Evolutionary Trees: Distance Based

Größe: px
Ab Seite anzeigen:

Download "Evolutionary Trees: Distance Based"

Transkript

1 Evolutionary Trees: Distance Based 1 Buftea Alexandru Laut der Evolutionstheorie findet in allen Organismen eine langsame Änderung statt (Evolution). Ein evolutionärer Baum, auch phylogenetischer Baum genannt, ist ein Baum, der für die Darstellung evolutionärer Beziehungen benutzt wird. Die Knoten dieses Baumes stellen Organismen dar und die Kanten stellen evolutionäre Beziehungen dar. Der bekannteste Einsatz solcher Bäume sind die so genannten Trees of Life. Die Trees of Life versuchen die evolutionäre Beziehungen zwischen sämtlichen Organismen darzustellen. Phylogenetische Bäume können aber auch für die Darstellung von vielen anderen Problemen benutzt werden. Zum Beispiel für die Darstellung der Evolution von Viren, die Darstellung von metabolic pathways (die Abwicklung chemischer Reaktionen in der Zelle) oder gene mapping (Darstellung der Evolution von Genen). Sie finden Einsätze auch in nicht mit der Biologie verbundene Felder wie zum Beispiel Sprachwissenschaften, wo sie die Evolution und Abzweigung von Sprachen beschreiben können. Phylogenetische Bäume werden nach verschiedenen Kriterien kategorisiert. Das erste Kriterium ist, ob der Baum eine Wurzel hat oder nicht. Ein Baum mit einer Wurzel (rooted tree) ist ein gerichteter Baum mit einem Knoten der den gemeinsamen Vorfahren aller dargestellten Organismen repräsentiert. Es ist oft ziemlich schwer, einen gemeinsamen Vorfahren für alle beschriebene Organismen zu finden, sogar für kleine, eng verwandte Gruppen von Organismen. Die inneren Knoten eines gewurzelten Baumes stellen gemeinsame Vorfahren der jetzt existierenden Spezies dar und der Pfad von der Wurzel zum einzelnen Knoten stellt den evolutionären Pfad dieser Art dar. Die inneren Knoten sind oft nicht genau bekannt und werden nicht genau beschrieben oder benannt. Jeder innere Knoten hat genau zwei Kinder. Das simuliert der biologischen Prozess der Artbildung, wobei ein Organismus sich in zwei verschiedene biologische Arten trennt. Phylogenetische Bäume mit einer Wurzel stellen die Evolution der beschriebenen Elemente sehr gut dar. Man kann einen klaren evolutionären Pfad von den gemeinsamen Vorfahren zur jetzigen Arten erkennen. Dafür muss man mit der Unsicherheit, ob man den korrekten Vorfahren bestimmt hat, leben. Ein Phylogenetischer Baum, der keine Wurzel hat, (ungewurzelter Baum) ist ein ungerichteter Baum, das keinen gemeinsamen Vorfahren für die beschriebene Elemente nennt. Es beschreibt also nur die Beziehungen zischen den Elementen ohne einen genauen evolutionären Pfad zu beschreiben. Weil uns bewusst ist, dass wir nur begrenztes Wissen über den genauen evolutionären Pfad vieler Organismen haben, ist es oft sinnvoller, keine Annahme über den gemeinsamen Vorfahren der beschriebenen Organismen zu machen und lieber nur die gut bekannten Beziehungen zwischen bekannte Elemente zu beschreiben. So entstehen

2 phylogenetische Bäume ohne Wurzel. Das wichtigste Merkmal solcher Bäume ist, dass die inneren Knoten immer einen Grad von 3 haben. Es ist möglich, aus einen ungewurzelten Baum einen gewurzelten Baum zu machen. Dafür werden so genannte Outgroups benutzt. Ein Outgroup ist ein Element das mit den anderen Elementen nahe verwandt ist aber nicht so nah wie alle andere Elemente untereinander. Man kann dann die Schlussfolgerung treffen, dass dieses Element sich von dem Vorgänger früher geteilt hat als alle anderen. Der Vorgänger des Elements wird also als Wurzel der anderen Elemente betrachtet. Das zweite Kriterium, nach dem Phylogenetische Bäume aufgeteilt werden, sind die Daten, nach denen die Bäume wieder aufgebaut werden. Hier unterscheiden wir zwei Arten von Bäumen: Merkmals basierte Bäume und Distanz basierte Bäume. Merkmals basierte Bäume nehmen als Eingabe eine Matrix mit diskreten Merkmalen der beschriebenen Elemente wie z.b die Anzahl von Füße, die Gestaltung des Schnabels etc. Diese Merkmale werden in eine binäre Matrix dargestellt und ausgewertet. Merkmal basierte Methoden umfassen die Maximum Parsimony und Maximum Likelihood Methoden. Der größte Vorteil solcher Methoden ist, dass sie ein klares und realistisches Modell der Evolution darstellen. Der größte Nachteil dieser Methoden ist, dass sie sehr kompliziert und langsam sind. Distanz basierte Bäume nehmen als Eingabe eine n X n große Dreiecksmatrix die die "Distanz" zwischen Organismen beschreibt. Die Distanz beschreibt, wie unterschiedlich zwei Organismen untereinander sind. Je größer der Distanzwert zweier Organismen ist, umso weniger eng verwandt sind diese. Wie die Distanz zwischen zwei Organismen berechnet wird, hängt von der Datensammlung und Art der Auswertung ab. Es gibt keine beste Methode für die Festlegung der Distanz. Man kann als Distanz die Unterschiedlichkeit des genetischen Kodes der zwei Organismen betrachten. In solchen Fällen wird normalerweise die Anzahl der unterschiedlichen Nukleotide oder die editing distance (Anzahl von Inserts, Deletions und Substitutions) ausgewertet. Eine andere Möglichkeit für die Berechnung der Distanz ist eine gewichtete Auswertung der unterschiedlichen Merkmale der Organismen. Manche Distanzauswertung nehmen mehrere solche Methoden in Anspruch, um eine möglichst genaue Auswertung der Distanz zu liefern. Da die Genauigkeit des Baumes bei Distanz basierte Bäume stark auf die Genauigkeit der Distanzwerte beruht ist es unglaublich wichtig möglichst repräsentative Distanzwerte für alle Organismen zu haben. Deshalb ist der Distanz basierte Ansatz für den Aufbau von phylogenetischen Bäumen auch so fehleranfällig, wenn man es von einem biologischen Ansichtspunkt betrachtet. Es gibt keine wirklich biologisch korrekte Methode die Distanzdaten auszuwerten, damit es die evolutionäre Unterschiede korrekt wiederspiegelt. Die Datensammlung kann auch ziemlich ungenau sein da Fehler in der DNA Sequenzierung oft auftauchen. 2

3 Man unterscheidet zwei Arten von Distanz basierte Bäume: additive Bäume und ultrametrische Bäume. Additive Bäume nehmen als Eingabe eine n X n große additive Dreieckmatrix. Eine Matrix ist additiv, wenn es einen metrischen Raum darstellt und additiv ist. Die Definition eines metrischen Raumes lautet wie folgt: Eine Menge von Objekten O stellen einen Metrischen Raum dar, wenn für alle Paare i, j die zu O gehören ein nichtnegativer, reeller Wert d ij zugeordnet ist, mit den folgenden Eigenschaften: d ij > 0 für i!= j d ij = 0 für i = j d ij = d ji für alle i & j d ij <= d ik + d kj für alle i, j und k (Dreiecksungleichung) Ein metrischer Raum O ist additiv, wenn für beliebige 4 Objekte i, j, k, l aus O das Folgende gilt: d ij + d kl = d ik + d jl >= d il + d jk (4-Punkte Bedingung) In Worten, bedeutet die obige Gleichung, dass die zwei größeren Summen gleich sind und größer als die dritte Summe sind. Wenn die 4-Punkte Bedingung erfüllt ist, folgt, dass die Matrix additiv ist und ein additiver Baum daraus gebildet werden kann. Der Beweis dafür kann man am einfachsten mit dem Aufbauen der Bäume, aus einer additiven Matrix verstehen: Ein ungewurzeltes Baum das aus genau 4 Punkte besteht hat eine einzige Topologie und ein gewurzeltes Baum mit 4 Punkte kann nur 2 Topologien haben wenn man die Blattmarkierung nicht berücksichtigt: Im Fall a sehen wir dass: d AB + d CD d AC + d BD = d AD + d BC Im Fall b gilt: d AB + d CD d BC + d AD = d BD + d AC Und im Fall c gilt: d AB + d CD d AC + d BD = d AD + d BC 3

4 Also gilt in alle Fällen, dass die zwei größeren Summen gleich sind und größer als die dritte Summe sind. Daraus folgt, dass die Matrix additiv sein muss, um daraus einen additiven Baum zu bauen. Ein additiver Baum hat keine Wurzel. Der Grad (Anzahl von Kanten) aller internen Knoten ist 3 und der Grad aller externen Knoten ist 1. Die Topologie und Kantenlänge eines additiven Baumes mit mehr als 4 Knoten ist einzigartig. Da es für ein ungewurzelter Baum n i=3(2i-5) (wobei n die Anzahl von Knoten ist) mögliche Konfigurationen gibt, ist es unplausibel einfach eine Enumerationsstrategie zu benutzen. Man hat also einen Aufbauprozess dafür bestimmt. Man fängt mit zwei beliebigen Punkten an und verbindet sie mit einer Kante. Man fügt dann ein drittes beliebiges Element hinzu. Beim Einfügen des weiteren Elements wird ein weiterer interner Knoten gebaut. Das große Problem ist, wie man die Kantenlängen zwischen den einzelnen externen Knoten und den neuen internen Knoten festlegt. Wenn die Knoten a,b,c die drei externen Knoten darstellen und x das neue interne Knoten dann kann man die Distanz zwischen a,b,c und x mit den folgenden Gleichungen berechnen: M ac = d ax + d xc (1.1) M bc = d bx + d xc (1.2) d bx = M ab d ax (1.3) * (1.3 Einsatzen) M ac - M bc = d ax + d xc (d bx +d xc ) M ac - M bc = d ax +d xc -((M ab -d ax )+d xc ) M ac - M bc = d ax +d xc -M ab +d ax -d xc M ac - M bc = 2d ax -M ab d ax = (M ab + M ac M bc ) / 2 d bx = (M ab + M bc M ac ) / 2 (wird genau wie d ax berechnet) d cx = (M ac + M bc M ab ) / 2 (wird genau wie d ax berechnet) Nachdem man die Kantenlängen festgelegt hat, fügt man ein weiteres Element zwischen zwei beliebige Knoten hinzu. Das erzeugt einen neuen internen Knoten und man verwendet dieselben Gleichungen, um die Kantenlängen zwischen den drei externen Knoten (das neue externe Knoten und die zwei Knoten zwischen den man den neuen Knoten eingefügt hat) und das neue interne Knoten zu berechnen. Man wiederholt dieses Verfahren, bis alle Elemente in den Baum eingefügt sind. Man muss aber immer aufpassen, dass alle Kantenlängen in den Baum mit dem Kantenlängen in der Matrix übereinstimmen. Deshalb ist es sehr wichtig, dass man die korrekte 4

5 Position für das Einfügen der neuen internen und externen Knoten findet. Wenn die Position des neuen internen Knotens mit einem schon existierenden Knoten übereinstimmt, muss man eine neue Ansatzstelle für den Knoten finden. Man wählt dann zwei neue Punkte, zwischen denen man den Knoten einzufügen versucht. In der Regel werden die zwei neuen Knoten so ausgewählt, dass sie Teil des Teilbaumes der vorher gewählten Knotens sind. Man wiederholt den Prozess bis man die korrekte Stelle findet. Wie vorher erwähnt, ist die Topologie und Kantenlänge von additiven Bäume, die mehr als 4 Elemente enthalten, einzigartig. Die Einzigartigkeit der Topologie kann man durch Widerspruch beweisen. Wenn es 2 Topologien geben würde, heißt es, dass 3 externe Knoten x, y, z die Abschnitte P1, P2, P3 in der ersten Topologie und Q1, Q2, Q3 in der zweiten Topologie bestimmen würden, so dass die Abteile unterschiedlich sind. Also muss es der Fall sein, dass eines der Blätter x auch zu P1 und auch zu Q2 gehört, wobei P1!= Q2. Dann muss es der Fall sein, dass es ein weiteres Element w gibt, dass zu P1 gehört aber nicht zu Q2 und das bedeutet wiederum, dass es 2 verschiedene Baume für die Elemente x,y,z und w geben muss, was nicht der Fall sein kann. Es folgt auch, dass die Längen der Kanten einzigartig sein müssen, da alle Kanten, die zu ein Blatt x führen eine einzige Länge haben können da, x zusammen mit 2 andere Elemente einen einzigartigen Baum bestimmen. Die inneren Kanten müssen auch einzigartig sein, da sie die Blätter in einzelne Abteile (P1, P2, P3 und P4) aufteilen. Die 4 einzelnen Abteile bilden wiederum einen einzigartigen Baum. Also können auch die inneren Kanten eine einzige Länge haben. Wir sehen, dass wir mit additiven Bäumen jedes Mal ein einzigartiges Ergebnis bekommen. Die Anwendung solcher Bäume ist aber stark von den Voraussatzungen beschränkt, da Matrizen, die echte biologische Umstände simulieren, selten additiv sind. Aber angenommen, dass die additiven Matrizen korrekt aufgebaut sind und biologische Umstände gut simulieren, dann wird der additive Baum immer ein korrektes, einzigartiges Ergebnis liefern. Die zweite Art von Distanz basierte Bäume sind die ultrametrische Bäume. Diese sind eine Erweiterung der additiven Bäume mit der nachträglichen Bedingung, dass die Distanzen zwischen allen Blätter und der Wurzel gleich sein müssen. Es gelten also dieselbe Regeln für die Matrix wie bei den additiven Bäumen (Metrischer Raum & additiv), aber der Aufbauprozess und die Merkmale sind ziemlich unterschiedlich. Es gibt dazu strenge biologische Voraussetzungen, damit ein ultrametrisches Modell ein realistisches phylogenetisches Baum wiedergibt. Die beschriebenen Organismen müssen alle eine uniforme Evolutionsgeschwindigkeit haben. Eine weitere Annahme ist, dass nur Substitutionen in den Nukleotiden stattfinden (keine Insertions oder Deletions). Das sind ziemlich anspruchsvolle Voraussetzungen, aber wenn diese erfüllt sind, wird der ultrametrische Baum ein korrekter phylogenetischer Baum wiedergeben. Ein ultrametrischer Baum hat im Gegensatz zu einem additiven Baum eine Wurzel und jeder innere Knoten hat genau zwei Kinder. Da es für ein gewurzelter Baum n i=3(2i-3) mögliche Konfigurationen gibt, ist es wieder unplausibel eine Enumerationsstrategie zu benutzen. Ultrametrische Bäume werden deswegen in der Regel mit den UPGMA Algorithmus aufgebaut. 5

6 UPGMA steht für Unweighted Pair Group Method with Arithmetic Mean. Man fängt mit der untersten Ebene des Baumes an (den Blättern). Man verbindet dann die ähnlichsten Elemente (kleinste Distanz) mit einem neuen inneren Knoten. Wenn zwei Paare dieselbe kleinste Distanz haben kann man ein beliebiges Paar auswählen. Der neue interne Knoten wird bei einer Höhe von d ij /2 platziert (wobei i,j die zwei verbundene Elemente sind). Die Distanz vom neuen internen Knoten zu den anderen Knoten wird als der Durchschnittwert der Distanzen der zwei verbundenen Knoten zu den anderen Knoten berechnet. Also wenn man Knoten A und B unter den Knoten M verbindet, dann ist d MC gleich dem Durchschnittswert zwischen d AC und d BC. Man wiederholt diesen Prozess bis alle Knoten verbunden sind. Das Ergebnis des UPGMA ist immer korrekt, wenn die Voraussetzungen dafür erfüllt sind und die Distanz-Daten korrekt berechnet worden sind. Der große Vorteil der ultrametrischen Bäume ist, dass sie ein gewurzeltes Baum wiedergeben. Da der Baum gerichtet ist, kann man ein klares zeitliches Modell der Evolution beobachten. Es gibt sämtliche andere Distanz basierte Methoden für den Aufbau von phylogenetischen Bäume wie z.b die Neighbor Joining oder die Fitch-Margoliash Methode. Diese liegen aber außerhalb des Rahmens dieses Vortrages. Wie schon gesehen, sind die Voraussetzungen für die Benutzung von additiven und ultrametrischen Bäume ziemlich anspruchsvoll. Es gibt aber Situationen, in denen diese Voraussetzungen erfüllt sind, und in solche Umständen, sind die Distanz basierte Algorithmen sehr gut für den Aufbau von phylogenetischen Bäumen geeignet. Da solche Situationen aber relativ selten vorkommen, werden Distanz basierte Ansätze normalerweise für die Erstellung einer ersten Vorlage verwendet, da sie sehr schnell und unaufwendig sind. Die Daten werden dann mit komplexerem merkmalsbasierte Ansätze verbessert und erweitert. 6

7 Quellen Angaben: J. Setubal, J. Meidanis: Introduction to Computational Molecular Biology, PWS, 1997; P. Clote, R. Backofen: Computational Molecular Biology An Introduction, Wiley 2000; M.Waterman: Introduction to Computational Biology, Chapman & Hall, 1995; Fred Opperdoes. Construction of a distance tree using clustering with the Unweighted Pair Group Method with Arithmatic Mean (UPGMA), De Duve Institute. Erstellt: 12 August Zugriffsdatum: 6 Januar Nikos Drakos. Appendices: 4.14 The Four-Point Condition. Technische Fakultät der Universität Bielefeld. Zugriffsdatum. 16 Januar Wikipedia contributors. Phylogenetic tree. Wikipedia, The Free Encyclopedia. Erstellt: 14 Jan Zugriffsdatum. 18 Jan

Evolutionäre Bäume. Madox Sesen. 30. Juni 2014

Evolutionäre Bäume. Madox Sesen. 30. Juni 2014 Evolutionäre Bäume Madox Sesen 30. Juni 2014 1 Einleitung Phylogenetische Bäume sind ein wichtiges Darstellungsmittel der Evolutionsforschung. Durch sie werden Verwandtschaftsbeziehungen zwischen Spezies

Mehr

Einführung in die Bioinformatik

Einführung in die Bioinformatik Einführung in die Bioinformatik Ringvorlesung Biologie Sommer 07 Burkhard Morgenstern Institut für Mikrobiologie und Genetik Abteilung für Bioinformatik Goldschmidtstr. 1 Online Materialien zur Ringvorlesung:

Mehr

Phylogenetische Bäume Kieu Trinh Do SS 2009

Phylogenetische Bäume Kieu Trinh Do SS 2009 1. Einleitung Phylogenetische Bäume Kieu Trinh Do SS 2009 Wie seit geraumer Zeit bekannt ist, hat Ähnlichkeit ihre Ursachen in gemeinsamer Abstammung. Es stellt sich aber die Frage, wie wir die evolutionäre

Mehr

Einführung in die Angewandte Bioinformatik: Phylogenetik und Taxonomie

Einführung in die Angewandte Bioinformatik: Phylogenetik und Taxonomie Einführung in die Angewandte Bioinformatik: Phylogenetik und Taxonomie 24.06.2010 Prof. Dr. Sven Rahmann 1 Phylogenetik: Berechnung phylogenetischer Bäume Phylogenetik (phylum = Stamm): Rekonstruktion

Mehr

Phylogenetik. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung

Phylogenetik. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung Phylogenetik Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann Webseite zur Vorlesung http://bioinfo.wikidot.com/ Sprechstunde Mo 16-17 in OH14, R214 Sven.Rahmann -at- tu-dortmund.de

Mehr

Bioinformatik. Distanzbasierte phylogenetische Algorithmen. Ulf Leser Wissensmanagement in der. Bioinformatik

Bioinformatik. Distanzbasierte phylogenetische Algorithmen. Ulf Leser Wissensmanagement in der. Bioinformatik Bioinformatik Distanzbasierte phylogenetische Algorithmen Ulf Leser Wissensmanagement in der Bioinformatik Phylogenetische Bäume Stammbaum (Phylogenetic Tree) Ulf Leser: Algorithmische Bioinformatik, Wintersemester

Mehr

Christian Rieck, Arne Schmidt

Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Algorithmen und Datenstrukturen Wintersemester 207/208 Übung#5, 2.2.207 Christian Rieck, Arne Schmidt Bäume Satz Jeder gerichtete Baum

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Phylogenetische Rekonstrukion Sparsamkeits- und Abstandsmethoden 5. Juli 2012

Phylogenetische Rekonstrukion Sparsamkeits- und Abstandsmethoden 5. Juli 2012 Merle Erpenbeck Phylogenetische Rekonstrukion Sparsamkeits- und Abstandsmethoden 5. Juli 202 Seminarausarbeitung im Seminar Mathematische Biologie vorgelegt von Merle Erpenbeck Matrikelnummer: 5896 Betreuer:

Mehr

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein:

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: 1 Aufgabe 8.1 (P) (2, 3)-Baum a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: Zeichnen Sie, was in jedem Schritt passiert. b) Löschen Sie die Zahlen 65, 70 und 100 aus folgendem

Mehr

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren.

Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Beweis: 1. 2. Seien u, v V, u v. Da G zusammenhängend ist, muss mindestens ein Pfad zwischen u und v existieren. Widerspruchsannahme: Es gibt zwei verschiedene Pfade zwischen u und v. Dann gibt es einen

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Dr. Hanjo Täubig Lehrstuhl für Eziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester 2007/08

Mehr

3.3 Optimale binäre Suchbäume

3.3 Optimale binäre Suchbäume 3.3 Optimale binäre Suchbäume Problem 3.3.1. Sei S eine Menge von Schlüsseln aus einem endlichen, linear geordneten Universum U, S = {a 1,,...,a n } U und S = n N. Wir wollen S in einem binären Suchbaum

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2011 Olga Holtz MA 378 Sprechstunde Fr 14-16 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 12-14 und nv jokar@mathtu-berlinde Kapitel

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Algorithmen und Datenstrukturen in der Bioinformatik Zweites Übungsblatt WS 05/06 Musterlösung

Algorithmen und Datenstrukturen in der Bioinformatik Zweites Übungsblatt WS 05/06 Musterlösung Johanna Ploog, Konstantin Clemens Freie Universität Berlin Institut für Mathematik II Arbeitsgruppe für Mathematik in den Lebenswissenschaften Algorithmen und Datenstrukturen in der Bioinformatik Zweites

Mehr

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Lernmodul 7 Algorithmus von Dijkstra

Lernmodul 7 Algorithmus von Dijkstra Folie 1 von 30 Lernmodul 7 Algorithmus von Dijkstra Quelle: http://www.map24.de Folie 2 von 30 Algorithmus von Dijkstra Übersicht Kürzester Weg von A nach B in einem Graphen Problemstellung: Suche einer

Mehr

Zentrum für Bioinformatik. Übung 4: Revision. Beispielfragen zur Klausur im Modul Angewandte Bioinformatik (erste Semesterhälfte)

Zentrum für Bioinformatik. Übung 4: Revision. Beispielfragen zur Klausur im Modul Angewandte Bioinformatik (erste Semesterhälfte) Andrew Torda Björn Hansen Iryna Bondarenko Zentrum für Bioinformatik Übung zur Vorlesung Angewandte Bioinformatik Sommersemester 2014 20./23.06.2014 Übung 4: Revision Beispielfragen zur Klausur im Modul

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 02.07.2015 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form)

bzw. die Entscheidugen anderer Spieler (teilweise) beobachten Erweitert das Analysespektrum erheblich Beschreibung des Spiels (extensive Form) 1 KAP 9. Dynamische Spiele Bisher: alle Spieler ziehen simultan bzw. können Aktionen der Gegenspieler nicht beobachten Nun: Dynamische Spiele Spieler können nacheinander ziehen bzw. die Entscheidugen anderer

Mehr

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen 186.172 Algorithmen und Datenstrukturen 1 VL 4.0 Übungsblatt 4 für die Übung

Mehr

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47

Graphalgorithmen 2. Dominik Paulus Dominik Paulus Graphalgorithmen / 47 Graphalgorithmen Dominik Paulus.0.01 Dominik Paulus Graphalgorithmen.0.01 1 / 7 1 Spannbäume Kruskal Prim Edmonds/Chu-Liu Datenstrukturen Fibonacci-Heap Union/Find Kürzeste Pfade Dijkstra Bellman-Ford

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 7 und 8: Euler- und Hamilton-Graphen Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 17. April 2018 1/96 WIEDERHOLUNG Eulersche

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Klammersprache Definiere

Klammersprache Definiere Klammersprache w=w 1...w n {(,)}* heißt korrekt geklammert, falls die Anzahl ( ist gleich der Anzahl ). in jedem Anfangsstück w 1,...,w i (i n) ist die Anzahl ( nicht kleiner als die Anzahl ). Definiere

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2017/18 Pro f. Dr. Sán do r Fe k e te 1 Binärer Suchbaum Außerdem wichtig: Struktur der Schlüsselwerte! 2 Ordnungsstruktur Linker

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

TreeTOPS. Ein Phylogenetik-Icebreaker Spiel. Lehrer- Handbuch. ELLS Europäisches Lernlabor für die Lebenswissenschaften

TreeTOPS. Ein Phylogenetik-Icebreaker Spiel. Lehrer- Handbuch. ELLS Europäisches Lernlabor für die Lebenswissenschaften TreeTOPS Ein Phylogenetik-Icebreaker Spiel Lehrer- Handbuch ELLS Europäisches Lernlabor für die Lebenswissenschaften 1 Übergeordnetes Ziel Das übergeordnete Ziel des Spieles ist es, die Spieler in das

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Graphen (1) Darstellung Traversierung Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 441 Generalisierung von Bäumen Verallgemeinerung (von Listen zu Graphen)

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Wiederholung. Divide & Conquer Strategie

Wiederholung. Divide & Conquer Strategie Wiederholung Divide & Conquer Strategie Binäre Suche O(log n) Rekursives Suchen im linken oder rechten Teilintervall Insertion-Sort O(n 2 ) Rekursives Sortieren von a[1..n-1], a[n] Einfügen von a[n] in

Mehr

Übungsaufgaben zur Einführung in die Bioinformatik - Lösungen

Übungsaufgaben zur Einführung in die Bioinformatik - Lösungen 18.01.2013 Prof. P. Güntert 1 Vorlesung BPC I: Aspekte der Thermodynamik in der Strukturbiologie Übungsaufgaben zur Einführung in die Bioinformatik - Lösungen 1. Hamming und Levenshtein Distanzen a) Was

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik - SS 0 Bäume Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

Polynome und ihre Nullstellen

Polynome und ihre Nullstellen Polynome und ihre Nullstellen 29. Juli 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Explizite Berechnung der Nullstellen 2.1 Polynome vom Grad 0............................. 2.2 Polynome vom Grad 1.............................

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7

Algo&Komp. - Wichtige Begriffe Mattia Bergomi Woche 6 7 1 Kürzeste Pfade Woche 6 7 Hier arbeiten wir mit gewichteten Graphen, d.h. Graphen, deren Kanten mit einer Zahl gewichtet werden. Wir bezeichnen die Gewichtsfunktion mit l : E R. Wir wollen einen kürzesten

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...)

Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Proseminar Kodierverfahren bei Dr. Ulrich Tamm Sommersemester 2003 Thema: Codierung von Bäumen (Prüfer Codes...) Inhalt: Einleitung, Begriffe Baumtypen und deren Kodierung Binäre Bäume Mehrwegbäume Prüfer

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Welche Alignmentmethoden haben Sie bisher kennengelernt?

Welche Alignmentmethoden haben Sie bisher kennengelernt? Welche Alignmentmethoden haben Sie bisher kennengelernt? Was heißt optimal? Optimal = die wenigsten Mutationen. Sequenzen bestehen aus Elementen (z.b. Aminosäuren oder Nukleotide). Edit Distanzen sind

Mehr

5 Interpolation und Approximation

5 Interpolation und Approximation 5 Interpolation und Approximation Problemstellung: Es soll eine Funktion f(x) approximiert werden, von der die Funktionswerte nur an diskreten Stellen bekannt sind. 5. Das Interpolationspolynom y y = P(x)

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Fehlertolerante Mustersuche: Distanz- und Ähnlichkeitsmaße Sven Rahmann Genominformatik Universitätsklinikum Essen Universität Duisburg-Essen Universitätsallianz Ruhr Einführung

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Lerneinheit 3: Greedy Algorithmen Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2016 10.5.2016 Einleitung Einleitung Diese Lerneinheit

Mehr

Bayesianische Netzwerke - Lernen und Inferenz

Bayesianische Netzwerke - Lernen und Inferenz Bayesianische Netzwerke - Lernen und Inferenz Manuela Hummel 9. Mai 2003 Gliederung 1. Allgemeines 2. Bayesianische Netzwerke zur Auswertung von Genexpressionsdaten 3. Automatische Modellselektion 4. Beispiel

Mehr

Algorithmen und Datenstrukturen (Informatik II) SS Klausur

Algorithmen und Datenstrukturen (Informatik II) SS Klausur Lehrstuhl für Algorith. und Datenstrukturen Prof. Dr. Hannah Bast Axel Lehmann Algorithmen und Datenstrukturen (Informatik II) SS 2013 http://ad-wiki.informatik.uni-freiburg.de/teaching Klausur Mittwoch

Mehr

Einführung in die Angewandte Bioinformatik: Multiples Alignment und Phylogenetik

Einführung in die Angewandte Bioinformatik: Multiples Alignment und Phylogenetik Einführung in die Angewandte Bioinformatik: Multiples Alignment und Phylogenetik 04.06.2009 Prof. Dr. Sven Rahmann 1 Bisher: Paarweise Alignments Optimales Alignment: Alignment mit höchstem Score unter

Mehr

Minimalpolynome und Implikanten

Minimalpolynome und Implikanten Kapitel 3 Minimalpolynome und Implikanten Wir haben bisher gezeigt, daß jede Boolesche Funktion durch einfache Grundfunktionen dargestellt werden kann. Dabei können jedoch sehr lange Ausdrücke enstehen,

Mehr

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener

Seminar: Randomisierte Algorithmen Auswerten von Spielbäumen Nele Küsener Seminar: Randomisierte Algorithmen Auswerten von Sielbäumen Nele Küsener In diesem Vortrag wird die Laufzeit von Las-Vegas-Algorithmen analysiert. Das Ergebnis ist eine obere und eine untere Schranke für

Mehr

TU München. Hauptseminar: WS 2002 / Einführung in Suffix - Bäume

TU München. Hauptseminar: WS 2002 / Einführung in Suffix - Bäume TU München Hauptseminar: WS 2002 / 2003 Einführung in Suffix - Bäume Bearbeiterin: Shasha Meng Betreuerin: Barbara König Inhalt 1. Einleitung 1.1 Motivation 1.2 Eine kurze Geschichte 2. Tries 2.1 Basisdefinition

Mehr

Very simple methods for all pairs network flow analysis

Very simple methods for all pairs network flow analysis Very simple methods for all pairs network flow analysis obias Ludes 0.0.0. Einführung Um den maximalen Flusswert zwischen allen Knoten eines ungerichteten Graphen zu berechnen sind nach Gomory und Hu nur

Mehr

Algorithmische Bioinformatik 1

Algorithmische Bioinformatik 1 Algorithmische Bioinformatik 1 Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2009 Übersicht Algorithmen

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

Freie Bäume und Wälder

Freie Bäume und Wälder (Martin Dietzfelbinger, Stand 4.6.2011) Freie Bäume und Wälder In dieser Notiz geht es um eine besondere Sorte von (ungerichteten) Graphen, nämlich Bäume. Im Gegensatz zu gerichteten Bäumen nennt man diese

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik lgorithmische ioinformatik istanzbasierte phylogenetische lgorithmen Ulf Leser Wissensmanagement in der ioinformatik Ziele dieser Vorlesung Verständnis von baum-artigen bstandsmaßen Grenzen reduktionistischer

Mehr

Dynamisches Huffman-Verfahren

Dynamisches Huffman-Verfahren Dynamisches Huffman-Verfahren - Adaptive Huffman Coding - von Michael Brückner 1. Einleitung 2. Der Huffman-Algorithmus 3. Übergang zu einem dynamischen Verfahren 4. Der FGK-Algorithmus 5. Überblick über

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 06.11.2006 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

1 DFS-Bäume in ungerichteten Graphen

1 DFS-Bäume in ungerichteten Graphen Praktikum Algorithmen-Entwurf (Teil 3) 31.10.2005 1 1 DFS-Bäume in ungerichteten Graphen Sei ein ungerichteter, zusammenhängender Graph G = (V, E) gegeben. Sei ferner ein Startknoten s V ausgewählt. Startet

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 17. Januar 2012 INSTITUT FÜR THEORETISCHE 0 KIT 18.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

5.2 Rechnen mit Matrizen

5.2 Rechnen mit Matrizen 52 Rechnen mit Matrizen 52 Rechnen mit Matrizen 97 Für Matrizen desselben Typs ist eine Addition erklärt, und zwar durch Addition jeweils entsprechender Einträge Sind genauer A = (a ij ) und B = (b ij

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

Algorithmen für paarweise Sequenz-Alignments. Katharina Hembach

Algorithmen für paarweise Sequenz-Alignments. Katharina Hembach Proseminar Bioinformatik WS 2010/11 Algorithmen für paarweise Sequenz-Alignments Katharina Hembach 06.12.2010 1 Einleitung Paarweise Sequenz-Alignments spielen in der Bioinformatik eine wichtige Rolle.

Mehr

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60

Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Am Dienstag, den 15. Dezember, ist Eulenfest. 1/60 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester

Mehr

Sequenzvergleiche ohne Alignments durch lokales Dekodieren von Sequenzen

Sequenzvergleiche ohne Alignments durch lokales Dekodieren von Sequenzen durch lokales Dekodieren von Sequenzen (16. Juli 2007) Inhalt 1 Grundidee 2 Naiver Algorithmus Definitionen Lokales N-Dekodieren Ermittlung der Distanzmatrix Aussagefähigkeit der Distanzen 3 Verbesserungen

Mehr

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen

6.1 Natürliche Zahlen. 6. Zahlen. 6.1 Natürliche Zahlen 6. Zahlen Vom lieben Gott gemacht Menschenwerk: operativ oder Klassen äquivalenter Mengen oder axiomatisch (Peano 1889) 6. Zahlen GM 6-1 GM 6- Peano sche Axiome der natürlichen Zahlen Definition 6.1.1:

Mehr

Kapitel Andere dynamische Datenstrukturen

Kapitel Andere dynamische Datenstrukturen Institute of Operating Systems and Computer Networks Algorithms Group Kapitel 4.8-4.11 Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2017/2018 Vorlesung#13, 12.12.2017

Mehr

Erkennung der kontextfreien Grammatiken mittels Boolescher Matrixmultiplikation

Erkennung der kontextfreien Grammatiken mittels Boolescher Matrixmultiplikation Erkennung der kontextfreien Grammatiken mittels Boolescher Matrixmultiplikation Valiant-Erkenner Referent: Fedor Uvarov eminar Algorithmen zu kontextfreien Grammatiken Dozenten: Prof Dr. Hofmann, Dr. Leiß

Mehr

Kapitel Andere dynamische Datenstrukturen

Kapitel Andere dynamische Datenstrukturen Institute of Operating Systems and Computer Networks Algorithms Group Kapitel 4.8-4.11 Andere dynamische Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2018/2019 Vorlesung#15, 18.12.2018

Mehr

15. Elementare Graphalgorithmen

15. Elementare Graphalgorithmen Graphen sind eine der wichtigste Modellierungskonzepte der Informatik Graphalgorithmen bilden die Grundlage vieler Algorithmen in der Praxis Zunächst kurze Wiederholung von Graphen. Dann Darstellungen

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 12 Die Lösungshinweise dienen

Mehr

Kapitel III Ringe und Körper

Kapitel III Ringe und Körper Kapitel III Ringe und Körper 1. Definitionen und Beispiele Definition 117 Eine Algebra A = S,,, 0, 1 mit zwei zweistelligen Operatoren und heißt ein Ring, falls R1. S,, 0 eine abelsche Gruppe mit neutralem

Mehr

Ogden s Lemma (T6.4.2)

Ogden s Lemma (T6.4.2) Weiteres Beispiel L={a r b s c t d u r=0 s=t=u} Nahe liegende Vermutung: L nicht kontextfrei. Kann man mit dem Pumping-Lemma nicht zeigen. r=0: Pumpen erzeugt Wort aus L. r>0: Pumpen der a s erzeugt Wort

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 24-6. Sitzung Marcus Georgi tutorium@marcusgeorgi.de 04.12.2009 1 Repräsentation von Graphen im Rechner Adjazenzlisten Adjazenzmatrizen Wegematrizen 2 Erreichbarkeitsrelationen

Mehr

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun

g 1 g = e, (1) (g 1 ) 1 g 1 = e, (2) Unter Verwendung des Assoziativgesetzes ist nach (1), und weil e neutrales Element ist. Nach (2) folgt nun Stefan K. 1.Übungsblatt Algebra I Aufgabe 1 1. zu zeigen: (g 1 ) 1 = g g G, G Gruppe Beweis: Aus dem Gruppenaxiom für das Linksinverse zu g haben wir und für das Linksinverse zu g 1 Unter Verwendung des

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

MafI I: Logik & Diskrete Mathematik (F. Hoffmann) Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob

Mehr

5. Bäume und Minimalgerüste

5. Bäume und Minimalgerüste 5. Bäume und Minimalgerüste Charakterisierung von Minimalgerüsten 5. Bäume und Minimalgerüste Definition 5.1. Es ein G = (V, E) ein zusammenhängender Graph. H = (V,E ) heißt Gerüst von G gdw. wenn H ein

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16 Natürliche Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 Natürliche Bäume 1/16 Bäume Begriffe (1/2) Bäume sind verallgemeinerte Listenstrukturen ein

Mehr

Multiple Alignments. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung

Multiple Alignments. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung Multiple Alignments Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann Webseite zur Vorlesung http://bioinfo.wikidot.com/ Sprechstunde Mo 16-17 in OH14, R214 Sven.Rahmann -at-

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Lösungen zu Kapitel 5

Lösungen zu Kapitel 5 Lösungen zu Kapitel 5 Lösung zu Aufgabe : (a) Es gibt derartige Graphen: (b) Offensichtlich besitzen 0 der Graphen einen solchen Teilgraphen. Lösung zu Aufgabe : Es sei G = (V, E) zusammenhängend und V

Mehr

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele.

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele. 1. Einführung in die Informatik Inhalt 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele Peter Sobe 1 Einführende Beispiele 2. Algorithmen Täglich werden Verarbeitungsvorschriften

Mehr

3 Klassifikation wichtiger Optimierungsprobleme

3 Klassifikation wichtiger Optimierungsprobleme 3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i

Mehr

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018

Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik. Sommersemester 2018 Prüfungsfragen zur Vorlesung Algebra und Diskrete Mathematik Sommersemester 2018 Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper).

Mehr

4. Welchen Zusammenhang gibt es zwischen den Eckengraden und der Anzahl der Kanten eines ungerichteten Graphen?

4. Welchen Zusammenhang gibt es zwischen den Eckengraden und der Anzahl der Kanten eines ungerichteten Graphen? Kapitel 7 Graphentheorie Verständnisfragen Sachfragen 1. Was ist ein ungerichteter Graph? 2. Erläutern Sie den Begriff Adjazenz! 3. Erläutern Sie den Eckengrad in einem Graphen! 4. Welchen Zusammenhang

Mehr