Grundlagen der Programmierung 1 - Teil 3. synchronisation. 500 einzahlen 100 abheben. B := read(a) B := B + 500

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Programmierung 1 - Teil 3. synchronisation. 500 einzahlen 100 abheben. B := read(a) B := B + 500"

Transkript

1 Modul: Programmierung (B-PRG) Grundlagen der Programmierung 1 Teil 3 Prozess-synchronisation synchronisation Prof. Dr. R. Brause Adaptive Systemarchitektur Institut für Informatik Fachbereich Informatik und Mathematik (12) Race conditions Beispiel: Kontoführung Paralleler Zugriff auf globale Variable Parallele Prozesse von vielen Benutzern arbeiten gleichzeitig auf den Daten. Falls gleichzeitig zwei Benutzer auf das gleiche Konto einzahlen möchten, so kann es sein, dass der Kontostand hinterher nicht stimmt. Ein solcher Fehler wird von keinem Kunden toleriert! 15:00 Uhr Konto A= einzahlen 100 abheben B := read(a) 15:01 C := read(a) B := B :02 C := C -100 B write(a) 15:03 15:04 C write(a) Konto A = 200 Eine Fehlbuchung tritt nur auf, wenn Prozess den Prozess überholt ( race condition ) Zeit Folie 2 1

2 Race conditions Beispiel: Warteschlangeneintrag eines PCB Anker B C PointToB PointToC A PointToA PCB(B) PCB(C) PCB(A) Einhängen A Aushängen B (1) Lesen des Ankers: PointToB (1) Lesen des Ankers: PointToB (2) Setzen des NextZeigers:=PointToB (2) Lesen des NextZeigers:PointToC (3) Setzen des Ankers:=PointToA (3) Setzen des Ankers:=PointToC Problem: ( Race conditions : kontextbedingt, nicht-wiederholbare Effekte durch überholende Prozesse) z.b. a) Unterbrechung beim Aushängen von B durch Einhängen von A Prozeß A ist weg! b) Unterbrechung beim Einhängen von A durch Aushängen von B Prozeß B bleibt erhalten! Folie 3 Lösung: Signale und Semaphoren Peterson: Synchronisierung durch Signale (Interesse) Allgemein: Das Semaphor (Signalbarken, Dijkstra 1965) Passieren P(s) waitfor (signal) Aufruf vor krit. Abschnitt, Warten falls besetzt Verlassen V(s) send (signal) Aufruf nach krit. Abschnitt, Aktivieren eines wart. Prozesses Beispiel: paralleles Hochzählen z = 1, 2, 3,... z global Prozeß 1 Prozeß warten P(s) z :=z+1; WriteInteger(z) V(s) freigeben P(s) z :=z+1; WriteInteger(z) V(s) Folie 4 2

3 Implementierung busy wait Software Pseudo-Code initial s=1 def P(s): while s<=0 : Ununterbrechbar! krit. NoOp; Abschnitt s = s-1; Semaphor = Zähler, Problem: def spin locks V(s): können fairness verletzen: Prozesse s = s+1; hoher Prio im spin lock vs. niedr. Prio im krit. Abschnitt Grundlagen der Programmierung Ununterbrechbar 1 - Teil 3! Ununterbrechbar Folie 5 Implementierung Schlafen Software Pseudo-Code Initial: s.value = 1 Datenstruktur def P(s): s.value = s.value-1; if s.value < 0 : einhängen(myid,s.list); sleep; def V(s): if s.value < 0 : PID = aushängen(s.list); wakeup(pid); s.value = s.value +1; class Semaphor : value; list; Problem: Ununterbrechbarer Code nötig! Folie 6 3

4 Lösung: Atomare Aktionen Beispiel: Geldtransaktion Sie überweisen Computerabsturz! Abbuchung 2000 Empfänger-Gutbuchung 2000 Wo ist das Geld? Keine oder erneute Überweisung = Verlust! Forderung: Atomare Aktion Entweder vollständige Transaktion oder gar keine! (bei Abbruch roll back auf vorher definierten Zustand) Folie 7 HW-Implementierung: Atomare Aktionen Interrupts ausschalten (Probleme: timer, power failure, I/O) Atomare Instruktionsfolge z.b. Fetch And Add (fetch and add value) Abfrage der akt. Anzahl def fetchandadd(s, value) : tmp = s; s = tmp + value; return tmp; Test And Set (test and set lock) Abfrage: bin ich erster? def TestAndSet(s) : tmp = s; s = true; return tmp; wird unkritisch nur von einem Prozess zurückgesetzt Folie 8 4

5 Semaphoren: Unix lockf Sperren Dateizugriff P(s) lock file msem_init Semaphorinit. zumspeicherzugriff msem_lock memory Sperren eines Semaphors P(s) msem_unlock Entsperren eines Semaphors V(s) msem_remove Entfernen eines Semaphors semctl semget semop Semaphorkontrolloperationen Prozesse hole Semaphorwert Semaphoroperation Folie 9 Semaphoren: Windows NT Prozesse CreateSemaphore() Erzeugen OpenSemaphore() Initialisieren WaitForSingleObject(Sema,TimeOutVal) P(s) ReleaseSemaphore() V(s) Threads Semaphore = Type CRITICAL_SECTION InitializeCriticalSection(S) EnterCriticalSection(S) LeaveCriticalSection(S) P(s) V(s) Kernprozesse Spin locks: keine Referenzen zu Disk-Speicher, keine traps & syscalls Folie 10 5

6 Semaphoren: Python Class mutex() Methoden test() Datenstruktur mit binärem Semaphor s + Warteschlange Ist s gesetzt? testandset() Setze s atomar. RET: War s ungesetzt? lock(kritab,arg) Setze s und führe KritAb(arg) aus. s gesetzt: KritAb Warteschlange unlock() Setze s zurück. Wenn Warteschlange 0, führe stattdessen ersten KritAb aus und rücke Wartschlange auf. Folie 11 Semaphoren: Java Konstrukt synchronized (<expression>) <statement> Thread wartet, bis <expression> frei ist. Innerhalb eines synchronized-bereichs kann man zusätzlich mit den Methoden wait() auf ein Signal warten, das mit notify() gesendet wird. Folie 12 6

7 Synchronisation von Prozessen Präzedenzgraph A b c B e E d1 C d2 D Implementierung mit Semaphoren PROCESS A: TaskBodyA; V(b); V(c); PROCESS B: P(b); TaskBodyB; V(d1);V(e); PROCESS C: P(c); TaskBodyC; V(d2); PROCESS D: P(d1); P(d2); TaskBodyD; PROCESS E: P(e); TaskBodyE; Globale Variable b, c, d1, d2, e mit 0 initialisieren. Folie 13 Synchronisation von Prozessen Rendez-vous-Konzept (Ada) Warten ohne Pufferung aufeinander Senderprogramm... send(empfänger,msg );... Empfängerprogramm... receive(sender,msg)... Folie 14 7

8 Synchronisation Erzeuger-Verbraucher Naiver Ansatz Initial: used = 0 Erzeuger LOOP produce(item) IF used=n THEN sleep(); putinbuffer(item); used := used+1; IF used=1 THEN wakeup(verbraucher); END LOOP Verbraucher Umschaltung LOOP IF used=0 THEN sleep(); getfrombuffer(item); used := used-1 IF used = N-1 THEN wakeup(erzeuger); consume(item); END LOOP Problem: race condition innerhalb der Flusskontrolle: Bei Umschaltung nach used=0 auf Erzeuger erfolgt wakeup + Pufferfüllung, dann ewiges Schlafen vom Erzeuger und dann auch vom Verbraucher. Folie 15 Synchronisation Erzeuger-Verbraucher Lösung Signal speichern. Aber: unbekannte Prozesszahl...? Semaphore einführen: belegteplätze:=0, freieplätze:=n, mutex:=1 Erzeuger LOOP produce(item) P(freiePlätze); P(mutex); putinbuffer( item); V(mutex); V(belegtePlätze); END LOOP Verbraucher LOOP P(belegtePlätze); P(mutex); getfrombuffer(item); V(mutex); V(freiePlätze); consume(item); END LOOP krit. Abschnittskontrolle + Flusskontrolle durch Semaphore Folie 16 8

9 Prozess- kommunikation Prozeßkommunikation Verbindungsanzahl unicast multicast broadcast jede Art kann jede andere Art ersetzen! Folie 18 9

10 Prozeßkommunikation Verbindungsorientierte Kommunikation openconnection (Adresse) send(message)/ receive(message) closeconnection Feststellen, ob der Empfänger existiert und bereit ist: Aufbau der Verbindung Nachrichtenaustausch; Leeren der Nachrichtenpuffer, Beenden der Verbindung Verbindungslose Kommunikation send (Adresse, Message) / receive(adresse, Message) Folie 19 Prozeßkommunikation: Adressierung Eindeutige Adressierung: Qualifizierter ID mit IP Adresse = Prozeß-ID.RechnerName.Firma.Land Problem: Lösung: z.b hera.rbi.uni-frankfurt.de Prozeß wechselt ID bei Neustart, Aufgabe bleibt logische ID, nicht physische. Beispiel: Drucker Prädikatsadresse: Spezifikationen als Adresse (IF 386-CPU AND Java_installiert AND Drucker) = True: fühle dich angesprochen, sonst nicht. Arbeitsverteilung! Mailbox = Nachrichtenpuffer mit Namen, unabh. vom Prozess Folie 20 10

11 Prozeßkommunikation: Pipes Unix pipe() unidirektionale Kommunikation Programm1 Programm2.. Programm N write() Programm 1 read() Programm 2 Windows NT CreatePipe() Bidirektionale pipes Beliebige Prozesse: named pipes Name den Prozessen vorher bekannt Folie 21 Prozeßkommunikation : Named Pipes Globales Konzept: Named pipe ( Netzwerk/Pfadname ) => LAN-Interprozeß-Kommunikation Unix Named pipe = special device nur IPC auf selbem Rechner, nicht NFS Named pipe = SystemV: STREAM socket pair() / bind() Windows NT CreateNamedPipe() : Objekt im globalen Namensraum, auch NetzPfad IPC = ReadFile() / WriteFile() UNC-Name = \\ComputerName\PIPE\PipeName Lokale pipe: \\.\PIPE\PipeName Kommunikation zu Unix möglich, wenn LAN-Manager für Unix LM/U installiert. Folie 22 11

12 Prozeßkommunikation: Signale Problem: Synchrones Warten blockiert Prozesse Abhilfe: Benachrichtigung durch asynchrone Signale (Software-Interrupts) Aufsetzen der Reaktion auf ein Signal, z.b. in UNIX mit sigaction(isr) Abarbeiten des Hauptprogramms Bei Signaleintritt: Abarbeiten der angegebenen ISR Weiterarbeiten im Hauptprogramm Folie 23 12

Prozess-synchronisationsynchronisation

Prozess-synchronisationsynchronisation Race conditions Modul: Programmierung (B-PRG) Grundlagen der Programmierung 1 Teil 3 Prozess-synchronisationsynchronisation Prof. Dr. R. Brause Adaptive Systemarchitektur Institut für Informatik Fachbereich

Mehr

Modul B-PRG Grundlagen der Programmierung 1

Modul B-PRG Grundlagen der Programmierung 1 Modul B-PRG Grundlagen der Programmierung 1 Teil 3: Betriebssysteme,Dateisysteme,Sicherheit V21: Prozesssynchronisation Prof. Dr. R. Brause Adaptive Systemarchitektur Institut für Informatik Fachbereich

Mehr

Prozesssynchronisation. Inhalt. Vorlesung

Prozesssynchronisation. Inhalt. Vorlesung Vorlesung 20 Prozesssynchronisation Inhalt 1. Race conditions und kritische Abschnitte 1 2. Signale, Semaphore und atomare Aktionen 3 2.1 Atomare Aktionen 4 2.2 Beispiel UNIX 6 2.3 Beispiel Windows NT

Mehr

Prozess- synchro- nisation

Prozess- synchro- nisation Kap. 3 Prozess- synchro- nisation Version vom 06.05.2007 Kap. 3 - Inhalt Kritische Abschnitte Software-Lösungen Semaphore Hardware-Lösungen Synchronisationsprobleme Prozeßkommunikation Verklemmungen Vorgriff

Mehr

Prozess- synchro- nisation

Prozess- synchro- nisation Kap. 3 Prozess- synchro- nisation Version vom 05.10.2009 Kap. 3 - Inhalt Kritische Abschnitte Software-Lösungen Semaphore Hardware-Lösungen Synchronisationsprobleme Prozeßkommunikation Verklemmungen Folie

Mehr

Übung zu Grundlagen der Betriebssysteme. 10. Übung 18.12.2012

Übung zu Grundlagen der Betriebssysteme. 10. Übung 18.12.2012 Übung zu Grundlagen der Betriebssysteme 10. Übung 18.12.2012 Aufgabe 1 a) Was versteht man unter einem kritischen Abschnitt oder kritischen Gebiet (critical area)? b) Welche Aufgabe hat ein Semaphor? c)

Mehr

Betriebssysteme Teil 11: Interprozess-Kommunikation

Betriebssysteme Teil 11: Interprozess-Kommunikation Betriebssysteme Teil 11: Interprozess-Kommunikation 19.12.15 1 Übersicht Grundbegriffe Shared Memory Pipelines Messages Ports Sockets 2 Grundbegriffe Interprocess-Kommunikation = Austausch von Daten über

Mehr

Hans-Georg Eßer, Hochschule München Betriebssysteme I, SS Synchronisation (1) Folie 3

Hans-Georg Eßer, Hochschule München Betriebssysteme I, SS Synchronisation (1) Folie 3 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion

Betriebssysteme. Vorlesung im Herbstsemester 2010 Universität Mannheim. Kapitel 6: Speicherbasierte Prozessinteraktion Betriebssysteme Vorlesung im Herbstsemester 2010 Universität Mannheim Kapitel 6: Speicherbasierte Prozessinteraktion Felix C. Freiling Lehrstuhl für Praktische Informatik 1 Universität Mannheim Vorlesung

Mehr

Multiprozessoren. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

Multiprozessoren. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Multiprozessoren Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Multiprozessoren 1/29 2011-06-16 Multiprozessoren Leistungsfähigkeit

Mehr

Inhaltsverzeichnis. Carsten Vogt. Nebenläufige Programmierung. Ein Arbeitsbuch mit UNIX/Linux und Java ISBN:

Inhaltsverzeichnis. Carsten Vogt. Nebenläufige Programmierung. Ein Arbeitsbuch mit UNIX/Linux und Java ISBN: Inhaltsverzeichnis Carsten Vogt Nebenläufige Programmierung Ein Arbeitsbuch mit UNIX/Linux und Java ISBN: 978-3-446-42755-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42755-6

Mehr

Betriebssysteme. Koordination und Synchronisation: Kritische Abschnitte, Sperren, Semaphore und Mutexe. Sommersemester 2014 Prof. Dr.

Betriebssysteme. Koordination und Synchronisation: Kritische Abschnitte, Sperren, Semaphore und Mutexe. Sommersemester 2014 Prof. Dr. Koordination und Synchronisation: Kritische Abschnitte, Sperren, Semaphore und Mutexe Sommersemester 2014 Prof. Dr. Peter Mandl Prof. Dr. Peter Mandl Seite 1 Gesamtüberblick 1. Einführung in 2. Betriebssystemarchitekturen

Mehr

Prozeßverwaltung. die Prozeßtabelle enthält die Prozeßleitblöcke

Prozeßverwaltung. die Prozeßtabelle enthält die Prozeßleitblöcke Prozeßverwaltung Komponente eines Betriebssystems, die für die Zuteilung von Betriebsmitteln an wartende Prozesse zuständig ist alle für die Prozeßverwaltung ( process management ) wichtigen Informationen

Mehr

Client - Server Architektur

Client - Server Architektur Client - Server Architektur The Client-Server Model Literatur: R. Brause Silberschatz et al. SS2001 Prof. H. D. Clausen - unisal 1 Prozess-Kommunikation Kommunikation zwischen Prozessen Prozesse benutzen

Mehr

Hans-Georg Eßer, FH München Betriebssysteme I, WS 2006/07, 2007/01/24 Zusammenfassung (2/2) Folie 2

Hans-Georg Eßer, FH München Betriebssysteme I, WS 2006/07, 2007/01/24 Zusammenfassung (2/2) Folie 2 /home/esser/daten/dozent/folien/bs-esser-24.odp Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep

Mehr

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015

Threads. Foliensatz 8: Threads Folie 1. Hans-Georg Eßer, TH Nürnberg Systemprogrammierung, Sommersemester 2015 Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Betriebssysteme. Kommunikation von Prozessen und Threads. Sommersemester Prof. Dr. Peter Mandl. Seite 1. Prof. Dr. Peter Mandl.

Betriebssysteme. Kommunikation von Prozessen und Threads. Sommersemester Prof. Dr. Peter Mandl. Seite 1. Prof. Dr. Peter Mandl. Kommunikation von Prozessen und Threads Sommersemester 2014 Seite 1 Gesamtüberblick 1. Einführung in 2. Betriebssystemarchitekturen und Betriebsarten 3. Interruptverarbeitung in n 4. Prozesse und Threads

Mehr

Kommunikationsmodelle

Kommunikationsmodelle Kommunikationsmodelle Dr. Victor Pankratius David J. Meder IPD Tichy Lehrstuhl für Programmiersysteme KIT die Kooperation von Forschungszentrum Karlsruhe GmbH und Universität Karlsruhe (TH) Grundlegende

Mehr

A Kompilieren des Kernels... 247. B Lineare Listen in Linux... 251. C Glossar... 257. Interessante WWW-Adressen... 277. Literaturverzeichnis...

A Kompilieren des Kernels... 247. B Lineare Listen in Linux... 251. C Glossar... 257. Interessante WWW-Adressen... 277. Literaturverzeichnis... 1 Einführung................................................ 1 1.1 Was ist ein Betriebssystem?............................... 1 1.1.1 Betriebssystemkern................................ 2 1.1.2 Systemmodule....................................

Mehr

Aufgabenblatt 8 Musterlösung

Aufgabenblatt 8 Musterlösung Prof. Dr. rer. nat. Roland Wismüller Aufgabenblatt 8 Musterlösung Vorlesung Betriebssysteme I Wintersemester 2017/18 Aufgabe 1: Erzeuger-Verbraucher Synchronisation (Bearbeitung in der Übungsstunde) Erzeuger-Verbraucher-Problem:

Mehr

Die Anweisungen zweier Prozesse werden parallel bearbeitet, wenn die Anweisungen unabhängig voneinander zur gleichen Zeit ausgeführt werden.

Die Anweisungen zweier Prozesse werden parallel bearbeitet, wenn die Anweisungen unabhängig voneinander zur gleichen Zeit ausgeführt werden. 7 Parallelität und Nebenläufigkeit Mehrere Prozessen oder Threads Parallelität Die Anweisungen zweier Prozesse werden parallel bearbeitet, wenn die Anweisungen unabhängig voneinander zur gleichen Zeit

Mehr

Betriebssysteme 1 BS1-E SS Prof. Dr.-Ing. Hans-Georg Eßer Fachhochschule Südwestfalen. Foliensatz E: Synchronisation Deadlocks. v1.

Betriebssysteme 1 BS1-E SS Prof. Dr.-Ing. Hans-Georg Eßer Fachhochschule Südwestfalen. Foliensatz E: Synchronisation Deadlocks. v1. BS1-E Betriebssysteme 1 SS 2016 Prof. Dr.-Ing. Hans-Georg Eßer Fachhochschule Südwestfalen Foliensatz E: Synchronisation Deadlocks v1.0, 2016/06/05 05.06.2016 Betriebssysteme 1, SS 2016, Hans-Georg Eßer

Mehr

leave: mov flag, 0 ; 0 in flag speichern: Lock freigeben ret

leave: mov flag, 0 ; 0 in flag speichern: Lock freigeben ret Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Betriebssysteme G: Parallele Prozesse ( Teil C: SpinLock, Semaphore, Monitore)

Betriebssysteme G: Parallele Prozesse ( Teil C: SpinLock, Semaphore, Monitore) Betriebssysteme G: Parallele Prozesse ( Teil C: SpinLock, Semaphore, Monitore) 1 Hardwareunterstützung Uniprozessor-System Verbiete Interrupts während des Aufenthalts in einer CR disable interrupt CR(bzw:

Mehr

Wegweiser. Das Erzeuger-/Verbraucher-Problem. Semaphore. Transaktionen. Botschaften

Wegweiser. Das Erzeuger-/Verbraucher-Problem. Semaphore. Transaktionen. Botschaften Wegweiser Das Erzeuger-/Verbraucher-Problem Semaphore Transaktionen Botschaften Betriebssysteme WS 2013, Threads 75 Beispiele Erzeuger-/Verbraucher-Probleme Betriebsmittelverwaltung Warten auf eine Eingabe

Mehr

Betriebssysteme 1. Einführung (2) Synchronisation: Probleme mit gleichzeitigem Zugriff auf Datenstrukturen Beispiel: Zwei Threads erhöhen einen Zähler

Betriebssysteme 1. Einführung (2) Synchronisation: Probleme mit gleichzeitigem Zugriff auf Datenstrukturen Beispiel: Zwei Threads erhöhen einen Zähler BS1-E Einführung (2) Betriebssysteme 1 SS 2018 Synchronisation: Probleme mit gleichzeitigem Zugriff auf Datenstrukturen Beispiel: Zwei Threads erhöhen einen Zähler Prof. Dr.-Ing. Hans-Georg Eßer Fachhochschule

Mehr

Memory Models Frederik Zipp

Memory Models Frederik Zipp Memory Models Frederik Zipp Seminar: Programmiersprachen für Parallele Programmierung (SS 2010) Fakultät für Informatik - IPD SNELTING LEHRSTUHL PROGRAMMIERPARADIGMEN 1

Mehr

Info B VL 17: Deadlocks

Info B VL 17: Deadlocks Info B VL 17: Deadlocks Objektorientiere Programmierung in Java 2003 Ute Schmid (Vorlesung) Elmar Ludwig (Übung) FB Mathematik/Informatik, Universität Osnabrück Info B VL 17: Deadlocks p.327 Conditional

Mehr

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen)

Betriebssysteme. G: Parallele Prozesse. (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) Betriebssysteme G: Parallele Prozesse (Teil B: Klassische Problemstellungen, Mutual Exclusion, kritische Regionen) 1 Allgemeine Synchronisationsprobleme Wir verstehen ein BS als eine Menge von parallel

Mehr

Info B VL 16: Monitore und Semaphoren

Info B VL 16: Monitore und Semaphoren Info B VL 16: Monitore und Semaphoren Objektorientiere Programmierung in Java 2003 Ute Schmid (Vorlesung) Elmar Ludwig (Übung) FB Mathematik/Informatik, Universität Osnabrück Info B VL 16: Monitore und

Mehr

Modul B-PRG Grundlagen der Programmierung 1

Modul B-PRG Grundlagen der Programmierung 1 Modul B-PRG Grundlagen der Programmierung 1 Teil 3: Betriebssysteme, Dateisysteme,Sicherheit V20: Prozesse Prof. Dr. R. Brause Adaptive Systemarchitektur Institut für Informatik Fachbereich Informatik

Mehr

Betriebssysteme Grundlagen und Konzepte

Betriebssysteme Grundlagen und Konzepte Rüdiger Brause Betriebssysteme Grundlagen und Konzepte Mit 157 Abbildungen Inhaltsverzeichnis 1 Übersicht 1 1.1 Einleitung: Was ist ein Betriebssystem? 1 1.2 Betriebssystemschichten 2 1.3 Schnittstellen

Mehr

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen

Prozeß P1 Prozeß P2. Zur Synchronisation stehen den beiden Prozessen binäre Semaphore und die beiden Funktionen Seite 8 A UFGABE 11 INTERP ROZEßKOMMUNIKATION Das folgende Petrinetz zeigt zwei verkoppelte Prozesse P1 und P2. Die Transitionen a und b beschreiben Aktionen von P1, die Transitionen c und d Aktionen von

Mehr

Kommunikation von Prozessen und Threads

Kommunikation von Prozessen und Threads Kommunikation von Prozessen und Threads Sommersemester 2015 Prof. Dr. Peter Mandl Prof. Dr. Peter Mandl Seite 1 Gesamtüberblick 1. Einführung in Computersysteme 2. Entwicklung von Betriebssystemen 3. Architekturansätze

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 17. JAVA Kommunikation von Threads 1 Motivation

Mehr

C-Code-Fragment Bankautomat. Vorlesung Betriebssysteme I II. Möglicher (typischer) Ablauf. Begriff der Race Condition

C-Code-Fragment Bankautomat. Vorlesung Betriebssysteme I II. Möglicher (typischer) Ablauf. Begriff der Race Condition C-Code-Fragment Bankautomat Vorlesung Betriebssysteme I II Thema 0: Synchronisation Robert Baumgartl 6. März 05 Unterbrechung /* gemeinsam genutzte Variable */ int guthaben = 3000; /* Dublonen */ int abheben

Mehr

Betriebssysteme I SS 2008 Hans-Georg Eßer, Hochschule München Zusammenfassung Seite 1

Betriebssysteme I SS 2008 Hans-Georg Eßer, Hochschule München Zusammenfassung Seite 1 /home/esser/daten/dozent/hs-muenchen-2008/folien/bs-ss2008-esser-14.odp Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]:

Mehr

#define N 5 // Anzahl der Philosophen. while (TRUE) { // Der Philosoph denkt

#define N 5 // Anzahl der Philosophen. while (TRUE) { // Der Philosoph denkt Sep 19 14:20:18 amd64 sshd[20494]: Accepted rsa for esser from ::ffff:87.234.201.207 port 61557 Sep 19 14:27:41 amd64 syslog-ng[7653]: STATS: dropped 0 Sep 20 01:00:01 amd64 /usr/sbin/cron[29278]: (root)

Mehr

Institut fu r Informatik

Institut fu r Informatik Technische Universita t Mu nchen Institut fu r Informatik Lehrstuhl fu r Bioinformatik Einfu hrung in die Programmierung fu r Bioinformatiker Prof. B. Rost, L. Richter WS 2014/15 Aufgabenblatt 11 19.01.2015

Mehr

JJ Prozesse und Nebenläufigkeit

JJ Prozesse und Nebenläufigkeit 1 Wiederholung: Algorithmus von Peterson boolean ready0=false, ready1=false; int turn=0; JJ Prozesse und Nebenläufigkeit (Auszug aus der Vorlesung) while( 1 ) Prozess 0 ready0 = true; turn = 1; while(

Mehr

Interaktionsarten. Zusammenhang. Arten der Interaktion. 7. Kapitel Prozesse im Zusammenspiel: Prozessinteraktion

Interaktionsarten. Zusammenhang. Arten der Interaktion. 7. Kapitel Prozesse im Zusammenspiel: Prozessinteraktion Wintersemester 2016/2017 7. Kapitel Prozesse im Zusammenspiel: Prozessinteraktion Interaktionsarten Prozesse als Teile komplexer Programmsysteme müssen Daten austauschen: sich aufrufen (bzw. beauftragen)

Mehr

Erstes Leser-Schreiber-Problem

Erstes Leser-Schreiber-Problem Erstes Leser-Schreiber-Problem Szenario: mehrere Leser und mehrere Schreiber gemeinsamer Datenbereich Schreiber haben exklusiven Zugriff Leser können parallel zugreifen (natürlich nur, wenn kein Schreiber

Mehr

Betriebssysteme. 4y Springer. Eine kompakte Einführung mit Linux. Albrecht Achilles. Mit 31 Abbildungen

Betriebssysteme. 4y Springer. Eine kompakte Einführung mit Linux. Albrecht Achilles. Mit 31 Abbildungen Albrecht Achilles 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Betriebssysteme Eine kompakte Einführung mit Linux

Mehr

Systeme I: Betriebssysteme Kapitel 5 Nebenläufigkeit und wechselseitiger Ausschluss. Wolfram Burgard

Systeme I: Betriebssysteme Kapitel 5 Nebenläufigkeit und wechselseitiger Ausschluss. Wolfram Burgard Systeme I: Betriebssysteme Kapitel 5 Nebenläufigkeit und wechselseitiger Ausschluss Wolfram Burgard Version 09.11.2016 1 Begrüßung Heute ist Tag der offenen Tür Willkommen allen Schülerinnen und Schülern!

Mehr

Rainer Oechsle. Parallele und verteilte. Anwendungen in Java. 4., neu bearbeitete Auflage. Mit 165 Listings, 5 Tabellen und 71 HANSER

Rainer Oechsle. Parallele und verteilte. Anwendungen in Java. 4., neu bearbeitete Auflage. Mit 165 Listings, 5 Tabellen und 71 HANSER Rainer Oechsle Parallele und verteilte Anwendungen in Java 4., neu bearbeitete Auflage Mit 165 Listings, 5 Tabellen und 71 Bildern HANSER Inhalt 1 Einleitung 15 1.1 Parallelität, Nebenläufigkeit und Verteilung

Mehr

Betriebssysteme - OS. Betriebssysteme

Betriebssysteme - OS. Betriebssysteme Betriebssysteme - OS Prozesskommunikation IPC - Inter Process Communication Prozesssynchronisation Process Synchronization Literatur: R Brause Silberschatz et al SS2001 Prof H D Clausen - unisal 1 Prozess

Mehr

Betriebssysteme Theorie

Betriebssysteme Theorie Betriebssysteme Theorie SS 2011 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz D (05.05.2011) Synchronisation 05.05.2011 Betriebssysteme-Theorie, Hans-Georg Eßer Folie D-1 Einführung (1) Es gibt

Mehr

Klausur am

Klausur am Vorlesung Betriebssysteme I Wintersemester 2004/2005 Fachbereich 12, Elektrotechnik und Informatik Betriebssysteme / verteilte Systeme Prof. Roland Wismüller Klausur am 04.04.2005 Name: Vorname: Matrikelnummer:

Mehr

Grundkurs Betriebssysteme

Grundkurs Betriebssysteme Grundkurs Betriebssysteme Architekturen, Betriebsmittelverwaltung, Synchronisation, Prozesskommunikation von Peter Mandl 3., akt. und erw. Aufl. 2013 Springer Vieweg Wiesbaden 2012 Verlag C.H. Beck im

Mehr

PROG 2: Einführung in die Programmierung für Wirtschaftsinformatiker

PROG 2: Einführung in die Programmierung für Wirtschaftsinformatiker Multithreading PROG 2: Einführung in die Programmierung für Wirtschaftsinformatiker Steffen Helke Technische Universität Berlin Fachgebiet Softwaretechnik 10. Juni 2013 Übersicht Rückblick: Producer-Consumer-Problem

Mehr

Aufgabenblatt 7 Musterlösung

Aufgabenblatt 7 Musterlösung Prof. Dr. rer. nat. Roland Wismüller Aufgabenblatt 7 Musterlösung Vorlesung Betriebssysteme I Wintersemester 2017/18 Aufgabe 1: Steuerung eines Warenautomaten (Bearbeitung zu Hause) Anleitung wie man solche

Mehr

^ Springer Vi eweg. Grundkurs Betriebssysteme. Synchronisation, Prozesskommunikation, Virtualisierung. Architekturen, Betriebsmittelverwaltung,

^ Springer Vi eweg. Grundkurs Betriebssysteme. Synchronisation, Prozesskommunikation, Virtualisierung. Architekturen, Betriebsmittelverwaltung, Peter Mandl Grundkurs Betriebssysteme Architekturen, Betriebsmittelverwaltung, Synchronisation, Prozesskommunikation, Virtualisierung 4. Auflage ^ Springer Vi eweg 1 Einführung 1 1.1 Computersysteme 1

Mehr

Fakultät für Informatik der Technischen Universität München. Nebenläufigkeit. Probleme

Fakultät für Informatik der Technischen Universität München. Nebenläufigkeit. Probleme Nebenläufigkeit Probleme 175 Race Conditions: Probleme Situationen, in denen zwei oder mehrere Threads/Prozesse, die gleichen geteilten Daten lesen oder schreiben und das Resultat davon abhängt, wann genau

Mehr

Prozesse. Prozesse sind Programme. Prozesse können aus Unterprozessen bestehen. Prozesshierarchie Unterprozesse Threads

Prozesse. Prozesse sind Programme. Prozesse können aus Unterprozessen bestehen. Prozesshierarchie Unterprozesse Threads Threads Prozesse, Parallelität, Nebenläufigkeit, Threads, Erzeugung, Ausführung, Kommunikation, Interferenz, Kritischer Bereich, Deadlock, Synchronisation. Prozesse Prozesse sind Programme mehrere Prozesse

Mehr

Systeme I: Betriebssysteme Kapitel 5 Nebenläufigkeit und wechselseitiger Ausschluss. Maren Bennewitz

Systeme I: Betriebssysteme Kapitel 5 Nebenläufigkeit und wechselseitiger Ausschluss. Maren Bennewitz Systeme I: Betriebssysteme Kapitel 5 Nebenläufigkeit und wechselseitiger Ausschluss Maren Bennewitz Version 18.12.2013 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung,

Mehr

2.3 Prozessverwaltung

2.3 Prozessverwaltung Realisierung eines Semaphors: Einem Semaphor liegt genau genommen die Datenstruktur Tupel zugrunde Speziell speichert ein Semaphor zwei Informationen: Der Wert des Semaphors (0 oder 1 bei einem binären

Mehr

Domänenmodell: Fadenkommunikation und -synchronisation

Domänenmodell: Fadenkommunikation und -synchronisation Domänenmodell: Fadenkommunikation und -synchronisation Alexander Humphreys, Reinhard Rösch, Fabian Scheler 15. Mai 2003 Inhaltsverzeichnis 1 Domänendefinition 1 2 Domänenlexikon 1 3 Konzeptmodelle 4 4

Mehr

Vorlesung Betriebssysteme II

Vorlesung Betriebssysteme II 1 / 15 Vorlesung Betriebssysteme II Thema 3: IPC Robert Baumgartl 20. April 2015 2 / 15 Message Passing (Nachrichtenaustausch) Prinzip 2 grundlegende Operationen: send(), receive() notwendig, wenn kein

Mehr

Nebenläufige Programme mit Python

Nebenläufige Programme mit Python Nebenläufige Programme mit Python PyCon DE 2012 Stefan Schwarzer, SSchwarzer.com info@sschwarzer.com Leipzig, Deutschland, 2012-10-30 Nebenläufige Programme mit Python Stefan Schwarzer, info@sschwarzer.com

Mehr

Tafelübung zu BSRvS 1 2. Prozesssynchronisation

Tafelübung zu BSRvS 1 2. Prozesssynchronisation Tafelübung zu BSRvS 1 2. Prozesssynchronisation Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/

Mehr

Verteilte Systeme. Nebenläufigkeit. Prof. Dr. Oliver Haase

Verteilte Systeme. Nebenläufigkeit. Prof. Dr. Oliver Haase Verteilte Systeme Nebenläufigkeit Prof. Dr. Oliver Haase 1 Arten der Nebenläufigkeit 1-Prozessor(kern)-System quasiparallele Ausführung erhöht Interaktivität durch Umschalten zwischen Threads kann Parallelitätsgrad

Mehr

Single- und Multitasking

Single- und Multitasking Single- und Multitasking Peter B. Ladkin ladkin@rvs.uni-bielefeld.de Peter B. Ladkin Command Interpreter (ComInt) läuft wartet auf Tastatur-Eingabe "liest" (parst) die Eingabe (für Prog-Name) Macht "Lookup"

Mehr

Betriebssysteme (BTS)

Betriebssysteme (BTS) 13.Vorlesung Betriebssysteme (BTS) Christian Baun cray@unix-ag.uni-kl.de Hochschule Mannheim Fakultät für Informatik Institut für Betriebssysteme 31.5.2007 Wiederholung vom letzten Mal Deadlocks und Verhungern

Mehr

Speicherbasierte Kommunikation (T) Realisierung von Semaphoren (T) Shared Memory (P) Synchronisation mittels Semaphoren (P)

Speicherbasierte Kommunikation (T) Realisierung von Semaphoren (T) Shared Memory (P) Synchronisation mittels Semaphoren (P) Systempraktikum im Wintersemester 2009/2010 (LMU): Vorlesung vom 26.11. Foliensatz 5 Speicherbasierte Kommunikation (T) Realisierung von Semaphoren (T) Shared Memory (P) Synchronisation mittels Semaphoren

Mehr

Threads. Netzwerk - Programmierung. Alexander Sczyrba Jan Krüger

Threads. Netzwerk - Programmierung. Alexander Sczyrba Jan Krüger Netzwerk - Programmierung Threads Alexander Sczyrba asczyrba@cebitec.uni-bielefeld.de Jan Krüger jkrueger@cebitec.uni-bielefeld.de Übersicht Probleme mit fork Threads Perl threads API Shared Data Mutexes

Mehr

Inhaltsverzeichnis Übersicht Prozesse

Inhaltsverzeichnis Übersicht Prozesse 1 Übersicht... 1 1.1 Einleitung: Was ist ein Betriebssystem?... 1 1.2 Betriebssystemschichten... 2 1.3 Schnittstellen und virtuelle Maschinen... 3 1.4 Betriebssystemaufbau... 5 1.4.1 Systemaufrufe... 6

Mehr

Lösung von Übungsblatt 10. (Kommunikation von Prozessen)

Lösung von Übungsblatt 10. (Kommunikation von Prozessen) Lösung von Übungsblatt 10 Aufgabe 1 (Kommunikation von Prozessen) 1. Was ist bei Interprozesskommunikation über gemeinsame Speichersegmente (Shared Memory) zu beachten? Die Prozesse müssen die Zugriffe

Mehr

Monitore. Klicken bearbeiten

Monitore. Klicken bearbeiten Sascha Kretzschmann Institut für Informatik Monitore Formatvorlage und deren Umsetzung des Untertitelmasters durch Klicken bearbeiten Inhalt 1. Monitore und Concurrent Pascal 1.1 Warum Monitore? 1.2 Monitordefinition

Mehr

parallele Prozesse auf sequenziellen Prozessoren Ein Process ist ein typisches Programm, mit eigenem Addressraum im Speicher.

parallele Prozesse auf sequenziellen Prozessoren Ein Process ist ein typisches Programm, mit eigenem Addressraum im Speicher. Threads parallele Prozesse auf sequenziellen Prozessoren Prozesse und Threads Es gibt zwei unterschiedliche Programme: Ein Process ist ein typisches Programm, mit eigenem Addressraum im Speicher. Ein Thread

Mehr

Thread-Synchronisation in in Java. Threads Wechselseitiger Ausschluss Bedingte Synchronisation Beispiel: Warteschlangen

Thread-Synchronisation in in Java. Threads Wechselseitiger Ausschluss Bedingte Synchronisation Beispiel: Warteschlangen Thread-Synchronisation in in Java Threads Wechselseitiger Ausschluss Bedingte Synchronisation Beispiel: Warteschlangen Die Klasse Thread Die Die Klasse Thread gehört zur zur Standardbibliothek von von

Mehr

Inhaltsverzeichnis XII

Inhaltsverzeichnis XII 1 Einführung... 1 1.1 Computersysteme... 1 1.1.1 Einführung... 2 1.1.2 Aufgabe von Betriebssystemen... 3 1.1.3 Grundlegende Hardwaremodelle... 3 1.1.4 CPU-Registersatz... 7 1.1.5 Multicore-Prozessoren

Mehr

Synchronisation und Kommunikation über Nachrichten

Synchronisation und Kommunikation über Nachrichten Synchronisation und Kommunikation über Nachrichten meist bei verteiltem Speicher, kein gemeinsamer Speicher -> keine globalen Variablen keine zu schützenden Datenbereiche Kommunikation über Kanäle und

Mehr

Architektur Verteilter Systeme Teil 6: Interprozess-Kommunikation

Architektur Verteilter Systeme Teil 6: Interprozess-Kommunikation Architektur Verteilter Systeme Teil 6: Interprozess-Kommunikation 09.05.15 1 Literatur [6-1] http://php.net/manual/de/book.sockets.php [6-2] http://de.wikipedia.org/wiki/socket_(software) [6-3] http://php.net/manual/de/book.network.php

Mehr

Heap vs. Stack vs. statisch. 6 Speicherorganisation. Beispiel Statische Variablen. Statische Variablen

Heap vs. Stack vs. statisch. 6 Speicherorganisation. Beispiel Statische Variablen. Statische Variablen Heap vs. vs. statisch Der Speicher des Programms ist in verschiedene Speicherbereiche untergliedert Speicherbereiche, die den eigentlichen Programmcode und den Code der Laufzeitbibliothek enthalten; einen

Mehr

Erzeuger-Verbraucher-Problem

Erzeuger-Verbraucher-Problem Erzeuger-Verbraucher-Problem Hier: Puffer der Größe 1, Erzeuger, Verbraucher Zwei Semaphore werden eingesetzt, um zwischen Threads "Ereignisse zu melden" Man kann Semaphore auch verwenden, um Ereignisse

Mehr

Heap vs. Stack vs. statisch. 6 Speicherorganisation. Beispiel Statische Variablen. Statische Variablen

Heap vs. Stack vs. statisch. 6 Speicherorganisation. Beispiel Statische Variablen. Statische Variablen Heap vs. vs. statisch Der Speicher des Programms ist in verschiedene Speicherbereiche untergliedert Speicherbereiche, die den eigentlichen Programmcode und den Code der Laufzeitbibliothek enthalten; einen

Mehr

Prozesszustände (1a)

Prozesszustände (1a) Prozesszustände (1a) NOT EXISTING DELETED CREATED Meta-Zustand (Theoretische Bedeutung) Prozesszustände Multiuser Umfeld (1c) Hintergrund-Prozess - der Prozess startet im Hintergrund - my-commandbin &

Mehr

Leser-Schreiber-Realisierung mit Semaphoren

Leser-Schreiber-Realisierung mit Semaphoren Leser-Schreiber-Realisierung mit Semaphoren Reader: down(semwriter); down(semcounter); rcounter++; up(semwriter); read(); down(semcounter); rcounter--; Writer: Problem: down(semwriter); Busy Waiting siehe

Mehr

Spezifikation von Kommunikationssystemen

Spezifikation von Kommunikationssystemen 1 / 22 Spezifikation von Kommunikationssystemen 6. Basiskonstrukte von SDL Prof. Jochen Seitz Fachgebiet Kommunikationsnetze 3. Mai 2018 2 / 22 Übersicht 1 Darstellung eines Prozesses 2 Zeit in SDL 3 Variablen

Mehr

Klausur zur Vorlesung Grundlagen der Betriebssysteme

Klausur zur Vorlesung Grundlagen der Betriebssysteme Prof. Dr. L. Wegner Dipl.-Math. K. Schweinsberg Klausur zur Vorlesung Grundlagen der Betriebssysteme 19.2.2004 Name:... Vorname:... Matrikelnr.:... Studiengang:... Hinweise: Bearbeitungszeit 2 Stunden.

Mehr

Rüdiger Brause. Betriebssysteme. Grundlagen und Konzepte. Dritte, überarbeitete Auflage Mit 170 Abbildungen. Springer

Rüdiger Brause. Betriebssysteme. Grundlagen und Konzepte. Dritte, überarbeitete Auflage Mit 170 Abbildungen. Springer Rüdiger Brause Betriebssysteme Grundlagen und Konzepte Dritte, überarbeitete Auflage Mit 170 Abbildungen Springer In hal tsverzei c h n is 1 Übersicht...... 1 1.1 Einleitung: Was ist ein Betriebssystem?...

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): Semaphor, Monitor, Deadlocks, Re-Entrance

Rechnerarchitektur und Betriebssysteme (CS201): Semaphor, Monitor, Deadlocks, Re-Entrance Rechnerarchitektur und Betriebssysteme (CS201): Semaphor, Monitor, Deadlocks, Re-Entrance 5. November 2013 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität Basel Repetition

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung Ausnahmebehandlung und Nebenläufigkeit 9. Vorlesung am 15. Dezember 2010 Ausnahmebehandlung in Java class A { void foo() throws Help, SyntaxError {... class B extends A

Mehr

Java Concurrency Utilities

Java Concurrency Utilities Java Concurrency Utilities Java unterstützt seit Java 1.0 Multithreading Java unterstützt das Monitorkonzept mittels der Schlüsselworte synchronized und volatile sowie den java.lang.object Methoden wait(),

Mehr

Was machen wir heute? Betriebssysteme Tutorium 3. Organisatorisches. Prozesskontrollblock (PCB) Programmieraufgaben. Frage 3.1.a

Was machen wir heute? Betriebssysteme Tutorium 3. Organisatorisches. Prozesskontrollblock (PCB) Programmieraufgaben. Frage 3.1.a Was machen wir heute? Betriebssysteme Tutorium 3 Philipp Kirchhofer philipp.kirchhofer@student.kit.edu http://www.stud.uni-karlsruhe.de/~uxbtt/ Lehrstuhl Systemarchitektur Universität Karlsruhe (TH) 1

Mehr

Musterlösung zur KLAUSUR

Musterlösung zur KLAUSUR Johann Wolfgang Goethe-Universität Frankfurt am Main FB 15 Institut für Informatik Praktische Informatik PD Dr. R. Brause Musterlösung zur KLAUSUR zur Vorlesung Betriebssysteme I WS 2003/04 Name Vorname

Mehr

Nebenläufigkeit mit Java

Nebenläufigkeit mit Java Nebenläufigkeit mit Java Einheit 03: Synchronisation Lorenz Schauer Lehrstuhl für Mobile und Verteilte Systeme Heutige Agenda Synchronisation von Threads Locks Java Monitor-Konzept Lock Freigabe Zusammenspiel

Mehr

Nebenläufige Programmierung in Java: Threads

Nebenläufige Programmierung in Java: Threads Nebenläufige Programmierung in Java: Threads Wahlpflicht: Fortgeschrittene Programmierung in Java Jan Henke HAW Hamburg 10. Juni 2011 J. Henke (HAW) Threads 10. Juni 2011 1 / 18 Gliederung 1 Grundlagen

Mehr

6 Speicherorganisation

6 Speicherorganisation Der Speicher des Programms ist in verschiedene Speicherbereiche untergliedert Speicherbereiche, die den eigentlichen Programmcode und den Code der Laufzeitbibliothek enthalten; einen Speicherbereich für

Mehr

Betriebssysteme BS-H WS 2014/15. Hans-Georg Eßer. Foliensatz H: Zusammenfassung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/01/10

Betriebssysteme BS-H WS 2014/15. Hans-Georg Eßer. Foliensatz H: Zusammenfassung. Dipl.-Math., Dipl.-Inform. v1.0, 2015/01/10 BS-H Betriebssysteme WS 2014/15 Hans-Georg Eßer Dipl.-Math., Dipl.-Inform. Foliensatz H: Zusammenfassung v1.0, 2015/01/10 10.01.2015 Betriebssysteme, WS 2014/15, Hans-Georg Eßer Folie H-1 Übersicht: BS

Mehr

Threads Einführung. Zustände von Threads

Threads Einführung. Zustände von Threads Threads Einführung Parallelität : Zerlegung von Problemstellungen in Teilaufgaben, die parallelel ausgeführt werden können (einfachere Strukturen, eventuell schneller, Voraussetzung für Mehrprozessorarchitekturen)

Mehr

Verbessertes Konzept: Monitore

Verbessertes Konzept: Monitore Verbessertes Konzept: Monitore Ein Nachteil von Semaphoren ist die Notwendigkeit zur expliziten Anforderung P und Freigabe V des kritischen Bereiches durch den Programmierer Vergißt der Entwickler z.b.

Mehr

Parallele Prozesse. Prozeß wartet

Parallele Prozesse. Prozeß wartet Parallele Prozesse B-66 Prozeß: Ausführung eines Programmes in seinem Adressraum (zugeordneter Speicher) Parallele Prozesse: gleichzeitig auf mehreren Prozessoren laufende Prozesse p1 p2 verzahnte Prozesse:

Mehr

Homogene Multi-Core-Prozessor-Architekturen

Homogene Multi-Core-Prozessor-Architekturen Homogene Multi-Core-Prozessor-Architekturen Praktikum Parallele Rechnerarchitekturen Stefan Potyra Lehrstuhl für Informatik 3 (Rechnerarchitektur) Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2009

Mehr

9. Vorlesung Betriebssysteme

9. Vorlesung Betriebssysteme Dr. Christian Baun 9. Vorlesung Betriebssysteme Hochschule Mannheim WS1213 1/39 9. Vorlesung Betriebssysteme Dr. Christian Baun Hochschule Mannheim Fakultät für Informatik wolkenrechnen@gmail.com Dr. Christian

Mehr

Tafelübung zu BSRvS 1 3. Kreuzung

Tafelübung zu BSRvS 1 3. Kreuzung Tafelübung zu BSRvS 1 3. Kreuzung Olaf Spinczyk Arbeitsgruppe Eingebettete Systemsoftware Lehrstuhl für Informatik 12 TU Dortmund olaf.spinczyk@tu-dortmund.de http://ess.cs.uni-dortmund.de/~os/ http://ess.cs.tu-dortmund.de/de/teaching/ss2009/bsrvs1/

Mehr

Aufbau eines modernen Betriebssystems (Windows NT 5.0)

Aufbau eines modernen Betriebssystems (Windows NT 5.0) Aufbau eines modernen Betriebssystems (Windows NT 5.0) Moritz Mühlenthaler 14.6.2004 Proseminar KVBK Gliederung 1.Das Designproblem a) Überblick b) Design Goals c) Möglichkeiten der Strukturierung 2. Umsetzung

Mehr