze und Maschinelles Lernen WS 06/07 Universität Regensburg Naturwissenschaftliche Informatik Seminar über Neuronale Netze und Maschinelles Lernen WS 06/07 Cluster-Algorithmen II: Neural Gas Vortragender: Matthias Klein Gliederung Motivation:

Mehr

Einführung in Neuronale Netze

Einführung in Neuronale Netze Wintersemester 2005/2006 VO 181.138 Einführung in die Artificial Intelligence Einführung in Neuronale Netze Oliver Frölich Abteilung für Datenbanken und Artificial Intelligence Institut für Informationssysteme

Mehr

Grundlagen und Aufbau von neuronalen Netzen

Grundlagen und Aufbau von neuronalen Netzen Grundlagen und Aufbau von neuronalen Netzen Künstliche neuronale Netze (KNN) modellieren auf stark vereinfachte Weise Organisationsprinzipien und Abläufe biologischer neuronaler Netze Jedes KNN besteht

Mehr

Klassifikationsverfahren und Neuronale Netze

Klassifikationsverfahren und Neuronale Netze Klassifikationsverfahren und Neuronale Netze Hauptseminar - Methoden der experimentellen Teilchenphysik Thomas Keck 9.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Innovative Information Retrieval Verfahren

Innovative Information Retrieval Verfahren Thomas Mandl Innovative Information Retrieval Verfahren Hauptseminar Wintersemester 2004/2005 Letzte Sitzung Grundlagen Heterogenität Ursachen Beispiele Lösungsansätze Visualisierung 2D-Karten heute Maschinelles

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Seminar Einführung in die Kunst mathematischer Ungleichungen Geometrie und die Summe von Quadraten Clara Brünn 25. April 2016 Inhaltsverzeichnis 1 Einleitung 2 1.1 Geometrie allgemein.................................

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze?

Datenorientierte SA. Aufbau und Grundlagen. Aufbau und Grundlagen. Aufbau und Grundlagen. Was sind neuronale Netze? Datenorientierte SA Was sind neuronale Netze? Neuronale Netze: Grundlagen und Anwendungen Neuronale Netze bilden die Struktur eines Gehirns oder eines Nervensystems ab Andreas Rauscher 0651993 Damir Dudakovic

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr