Übungen zu Rechnerkommunikation

Größe: px
Ab Seite anzeigen:

Download "Übungen zu Rechnerkommunikation"

Transkript

1 Übungen zu Rechnerkommunikation Sommersemester 2009 Übung 4 Jürgen Eckert, Mykola Protsenko PD Dr.-Ing. Falko Dressler Friedrich-Alexander Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze und Kommunikationssysteme) Rechnerkommunikation, Übung 4

2 Übung 4: Stop-and-ait, Go-Back-N, Selective Repeat UML-Statecharts Leistungsanalyse ohne Fehler: - Stop-and-ait - Schiebefensterprotokolle (Go-Back-N, Selective Repeat) mit Fehler - Selective Repeat - Go-Back-N ichtige Begriffe: normierter Durchsatz (= Leitungsauslastung) Sequenznummernraum Rechnerkommunikation, Übung 4 2

3 UML-Statecharts ein Statechart befindet sich immer in einem Zustand, der schwarze Punkt kennzeichnet den initialen i i Zustand ein Zustandsübergang findet statt, wenn das Ereignis ausgelöst wurde und die Bedingung erfüllt ist wenn ein Zustandsübergang stattfindet, wird die Aktion durchgeführt zur Steigerung der Flexibilität gibt es auch Variablen Ereignis[Bedingung]/Aktion /Aktion Zustand Zustand 2 Rechnerkommunikation, Übung 4 3

4 UML-Statecharts Verzweigung Zustand, in dem keine Zeit verbracht wird ( Pseudozustand Pseudozustand ) abgehende Zustandsübergänge werden mittels Bedingungen gewählt, auslösende Ereignisse sind hier nicht möglich [Bedingung]/Aktion [Bedingung2]/Aktion2[ g g Rechnerkommunikation, Übung 4 4

5 Stop-and-ait Sender Empfänger rdt_send(data)/ pkt=pkt(sqn,data,crc); udt_send(pkt); udt_rcv(pkt) [ biterror(pkt) SQN(pkt)=SQN]/ data=extractdata(pkt); start t_timer udt_rcv(ack) rdt_rcv(data); rcv(data); [biterror(ack) ACK=ACK(SQN,CRC); /SQN= SQN(ACK)SQN)]/ udt_send(ack); wait for wait for SQN++ data ACK timeout/ udt_send(pkt); udt_rcv(ack)/ start_timer udt_rcv(ack) wait for /SQN=; packet ACK=ACK(0,CRC) [ biterror(ack) SQN(ACK)=SQN]/ stop_timer; SQN++ udt_rcv(pkt) [biterror(pkt) v SQN(pkt)SQN]/ udt_send(ack) Rechnerkommunikation, Übung 4 5

6 Leistungsanalyse: Stop-and-ait Stop-and-ait ohne Fehler L/R Vernachlässigung der ACK-Sendezeit 2D und Bearbeitungszeiten L/R (sinnvolle vereinfachende Annahme 2D für diese Berechnungen) pro Zeit gesendete Bits: L Durchsatz L /R 2D normiert durch die Bitrate (gut für Vergleich bei verschiedenen Bitraten): L normierter Durchsatz S L /R 2D R 2RD /L RD D wobei a = Kanalpuffergröße in Paketen, d.h., d h a L L / R S schlechter Durchsatz für große a (Kanal kann nicht gefüllt werden) Rechnerkommunikation, Übung 4 6

7 Übung 4. Betrachten Sie eine Halbduplex-Punkt-zu-Punkt-Verbindung, für die das Stop-and-ait-Verfahren eingesetzt wird. as geschieht mit der Leitungsauslastung g (= normierter Durchsatz S), wenn die Größe der Nachrichten (Objekte) erhöht wird? Die anderen Parameter, inkl. der Paketgröße, sollen nicht verändert werden. elche Auswirkung auf die Auslastung der Leitung kann man beobachten, wenn die Anzahl der Pakete bei konstanter Nachrichtengröße erhöht wird? elche Auswirkung auf die Auslastung der Leitung hat eine Vergrößerung der Pakete? Rechnerkommunikation, Übung 4 7

8 Übung 4.2 Ein Kanal hat eine Datenrate von 4,0 kbps und eine Ausbreitungsverzögerung von 20 ms. Für welchen Bereich von Paketgrößen hat das Stop-and- ait-verfahren eine Effizienz von mindestens 50%? Rechnerkommunikation, Übung 4 8

9 Stop-and-ait Sequenznummerraum die Repräsentation der Sequenznummern ist endlich: ein Feld mit n Bits ermöglicht m = 2 n Sequenznummern iederverwendung durch zyklisches Durchlaufen für Stop-and-ait: ein Bit ist zur Darstellung von 2 Sequenznummern ausreichend: 0 und Stop-and ait mit 0 und als Sequenznummern heißt auch Alternating-Bit-Protokoll Rechnerkommunikation, Übung 4 9

10 Übung 4.3 arum werden beim Alternating-Bit-Protokoll keine speziellen NAK0- und NAK-NachrichtenNachrichten benötigt? zur Erklärung: NAK: No Acknowledgment / Negative Acknowledgment - zur Ablehnung übertragener Daten ab, z.b. bei fehlerhaftem Empfang - bei NAK-Empfang kann Sender entsprechende Pakete nochmals übertragen Rechnerkommunikation, Übung 4 0

11 Leistungsanalyse: Schiebefensterprotokolle Schiebefensterprotokolle ohne Fehler für Fenstergröße mit Paketen der Länge L Fall : das Fenster ist nicht groß genug um zu senden, bis ACK zurückkommt Sender Empfänger =2 L L L/R L/R 2D 2D ACK R R - Bedingung: L / R 2D L / R - normierter Durchsatz: ACK S L L /R 2D R Rechnerkommunikation, Übung 4

12 Leistungsanalyse: Schiebefensterprotokolle Schiebefensterprotokolle ohne Fehler Fall 2: das Fenster ist groß genug g um zu senden, bis ACK zurückkommt: - Bedingung: L / R 2D L / R - normierter Durchsatz: S L L /R Zusammenfassung: R L L 2D Sender Empfänger R R =3 L/R L/R 2D ACK ACK S Rechnerkommunikation, Übung 4 2

13 Übung 4.4 Auf einer Satellitenverbindung mit,0 Mbps und 270 ms Verzögerung sollen Pakete der Größe 000 Bits eingesetzt werden. ie hoch ist die maximale Auslastung der Verbindung bei Stop-and-ait-Flusskontrolle? Schiebefenster-Flusskontrolle mit einer Fenstergröße von 7 Paketen? Schiebefenster-Flusskontrolle mit einer Fenstergröße von 27 Paketen? Schiebefenster-Flusskontrolle mit einer Fenstergröße von 255 Paketen? Rechnerkommunikation, Übung 4 3

14 Übung 4.5 Die Abbildung unten stellt drei Hosts dar. Pakete werden bei Host A erzeugt und über B nach C versendet. Bestimmen Sie die minimale i Übertragungsrate t zwischen B und C, bei der die Puffer bei Knoten B nicht überlaufen, wenn folgende Voraussetzungen gelten: Die Datenrate zwischen A und B beträgt 00 kbps. Die spezifische Ausbreitungsverzögerung beträgt 0 µs/km bei beiden Verbindungen. Die Leitungen unterstützen Vollduplex-Betrieb. Alle Datenpakete sind 000 Bits groß. ACK-Pakete haben eine vernachlässigbare Größe. Zwischen Host A und B wird ein Schiebefensterprotokoll mit einer Fenstergröße von 3 Paketen verwendet. Zwischen Host B und C wird Stop-and-ait verwendet. Es treten keine Fehler auf. A 2000 km 500 km Tipp: Damit die Puffer bei B nicht überlaufen, muss bei Host B die Anzahl der in einem langen Intervall ankommenden Pakete gleich der Anzahl der abgehenden Pakete sein. Rechnerkommunikation, Übung 4 4 B C

15 Selective Repeat informelle Beschreibung des Protokolls Verhalten des Senders. wenn Daten zum Senden und Platz im Fenster: sende Paket starte Timer für dieses Paket inkrementiere nextsqn 2. wenn ein ACK ohne Bitfehler und mit SQN im Fenster zurückkommt: markiere das Paket mit SQN als bestätigt schiebe das Fenster bis zur nächsten Lücke 3. wenn der Timeout für das Paket mit SQN abläuft: sende dieses Paket erneut starte den Timer für dieses Paket erneut nextsqn Sendeseite: base base+- Rechnerkommunikation, Übung 4 5

16 Selective Repeat informelle Beschreibung des Protokolls Verhalten des Empfängers. wenn Paket ohne Bitfehler und mit SQN im Fenster ankommt: sende ACK mit dieser SQN puffere das Paket schiebe das Fenster bis zur nächsten Lücke 2. wenn Paket mit SQN aus vorigem Fenster ankommt: sende das ACK hierfür erneut Empfängerseite: base base+- Rechnerkommunikation, Übung 4 6

17 Übung 4.6 Nehmen Sie an, dass ein Selective-Repeat-Schema mit =4 zur Übertragung benutzt wird. Veranschaulichen Sie anhand eines Beispiels, dass Sequenznummern mit 3 Bits genügen. Rechnerkommunikation, Übung 4 7

18 Übung 4.7 Knoten tauschen Pakete von fester Größe L Bits auf einem Kanal mit Datenrate von R bps, Ausbreitungsgeschwindigkeit c und einer Länge l aus. Bestimmen Sie eine Formel für die minimale Größe des Sequenznummernfeldes (Anzahl der benötigten Bits) in Abhängigkeit i von R, R l, c und L, L bei der die maximale Auslastung der Verbindung berücksichtigt wird. Dazu können Sie annehmen, dass ACK-Pakete eine vernachlässigbare Größe besitzen und die Verarbeitung in den Knoten unmittelbar geschieht (d.h. keine Zeit benötigt). Rechnerkommunikation, Übung 4 8

19 Leistungsanalyse: Schiebefensterprotokolle Selective Repeat mit Fehlern Annahme: unabhängige Fehler mit ahrscheinlichkeit p N = E[Sendeversuche] = /(-p) der Durchsatz im fehlerfreien e e e Fall muss durch N geteilt t werden: S p N /( p) N ( ) /( p) ( ) ( p) S p ( p) Rechnerkommunikation, Übung 4 9

20 Leistungsanalyse: Schiebefensterprotokolle Go-back-N mit Fehlern jeder Fehler erfordert eine Sendewiederholung von K Paketen Annahme: im Fehlerfall ist das Fenster gefüllt und alle Pakete des Fensters müssen erneut gesendet werden, dann: K wenn das fehlerhafte Paket i-mal gesendet wird, müssen insgesamt +(i-)k = (-K)+Ki Pakete gesendet werden N i (( K) Ki) p i ( p) ( K)( p) p K( p) ( K)( p) p i p K( p) ( p) i i ( K)( p) p K( p) p 2 i0 i0 K p Kp K p p Rechnerkommunikation, Übung 4 20 i i i i

21 Leistungsanalyse: Schiebefensterprotokolle mit K erhalten wir: N p Kp p p Kp p p ( )p p p p p p p Division des Durchsatzes ohne Fehler durch N ergibt: S p N p N ( ) ( p ( p) p) ( ) S p p ( p) ( p p) ( ) Rechnerkommunikation, Übung 4 2

22 Leistungsanalyse: Schiebefensterprotokolle normierter Durchsatz von Go-Back-N und Selective Repeat als Funktion von a, p=0 - : Rechnerkommunikation, Übung 4 22

23 Aufgabe - Übung 4.8 Ein ebserver empfängt üblicherweise relative kleine Nachrichten (Requests) von den Clients, überträgt aber möglicherweise sehr große Objekte als Antwort an die Clients. elches ARQ-Protokoll (Automatic Repeat Request), dh d.h., Selective Repeat oder Go-back-N, würde besonders populäre ebserver am wenigsten belasten? arum? Rechnerkommunikation, Übung 4 23

24 Aufgabe - Übung 4.9 Zeichnen Sie die Leitungsauslastung (= normierter Durchsatz S) als Funktion der Fehlerwahrscheinlichkeit p für folgende Fehlerkontrollmechanismen. Stop-and-ait Go-back-N mit = 7 Go-back-N mit = 27 Selective Repeat mit = 7 Selective Repeat mit = 27 Orientieren Sie sich dazu an dem vorigen Graph. Nehmen Sie für die Kanalpuffergröße a folgende erte an: 0. 0 elche Technik ist für die jeweiligen erte von a die beste? Rechnerkommunikation, Übung 4 24

Inhalt der Vorlesung

Inhalt der Vorlesung Einführung Anwendungsschicht Transportschicht Netzwerkschicht Sicherungsschicht Physikalische Schicht Inhalt der Vorlesung [RN] Sommer 2012 Transportschicht 1 Einführung UDP Fehlerkontrolle TCP Transportschicht

Mehr

Inhalt der Vorlesung Rechnerkommunikation

Inhalt der Vorlesung Rechnerkommunikation Inhalt der Vorlesung Rechnerkommunikation Einführung Anwendungsschicht Transportschicht Netzwerkschicht Sicherungsschicht Physikalische Schicht Netzwerksicherheit Rechnerkommunikation, Transportschicht

Mehr

Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 8

Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 8 Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 8 Mykola Protsenko, Jürgen Eckert PD. Dr.-Ing. Falko Dressler Friedrich-Alexander d Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Sommersemester 2009 Übung 7 Jürgen Eckert, Mykola Protsenko PD Dr.-Ing. Falko Dressler Friedrich-Alexander Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze und Kommunikationssysteme)

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Dr. Ivan Gojmerac ivan.gojmerac@univie.ac.at 5. Vorlesungseinheit, 17. April 2013 Bachelorstudium Medieninformatik SS 2013 3.4 Zuverlässigkeit der Datenübertragung - 2 - 3.4 Zuverlässigkeit

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 3 Transportschicht 3.1 Dienste der

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 1 Mykola Protsenko, Jürgen Eckert PD. Dr.-Ing. Falko Dressler Friedrich-Alexander d Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze

Mehr

Übung 5: Transport. Rechnernetze. Wintersemester 2014/ Allgemeine TCP Verständnisfragen

Übung 5: Transport. Rechnernetze. Wintersemester 2014/ Allgemeine TCP Verständnisfragen Wintersemester 2014/2015 Rechnernetze Universität Paderborn Fachgebiet Rechnernetze Übung 5: Transport 1. Allgemeine TCP Verständnisfragen (a) TCP ermöglicht einem Empfänger, die maximum segment size (MSS),

Mehr

Hauptdiplomklausur Informatik. September 1998: Rechnernetze

Hauptdiplomklausur Informatik. September 1998: Rechnernetze Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Hauptdiplomklausur Informatik September 1998: Rechnernetze Name:... Vorname:...

Mehr

2 Sicherungsschicht (Data Link Layer)

2 Sicherungsschicht (Data Link Layer) Übertragungsdauer Ausbreitungsgeschwindigkeit T ges = T s + T a In üblichen Medien (Kabel, Glasfaser) ist v 2 3 c 200 000km s Bandbreiten-Verzögerungs-Produkt auf dem Medium befindet. ist das Datenvolumen,

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Wintersemester 00/0 Übung 6 Mykola Protsenko, Jürgen Eckert PD. Dr.-Ing. Falko Dressler Friedrich-Alexander d Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze und

Mehr

Rechnernetze I. Fehlerkontrolle. Dr. Andreas Kassler Universität Ulm. University of Ulm. Distributed Systems Department. QoS Group

Rechnernetze I. Fehlerkontrolle. Dr. Andreas Kassler Universität Ulm. University of Ulm. Distributed Systems Department. QoS Group Rechnernetze I Fehlerkontrolle Dr. Andreas Kassler Universität Ulm Slide 1 Gliederung! Fehlertypen! Grundmechanismen! Sequenznummern! Zeitüberwachung! Quittungen! Neuübertragung! Protokolle zur Fehlerkontrolle!

Mehr

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 8 (10. Juni 17. Juni 2013)

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 8 (10. Juni 17. Juni 2013) Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen

Mehr

Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 7

Übungen zu Rechnerkommunikation Wintersemester 2010/2011 Übung 7 Übungen zu Rechnerkommunikation Wintersemester 00/0 Übung 7 Mykola Protsenko, Jürgen Eckert PD. Dr.-Ing. Falko Dressler Friedrich-Alexander d Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze und

Mehr

Thema: RNuA - Aufgaben

Thema: RNuA - Aufgaben Bandbreite Latenz Jitter Gibt den Frequenzbereich an, in dem das zu übertragende / speichernde Signal liegt. Laufzeit eines Signals in einem technischen System Abrupter, unerwünschter Wechsel der Signalcharakteristik

Mehr

Grundlagen der Telematik AMW Übungsaufgaben

Grundlagen der Telematik AMW Übungsaufgaben Grundlagen der Telematik AMW Übungsaufgaben Grundlagen der Telematik (AMW SS 00): Übungsaufgaben Aufgabe Es sei gegeben, dass eine Datei mit F Bit über einen Pfad, der über Q Links durch das Netzwerk führt,

Mehr

Modul 5: TCP-Flusskontrolle

Modul 5: TCP-Flusskontrolle Modul 5: TCP-Flusskontrolle M. Leischner Internetkommunikation Folie 1 Prinzip des Sliding-Window: Zuverlässigkeit + Effizienz A B A B A B A B unbestätigtes Senden Stop-and-Wait Sliding-Window Sliding

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Sommersemester 2010 Übung 2 Jürgen Eckert, Gerhard Fuchs, Mykola Protsenko, Rainer Hartmann, Andreas Mosthaf, Prof. Dr.-Ing. Reinhard German Friedrich-Alexander Universität

Mehr

Informations- und Kommunikationssysteme

Informations- und Kommunikationssysteme Informations- und Kommunikationssysteme Übungsaufgaben 2. Teil 1 Aufgabe 1 Es sei gegeben, dass eine Datei mit F Bit über einen Pfad, der über Q Links durch das Netzwerk führt, gesendet wird. Das Netzwerk

Mehr

Abschlussklausur. Computernetze. 14. Februar Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit.

Abschlussklausur. Computernetze. 14. Februar Legen Sie bitte Ihren Lichtbildausweis und Ihren Studentenausweis bereit. Abschlussklausur Computernetze 14. Februar 2014 Name: Vorname: Matrikelnummer: Tragen Sie auf allen Blättern (einschlieÿlich des Deckblatts) Ihren Namen, Vornamen und Ihre Matrikelnummer ein. Schreiben

Mehr

Übungsblatt 7. (Datentransferrate und Latenz)

Übungsblatt 7. (Datentransferrate und Latenz) Übungsblatt 7 Aufgabe 1 (Datentransferrate und Latenz) Der preußische optische Telegraf (1832-1849) war ein telegrafisches Kommunikationssystem zwischen Berlin und Koblenz in der Rheinprovinz. Behördliche

Mehr

Übungsblatt Warum brauchen Bridges und Layer-2-Switches keine physischen oder logischen

Übungsblatt Warum brauchen Bridges und Layer-2-Switches keine physischen oder logischen Übungsblatt 3 Aufgabe 1 (Bridges und Switche) 1. Was ist die Aufgabe von Bridges in Computernetzen? 2. Wie viele Schnittstellen ( Ports ) hat eine Bridge? 3. Was ist der Hauptunterschied zwischen Bridges

Mehr

Rechnernetze I. Rechnernetze I. 1 Einführung SS Universität Siegen Tel.: 0271/ , Büro: H-B 8404

Rechnernetze I. Rechnernetze I. 1 Einführung SS Universität Siegen Tel.: 0271/ , Büro: H-B 8404 Rechnernetze I SS 2012 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 20. April 2012 Betriebssysteme / verteilte Systeme Rechnernetze I (1/12) i Rechnernetze

Mehr

Hauptdiplomklausur Informatik. September 2000: Rechnernetze

Hauptdiplomklausur Informatik. September 2000: Rechnernetze Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr. W. Effelsberg Hauptdiplomklausur Informatik September 2000: Rechnernetze Name:... Vorname:...

Mehr

6.Vorlesung Netzwerke

6.Vorlesung Netzwerke Christian Baun 6.Vorlesung Netzwerke Hochschule Darmstadt WS1112 1/43 6.Vorlesung Netzwerke Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de 8.11.2011 Christian Baun 6.Vorlesung

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Name Studiengang (Hauptfach) Vorname Fachrichtung (Nebenfach)... Note Matrikelnummer Unterschrift der Kandidatin/des Kandidaten 1 I II TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Informatik Midterm-Klausur

Mehr

Lösungsvorschlag zur 12. Übung

Lösungsvorschlag zur 12. Übung Prof. Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik 3 Wintersemester 09/0 Lösungsvorschlag zur 2. Übung Präsenzübungen. Schnelltest a) Welche der Behauptungen zum OSI-Modell

Mehr

Computernetze 1. Inhalt

Computernetze 1. Inhalt Computernetze 1 Inhalt 1 Einführung: Problemanalyse Computernetze... 2 2 Betrachtungsweise von Computernetzen... 3 2.1 Topologien... 3 2.2 Vermittlungsprinzipien... 5 Circuit Switching... 5 Paketvermittlung...

Mehr

Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 21.

Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 21. Rechnernetze I SS 2016 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 21. April 2016 Betriebssysteme / verteilte Systeme Rechnernetze I (1/13) i Rechnernetze

Mehr

Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 25.

Rechnernetze I SS Universität Siegen Tel.: 0271/ , Büro: H-B Stand: 25. Rechnernetze I SS 2012 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 25. April 2014 Betriebssysteme / verteilte Systeme Rechnernetze I (1/12) i Rechnernetze

Mehr

Technische Informatik III: Betriebssysteme und Rechnernetze WS 2007/08 Musterlösung zum Übungsblatt Nr. 6. Aufgabe 1: Begriffe

Technische Informatik III: Betriebssysteme und Rechnernetze WS 2007/08 Musterlösung zum Übungsblatt Nr. 6. Aufgabe 1: Begriffe Technische Informatik III: Betriebssysteme und Rechnernetze WS 2007/08 Musterlösung zum Übungsblatt Nr. 6 Aufgabe 1: Begriffe 8 Punkte Beschreiben Sie jeden der folgenden Begriffe durch maximal zwei Sätze:

Mehr

Rechnerkommunikation Sommersemester Oktober 2010

Rechnerkommunikation Sommersemester Oktober 2010 Leistungsnachweis in Rechnerkommunikation Sommersemester 2010 4. Oktober 2010 Name: Matrikelnummer: Geburtsdatum: Studienfach: Fachsemester: Bitte verwenden Sie einen blauen oder schwarzen Kugelschreiber

Mehr

Internet Networking TCP Congestion Avoidance and Control

Internet Networking TCP Congestion Avoidance and Control Internet Networking TCP Congestion Avoidance and Control Sommersemester 2003 Gliederung 1 Einleitung 2 TCP - Transport Control Protocol 3 Conservation Of Packets 4 Methoden des Congestion Controls Round

Mehr

TCP-Verbindungen und Datenfluss

TCP-Verbindungen und Datenfluss TCP-Verbindungen und Datenfluss Jörn Stuphorn stuphorn@rvs.uni-bielefeld.de Universität Bielefeld Technische Fakultät Stand der Veranstaltung 13. April 2005 Unix-Umgebung 20. April 2005 Unix-Umgebung 27.

Mehr

Einfluss der Window Scale Option auf die Fairness in TCP/IP-Netzen

Einfluss der Window Scale Option auf die Fairness in TCP/IP-Netzen Einfluss der Window Scale Option auf die Fairness in TCP/IP-Netzen Torsten Müller, TU-Dresden, Institut für Nachrichtentechnik, Professur Telekommunikation Prof. Dr.-Ing. R. Lehnert Übersicht O Einleitung

Mehr

Rechnernetze Übung 11

Rechnernetze Übung 11 Rechnernetze Übung 11 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juli 2011 Herr Müller (Test GmbH) Sekretärin (Super AG) T-NR. 111 T-NR. 885 Sekretärin (Test GmbH) Herr Meier (Super

Mehr

Musterlösung der Abschlussklausur Moderne Netzstrukturen

Musterlösung der Abschlussklausur Moderne Netzstrukturen Musterlösung der Abschlussklausur Moderne Netzstrukturen 20. Mai 2015 Name: Vorname: Matrikelnummer: Mit meiner Unterschrift bestätige ich, dass ich die Klausur selbständig bearbeite und das ich mich gesund

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu echnerommuniation Sommersemester 009 Übung 5 Jürgen Ecert, Myola Protseno PD Dr.-Ing. Falo Dressler Friedrich-Alexander Universität Erlangen-Nürnberg Informati 7 (echnernetze und Kommuniationssysteme)

Mehr

Lösung von Übungsblatt 7. (Datentransferrate und Latenz)

Lösung von Übungsblatt 7. (Datentransferrate und Latenz) Lösung von Übungsblatt 7 Aufgabe 1 (Datentransferrate und Latenz) Der preußische optische Telegraf (1832-1849) war ein telegrafisches Kommunikationssystem zwischen Berlin und Koblenz in der Rheinprovinz.

Mehr

/ VXQJ]XUhEXQJ5HFKQHUQHW]H

/ VXQJ]XUhEXQJ5HFKQHUQHW]H / VXQJ]XUhEXQJ5HFKQHUQHW]H $XIJDEH3U IRO\QRPHXQG&5&%HUHFKQXQJ3XQNWH Gegeben sei der Frame 1101011101 und das Generator Polnom G(x) x 3 + x² + 1. a) Bestimmen ie die Prüfsumme für den Frame 1101011101 mittels

Mehr

Grundlagen der Rechnernetze. Transportschicht

Grundlagen der Rechnernetze. Transportschicht Grundlagen der Rechnernetze Transportschicht Übersicht Einfacher Demultiplexer (UDP) Transmission Control Protocol (TCP) TCP Überlastkontrolle TCP Überlastvermeidung TCP Varianten SS 2014 Grundlagen der

Mehr

Hauptdiplomklausur Informatik März 2001: Internet Protokolle

Hauptdiplomklausur Informatik März 2001: Internet Protokolle Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Professor Dr. W. Effelsberg Hauptdiplomklausur Informatik März 200: Internet Protokolle Name:... Vorname:...

Mehr

Rechnernetze Übung 11. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2012

Rechnernetze Übung 11. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2012 Rechnernetze Übung 11 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Juni 2012 IP: 192.168.43.9 MAC: 02-55-4A-89-4F-47 IP: 216.187.69.51 MAC: 08-48-5B-77-56-21 1 2 IP: 192.168.43.15 MAC:

Mehr

Themen. Flußkontrolle. Stefan Szalowski Rechnernetze Sicherungsschicht

Themen. Flußkontrolle. Stefan Szalowski Rechnernetze Sicherungsschicht Themen Flußkontrolle PPP Flusskontrolle Das Problem: Kein Wissen des Senders über Aufnahmefähigkeit des Empfängers Momentane Auslastung des Empfängers Kommunikation notwendig wieviele Rahmen empfangen

Mehr

Multimedia-Streams: Client-Puffer

Multimedia-Streams: Client-Puffer Multimedia-Streams: Client-Puffer Cumulative data constant bit rate video transmission variable network delay client video reception buffered video constant bit rate video playout at client client playout

Mehr

Fachhochschule Würzburg-Schweinfurt. Wintersemester 2007/2008. Diplomprüfung im Fach. Datennetze I. (Prof. Dr.-Ing. Ludwig Eckert)

Fachhochschule Würzburg-Schweinfurt. Wintersemester 2007/2008. Diplomprüfung im Fach. Datennetze I. (Prof. Dr.-Ing. Ludwig Eckert) Fachhochschule Würzburg-Schweinfurt Wintersemester 2007/2008 Diplomprüfung im Fach Datennetze I (Prof. Dr.-Ing. Ludwig Eckert) Datum: 05.02.2008, 11.00 Uhr; Raum 5107 Dauer: 90 Minuten Erreichte Punktzahl:...

Mehr

Adressauflösung. IP Adresse Physikalische Adresse 128.96.34.1 57:FF:AA:36:AB:11 128.96.34.16 85:48:A4:28:AA:18

Adressauflösung. IP Adresse Physikalische Adresse 128.96.34.1 57:FF:AA:36:AB:11 128.96.34.16 85:48:A4:28:AA:18 Adressauflösung IP Adresse Physikalische Adresse 128.96.34.1 57:FF:AA:36:AB:11 128.96.34.16 85:48:A4:28:AA:18 IP Adresse Physikalische Adresse 128.96.34.15??? 128.96.34.16 85:48:A4:28:AA:18 128.96.34.15

Mehr

SIMULATION. example Data Transfer (XDT) Protocol. entwickelt im Rahmen der Bachelor-Arbeit. von. Tobias Weimann. User-Manual

SIMULATION. example Data Transfer (XDT) Protocol. entwickelt im Rahmen der Bachelor-Arbeit. von. Tobias Weimann. User-Manual SIMULATION example Data Transfer (XDT) Protocol entwickelt im Rahmen der Bachelor-Arbeit von Tobias Weimann User-Manual Copyright 2004 Lehrstuhl Rechnernetze und Kommunikationssysteme Institut für Informatik

Mehr

Basisinformationstechnologie II Sommersemester 2012 Rechnerkommunikation I April 2012

Basisinformationstechnologie II Sommersemester 2012 Rechnerkommunikation I April 2012 Basisinformationstechnologie II Sommersemester 2012 Rechnerkommunikation I - 18. April 2012 Themenüberblick Rechnernetze Grundlagen / Termini: Übertragungsrate Übertragungsrichtung Client /Server Modell

Mehr

Netzwerkperformance 2.0

Netzwerkperformance 2.0 Netzwerkperformance 2.0 Die KPI`s als Schlüsselfaktoren der Netzwerke Andreas Dobesch, Product Manager DataCenter Forum 2014, Trafo Baden ISATEL Electronic AG Hinterbergstrasse 9 CH 6330 Cham Tel. 041

Mehr

Aufgabe 1: Interprozesskommunikation In der Vorlesung wurden zentrale Aspekte von grundlegenden Kommunikationsmustern vorgestellt.

Aufgabe 1: Interprozesskommunikation In der Vorlesung wurden zentrale Aspekte von grundlegenden Kommunikationsmustern vorgestellt. Sommersemester 211 Konzepte und Methoden der Systemsoftware Universität Paderborn Fachgebiet Rechnernetze Präsenzübung 11 vom 2.6.211 bis 24.6.211 Aufgabe 1: Interprozesskommunikation In der Vorlesung

Mehr

Themen. Dienste der Transportschicht. 3-Wege-Handshake. TCP-Protokoll-Header. Real-Time-Protocol

Themen. Dienste der Transportschicht. 3-Wege-Handshake. TCP-Protokoll-Header. Real-Time-Protocol Themen Dienste der 3-Wege-Handshake TCP-Protokoll-Header Real-Time-Protocol Dienste der Fehlerüberwachung Steuerung der Reihenfolge Wie kann eine korrekte Paket-Übertragung garantiert werden? Wie kann

Mehr

Hardware Leitungscodierung

Hardware Leitungscodierung Hardware Leitungscodierung Dr.-Ing. Matthias Sand Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2007/2008 Hardware Leitungscodierung 1/16 2007-11-05

Mehr

Inhaltsverzeichnis. Kapitel 1 Computernetzwerke und das Internet 21. Kapitel 2 Anwendungsschicht 107

Inhaltsverzeichnis. Kapitel 1 Computernetzwerke und das Internet 21. Kapitel 2 Anwendungsschicht 107 Inhaltsverzeichnis Die Autoren................................................. 9 Vorwort.................................................... 10 Was bringt die sechste Auflage Neues?...................

Mehr

Kommunikationsnetze Prof. Dr. rer. nat. habil. Seitz. Sara Schaarschmidt Eric Hänsel

Kommunikationsnetze Prof. Dr. rer. nat. habil. Seitz. Sara Schaarschmidt Eric Hänsel Kommunikationsnetze Prof. Dr. rer. nat. habil. Seitz Sara Schaarschmidt Eric Hänsel 23.05.2011 Seite 1 Gliederung 1. Was ist eine Flusssteuerung? 2. Unterschied zur Staukontrolle 3. Verfahren der Flusssteuerung

Mehr

Übung 4: Physical layer and limits

Übung 4: Physical layer and limits Wintersemester 217/218 Rechnernetze Universität Paderborn Fachgebiet Rechnernetze Übung 4: Physical layer and limits 217-11-3 1. Basisband/Breitband Diese Aufgabe soll den Unterschied zwischen Basisband-

Mehr

Rechnerkommunikation Wintersemester 2010/2011 21. April 2011

Rechnerkommunikation Wintersemester 2010/2011 21. April 2011 Leistungsnachweis in Rechnerkommunikation Wintersemester 2010/2011 21. April 2011 Name: Matrikelnummer: Geburtsdatum: Studienfach: Fachsemester: Extra Nachweis: benoteter Schein unbenoteter Schein Bitte

Mehr

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne)

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne) Übungsblatt 4 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) 2. Welchen Zweck haben Layer-3-Switches

Mehr

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404

Rechnernetze I. Rechnernetze I. 1 Einführung SS 2014. Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Rechnernetze I SS 2014 Universität Siegen rolanda.dwismuellera@duni-siegena.de Tel.: 0271/740-4050, Büro: H-B 8404 Stand: 9. Mai 2014 Betriebssysteme / verteilte Systeme Rechnernetze I (1/10) i Rechnernetze

Mehr

Einführung: Zustandsdiagramme Stand:

Einführung: Zustandsdiagramme Stand: Einführung: Zustandsdiagramme Stand: 01.06.2006 Josef Hübl (Triple-S GmbH) 1. Grundlagen Zustandsdiagramme Zustände, Ereignisse, Bedingungen, Aktionen 2. Verkürzte Darstellungen Pseudozustände 3. Hierarchische

Mehr

Übungen zu Rechnerkommunikation

Übungen zu Rechnerkommunikation Übungen zu Rechnerkommunikation Sommersemester 009 Übung 6 Jürgen Eckert, Mykola Protsenko PD Dr.-Ing. Falko Dressler Friedrich-Alexander Universität Erlangen-Nürnberg Informatik 7 (Rechnernetze und Kommunikationssysteme)

Mehr

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 30. Juni 2006

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 30. Juni 2006 Vernetzte Systeme Übungsstunde 30.06.2006 Adrian Schüpbach scadrian@student.ethz.ch 30. Juni 2006 Adrian Schüpbach (ETH Zürich) Vernetzte Systeme SS 2006 1 / 33 Letzte Serie! Letzte Serie! Adrian Schüpbach

Mehr

Zeit als Mittel der Reihenfolgebestimmung

Zeit als Mittel der Reihenfolgebestimmung Uhrensynchronisation Notwendigkeit von Uhrensynchronisation Zeit als Mittel der Reihenfolgebestimmung Probleme der Uhrensynchronisation Lamport Vektorduhren Synchronisation von physikalischen Uhren Grundlagen

Mehr

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne)

Übungsblatt 4. (Router, Layer-3-Switch, Gateway) Aufgabe 2 (Kollisionsdomäne, Broadcast- Domäne) Übungsblatt 4 Aufgabe 1 (Router, Layer-3-Switch, Gateway) 1. Welchen Zweck haben Router in Computernetzen? (Erklären Sie auch den Unterschied zu Layer-3-Switches.) 2. Welchen Zweck haben Layer-3-Switches

Mehr

Protokolle und Schichten. Grundlagen der Rechnernetze Einführung 41

Protokolle und Schichten. Grundlagen der Rechnernetze Einführung 41 Protokolle und Schichten Grundlagen der Rechnernetze Einführung 41 Protokoll und Interface Host 1 Host 2 High Level Objekt High Level Objekt Service Interface Service Interface Protokoll Peer to peer Interface

Mehr

Technische Universität Braunschweig Institut für Betriebssysteme und Rechnerverbund. Betriebssysteme und Netze Prof. Dr. L. Wolf. 18.

Technische Universität Braunschweig Institut für Betriebssysteme und Rechnerverbund. Betriebssysteme und Netze Prof. Dr. L. Wolf. 18. @ Technische Universität Braunschweig Institut für Betriebssysteme und Rechnerverbund Betriebssysteme und Netze Prof. Dr. L. Wolf Hinweise zur Bearbeitung: Klausur: Betriebssysteme und Netze 18. Februar

Mehr

Übung 5: Routing, Überlastabwehr

Übung 5: Routing, Überlastabwehr Universität Paderborn Fachgebiet Rechnernetze Wintersemester 2016/2017 Rechnernetze Übung 5: Routing, Überlastabwehr 1. Pfadmetriken Wie müssen Sie eine Pfadmetrik formulieren, wenn Sie folgende Kriterien

Mehr

TCP. Transmission Control Protocol

TCP. Transmission Control Protocol TCP Transmission Control Protocol Wiederholung TCP-Ports Segmentierung TCP Header Verbindungsaufbau-/abbau, 3 - WayHandShake Timeout & Retransmission MTU maximum transfer Unit TCP Sicher Verbunden? Individuelle

Mehr

Die Magie der großen Zahlen. Trotz hoher Taktraten schlechte Antwortzeiten wo liegen die Ursachen. Wolfgang Schau

Die Magie der großen Zahlen. Trotz hoher Taktraten schlechte Antwortzeiten wo liegen die Ursachen. Wolfgang Schau Intelligence for a better world Trotz hoher Taktraten schlechte Antwortzeiten wo liegen die Ursachen Wolfgang Schau 30.10.2003 2003 GTEN AG Die Magie der großen Zahlen! Je höher die Taktrate, desto größer

Mehr

Rechnerkommunikation Sommersemester Oktober 2011

Rechnerkommunikation Sommersemester Oktober 2011 Leistungsnachweis in Rechnerkommunikation Sommersemester 2011 04. Oktober 2011 Name: Matrikelnummer: Geburtsdatum: Studienfach: Fachsemester: Extra Nachweis: benoteter Schein unbenoteter Schein Bitte verwenden

Mehr

Delay Rechnung. Was ist die mittlere Wartezeit T eines Pakets bei idealem Kanalzugriff mit einer zentralen globalen Warteschlange?

Delay Rechnung. Was ist die mittlere Wartezeit T eines Pakets bei idealem Kanalzugriff mit einer zentralen globalen Warteschlange? Delay Rechnung Betrachte: Kanal mit Kapazität C bps Exponential verteilte Paket Ankunftsrate von Pakete/Sekunde Exponential verteilte Paketlängen mit mittlerer Paketlänge von 1/ Bits/Frame Was ist die

Mehr

Random-Access-Verfahren

Random-Access-Verfahren Random-Access-Verfahren Random-Access, 1 Referenzen - D. Bertsekas, R. Gallager: Data Networks, Prentice-Hall, 1992. - Du, Swamy, "Wireless Communications Systems", S. 108, Cambridge, 2010. TDMA-, FDMA-

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 5 Sicherungsschicht und lokale Netzwerke

Mehr

Betriebssysteme und Netze

Betriebssysteme und Netze TECHNISCHE UNIVERSITÄT BRAUNSCHWEIG INSTITUT FÜR BETRIEBSSYSTEME UND RECHNERVERBUND Prof. Dr. S. Fischer Klausur: Betriebssysteme und Netze Schwerpunkt Netze Hinweise zur Bearbeitung: 26. Juli 2004 Als

Mehr

TKN. Übung zur Vorlesung Kommunikationsnetze. Aufgabenblatt 1. Aufgaben von Netzwerken

TKN. Übung zur Vorlesung Kommunikationsnetze. Aufgabenblatt 1. Aufgaben von Netzwerken TKN Telecommunication Networks Group Übung zur Vorlesung Kommunikationsnetze Aufgabenblatt 1 Aufgaben von Netzwerken Organisatorisches Es werden zwei identische Übungen pro Übungstermin angeboten: Mittwoch

Mehr

Übung 4 Gruppe Hosebei

Übung 4 Gruppe Hosebei Übung 4 Gruppe Hosebei 03.0.2002 Michele Luongo migi@luongo.org s99-73-90 Franziska Zumsteg F.Zumsteg@access.unizh.ch s99-77-084 Philip Iezzi pipo@iezzi.ch s99-74-354 Raphael Bianchi saint.ch@dtc.ch s95-2-003

Mehr

Die Transportprotokolle UDP und TCP

Die Transportprotokolle UDP und TCP Die Transportprotokolle UDP und TCP! UDP (User Datagram Protocol) " Ist wie IP verbindungslos (Zustellung und Reihenfolge werden nicht garantiert) " Erweitert die Funktionalität von IP um die Möglichkeit,

Mehr

Vortrag zur Diplomarbeit

Vortrag zur Diplomarbeit Fakultät Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Vortrag zur Diplomarbeit Entwurf und Implementierung eines zuverlässigen verbindungsorientierten Transportprotokolls für

Mehr

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 09. Juni 2006

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 09. Juni 2006 Vernetzte Systeme Übungsstunde 09.06.2006 Adrian Schüpbach scadrian@student.ethz.ch 09. Juni 2006 Adrian Schüpbach (ETH Zürich) Vernetzte Systeme SS 2006 1 / 28 Übersicht 1 TCP-Zustandsdiagramm 2 Proxy

Mehr

Stauvermeidung in TCP Tahoe

Stauvermeidung in TCP Tahoe Stauvermeidung in TCP Tahoe! Jacobson (1988): x: Anzahl Pakete pro RTT - Parameter: cwnd und Slow-Start-Schwellwert (ssthresh=slow start threshold) - S = Datensegmentgröße = maximale Segmentgröße (MSS)!

Mehr

Spektrum und Bandbreite

Spektrum und Bandbreite Spektrum und Bandbreite 0.0 0 1f 2f 3f 4f 5f 6f Spektrum: Bandbreite: Grundlagen der Rechnernetze Physikalische Schicht 12 Aperiodische Signale in der Frequenzdomäne Bildquelle: de.wikipedia.org/wiki/frequenzspektrum

Mehr

Hauptdiplomklausur Informatik Juni 2008: Computer Networks

Hauptdiplomklausur Informatik Juni 2008: Computer Networks Universität Mannheim Fakultät für Mathematik und Informatik Lehrstuhl für Praktische Informatik IV Prof. Dr.-Ing. W. Effelsberg Hauptdiplomklausur Informatik Juni 2008: Computer Networks Name: Matrikel-Nr.:

Mehr

Datenübertragung. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 33

Datenübertragung. Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 33 Datenübertragung Kommunikationstechnik, SS 08, Prof. Dr. Stefan Brunthaler 33 Datenübertragung Kommunikationssysteme übertragen Daten durch Kodieren in eine Energieform und das Senden der Energie über

Mehr

CSMA mit Kollisionsdetektion: CSMA/CD

CSMA mit Kollisionsdetektion: CSMA/CD CSMA mit Kollisionsdetektion: CSMA/CD Start Beispiel: 1 2 3 1 Persistent P Persistent Nonpersistent Starte Paketübertragung Kollision derweil? Ende nein ja Stoppe Paketübertragung SS 2012 Grundlagen der

Mehr

Übertragungsfehler (2) Übertragungsfehler. - Ursachen für Fehler bei der Datenübertragung. - Bitfehler durch verrauschten Kanal

Übertragungsfehler (2) Übertragungsfehler. - Ursachen für Fehler bei der Datenübertragung. - Bitfehler durch verrauschten Kanal Daten Signal Störung Signal mit Störung Abtastzeitpunkt empfangene Daten Originaldaten Übertragungsfehler - Bitfehler durch verrauschten Kanal Fehler - Bitfehler durch fehlerhafte Synchronisation Vernetzte

Mehr

Transportschicht (Schicht 4) des Internet

Transportschicht (Schicht 4) des Internet Transportschicht (Schicht 4) des Internet Es gibt zwei Transportprotokolle: TCP = Transmission Control Protocol UDP = User Datagram Protocol a) TCP: baut virtuelle Verbindung auf (verbindungsorientiert)

Mehr

Universität Stuttgart. Musterlösung. Communication Networks I. 11. März 2011. Termin: IP-Adressierung und -Routing

Universität Stuttgart. Musterlösung. Communication Networks I. 11. März 2011. Termin: IP-Adressierung und -Routing Universität Stuttgart INSTITUT FÜR KOMMUNIKATIONSNETZE UND RECHNERSYSTEME Prof. Dr.-Ing. Andreas Kirstädter Musterlösung Termin: Communication Networks I 11. März 2011 Aufgabe 1 IP-Adressierung und -Routing

Mehr

ANALYSE DER LATENZEN IM KOMMUNIKATIONSSTACK EINES PCIE-GEKOPPELTEN FPGA-BESCHLEUNIGERS. Sascha Kath

ANALYSE DER LATENZEN IM KOMMUNIKATIONSSTACK EINES PCIE-GEKOPPELTEN FPGA-BESCHLEUNIGERS. Sascha Kath ANALYSE DER LATENZEN IM KOMMUNIKATIONSSTACK EINES PCIE-GEKOPPELTEN FPGA-BESCHLEUNIGERS Sascha Kath Dresden, Gliederung 1. Motivation & Zielstellung 2. Systembeschreibung 3. Implementierung und Messungen

Mehr

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22 Gliederung 1 Unsicheres Wissen 2 Schließen

Mehr

Übungen Grundlagen der Architektur von Anwendungssystemen SS 06. Blatt Nr

Übungen Grundlagen der Architektur von Anwendungssystemen SS 06. Blatt Nr Prof. Dr. Frank Leymann / Thorsten Scheibler Institut für Architektur von Anwendungssystemen Universität Stuttgart Übungen Grundlagen der Architektur von Anwendungssystemen SS 06 Blatt Nr.5 18.07.2006

Mehr

Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner. Übung 3: Profibus

Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner. Übung 3: Profibus Universität Stuttgart Prof. Dr.-Ing. Dr. h. c. P. Göhner Übung 3: Profibus Aufgabe 3.1: Mono-Master-Betrieb Für die Automatisierung einer Förderbandanlage (s. Abbildung 1) soll ein Profibus eingesetzt

Mehr

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht Themen Sicherungsschicht Rahmenbildung Häufig bereitgestellte Dienste Fehlererkennung OSI-Modell: Data Link Layer TCP/IP-Modell: Netzwerk, Host-zu-Netz Aufgaben: Dienste für Verbindungsschicht bereitstellen

Mehr

Transportschicht. Einleitung Transmission Control Protocol, RFC793. Transportschicht

Transportschicht. Einleitung Transmission Control Protocol, RFC793. Transportschicht Transportschicht 1 / 33 Kommunikationsnetze I 19.11.2008 Dienste der Transportschicht Die Transportschicht bietet einen verbindungsorientierten und einen verbindungslosen Dienst, unabhängig von den Diensten

Mehr

OSI-Schichtenmodell. Martin Fechtner

OSI-Schichtenmodell. Martin Fechtner OSI-Schichtenmodell Martin Fechtner Rechnernetze Rechnernetze sind Netzwerke, deren Teilnehmer Rechner sind zwischen den Teilnehmern werden digitale Daten übertragen im Allgemeinen können beliebige Teilnehmer

Mehr

Netzwerke, Kapitel 3.1

Netzwerke, Kapitel 3.1 Netzwerke, Kapitel 3.1 Fragen 1. Mit welchem anschaulichen Beispiel wurde das OSI-Schichtenmodell erklärt? Dolmetscher 2. Was versteht man unter Dienstprimitiven? Request, Indication, Response, Confirm

Mehr

Datenübertragungsverfahren

Datenübertragungsverfahren Leopold-Franzens-Universität Innsbruck Institut für Informatik Computational Logic Datenübertragungsverfahren Einführung in das Wissenschaftliche Arbeiten Seminarreport Jakob Noggler unter Aufsicht von

Mehr

Fakultät Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur. Diplomverteidigung

Fakultät Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur. Diplomverteidigung Fakultät Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Diplomverteidigung Entwurf und Implementierung eines zuverlässigen verbindungsorientierten Transportprotokolls für die

Mehr

Prof. Dr. Christian Baun 5. April Errata zur 2. Auflage von Computernetze kompakt. Erschienen 2013 bei Springer Vieweg. ISBN:

Prof. Dr. Christian Baun 5. April Errata zur 2. Auflage von Computernetze kompakt. Erschienen 2013 bei Springer Vieweg. ISBN: Errata zur 2. Auflage von Computernetze kompakt. Erschienen 2013 bei Springer Vieweg. ISBN: 978-3-642-41652-1 Inhaltsverzeichnis, Seite XIII Kapitel 8 heißt Transportschicht und nicht Inhaltsverzeichnis,

Mehr

Chapter 11 TCP. CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von

Chapter 11 TCP. CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von Chapter 11 TCP CCNA 1 version 3.0 Wolfgang Riggert,, FH Flensburg auf der Grundlage von Rick Graziani Cabrillo College Vorbemerkung Die englische Originalversion finden Sie unter : http://www.cabrillo.cc.ca.us/~rgraziani/

Mehr