Literatur. ITSec SS 2017 Teil 12/Symmetrische Verschlüsselung

Größe: px
Ab Seite anzeigen:

Download "Literatur. ITSec SS 2017 Teil 12/Symmetrische Verschlüsselung"

Transkript

1 Literatur [12-1] Schäfer, Günter: Netzsicherheit. dpunkt, 2003 [12-2] Stallings, William: Sicherheit im Internet. Addison-Wesley, 2001 [12-3] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [12-4] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [12-5] Schneier, Bruce: Angewandte Kryptographie. Addison-Wesley [12-6] Freiermuth, Karin; Hromkovic, Juraj; Keller, Lucia; Steffen, Björn: Einführung in die Kryptologie. Vieweg+Teubner, 2010 [12-7] Buchmann, Johannes: Einführung in die Kryptographie. 5. Auflage, Springer, 2010 [12-8] Burnett, Steve; Paine, Stephen: Kryptographie. RSA Security s Official Guide. RSA Press, mitp, 2001 [12-9] enthält Vorgaben für das 3DES-Verfahren 2

2 Übersicht Gedanken zur Brute Force-Methode Perfekte Sicherheit One-Time-Pad Meet in the Middle Betriebsarten von Blockchiffren Stromchiffren RC4 SPRITZ 3 Brute Force Angriff ein Gedankenspiel I Schlüssellänge [bit] Anzahl möglicher Schlüssel Zeitbedarf 10 6 Entschl./s Zeitbedarf Entschl./s 32 4,3 * ,8 Min. 42*10-3 s 56 7,2 * Jahre 8 Tage 128 3,4 * ,4*10 24 Jahre Jahre Hinweise Mit der Technologie Mitte der 90er Jahre sind in Software ca DES- Entschlüsselungen pro Sekunde möglich, also 2*10 5 pro Sekunde. Heute wahrscheinlich: 10 6 pro Sekunde EFF-Rechner Deep Crack (1998): 9*10 10 pro Sekunde, Kosten ca $ Siehe: Durch Spezialhardware (Kosten ca EUR) soll der Schlüsselraum von 2 56 in ca. 6 Tagen durchlaufen werden können: 13*10 10 Entschlüsselungen pro Sekunde. 4

3 Brute Force Angriff ein Gedankenspiel II Nun realisieren wir einen Ciphertext-Only-Angriff, also einem Angriff, bei dem nur der verschlüsselte Text bekannt ist. func crack(chiphertext) { for key:= 0..2 n -1 { PlainText:= encrypt(chiphertext,key) if test(plaintext) { return key } } throw Exception("I give up") } Und wie sieht die test()-funktion aus? Woher "weiß" diese Funktion, dass der richtige Wert gefunden wurde? 5 Brute Force Angriff ein Gedankenspiel III Nehmen wir an, dass der richtige Plaintext eine Word-Datei ist, dann würde test() prüfen, ob der vermutete Plaintext überhaupt eine Word-Datei sein kann (Kopf, Struktur etc.). Kann dieser Test 10 6 mal pro Sekunde oder schneller erfolgen? Aber das reicht noch nicht, denn auch wenn formal eine Word- Datei vorliegt, muss diese nicht sinnvoll sein, denn es kann dort so etwas drin stehen: 3g&7r_90hdIk4$ etc. Noch schlimmer ist es, wenn es reiner ASCII-Text ist; dann ist der Test schnell zu implementieren, aber das Problem mit 3g&7r_90hdIk4$ besteht trotzdem. Noch schlimmer: der Ciphertext sei ein verschlüsseltes Passwort. Dann ist jeder ASCII-Text ein Kandidat für den richtigen Plaintext, sofern jedes Zeichen durch die Tastatur eingegeben werden kann. Oder: was nutzt eine geknackte Passwort-Datei mit ca möglichen scheinbar korrekten Zeichenketten? 6

4 Brute Force Angriff ein Gedankenspiel IV Nun realisieren wir einen Known-Plaintext-Angriff, also einem Angriff, bei dem der Plaintext und der ChiperText bekannt sind: func crack(chiphertext,plaintext) { for key:= 0..2 n -1 { Plain:= encrypt(chiphertext,key) if PlainText = Plain { return key } } throw Exception("I give up") } Dieser Test ist leicht in Hardware zu realisieren. Und wie sieht die "test() -Funktion aus? Trivial und sehr schnell. Bei diesem Angriff sollten wir uns wegen schneller Hardware Sorgen machen... 7 Was lernen wir daraus? Ein Angreifer versucht möglichst aus einem Ciphertext-Only-Angriff einen Known-Plaintext-Angriff zu machen und das muss verhindert werden. Liefern Sie daher dem Angreifer möglichst nie ein Paar (Chiphertext, Plaintext) oder gar eine Menge dieser Paare. Leider liefern der Kontext und weitere öffentliche Informationen genügend Hinweise: Struktur/Aufbau von Dateien oder Dateisysteme (Menschliche) Sprache, schriftliche Floskeln Protokollaufbau (Bitfelder) Bilder (Struktur der Dateien) Auch kann der Chiphertext selbst eine Quelle von Hinweisen sein, z.b. Größere gleiche Blöcke 8

5 Perfekte Sicherheit (Shannon) P Menge der möglichen Klartexte (plain text) C Menge der verschlüsselten Texte (cipher text) Menge der möglichen Schlüssel Ein Verschlüsselungsverfahren heißt perfekt sicher, wenn es nur einen Schlüssel zur Entschlüsselung gibt und wenn die verschlüsselten Texte unabhängig von den Klartexten sind, also dass P(p c) = P(p) mit p ε P und c ε C für alle k ε ist wobei P(p c) die bedingte Wahrscheinlichkeit ist. Das bedeutet aber auch, dass P <= C <= ist wobei die Anzahl der Elemente von bedeutet. 9 One-Time-Pad (Vernam-Chiffre) I Dieses Verfahren ist eines der wenigen, die perfekt sicher sind. Es wird eine Tabelle (Pad) mit wirklich zufälligen Zeichen der Länge L erstellt. Der Klartext hat dieselbe Länge L. Verschlüsselung: Jedes Zeichen des Klartextes wird mit dem korrespondierenden Zeichen der Tabelle verknüpft, z. B. per XOR. Entschlüsselung: Jedes Zeichen des Chiffretextes wird mit dem korrespondierenden Zeichen der Tabelle mit einer inversen Funktion verknüpft, z. B. auch per XOR. 10

6 One-Time-Pad (Vernam-Chiffre) II Vorteile Sehr sicher, wenn wirklich zufällige Kodierungen benutzt werden Im 2.Weltkrieg hatte die Sowjetische Armee Wiederholungen benutzt, so dass einige Texte entschlüsselt werden konnten. Nachteile Unhandlich Beide Seiten müssen dieselbe unhandliche Tabelle benutzen. 11 Begriffe Blockchiffre = Unabhängige Ver-/Entschlüsselung von Blöcken gleicher Länge, meist 64 bit Jeder Block wird für sich getrennt von anderen behandelt. Die kryptographischen Nachteile werden durch Blockmodi beseitigt. Stromchiffre = Kontinuierliche Verschlüsselung unterschiedlich langer Blöcke, von 1 bit bis viele Bytes auch variierend In der Praxis wird jeweils ein Byte behandelt. 12

7 Blockchiffren Digital Encryption Standard (DES) Blockchiffre mit 56 bit effektiver Schlüssellänge, Schlüssel besitzt noch 8 Bits Prüfsumme Block ist 64 bit lang Entwickelt von IBM Anfang der 70er Jahre Das DES-Verfahren ist (bis auf die Schlüssellänge) sehr sicher: in 35 Jahren ist es nicht gelungen das Verfahren zu brechen, aber: Bis 1997 keine erfolgreiche Known-Plaintext-Attacke, dann aber: DES-Challenge (Preis von RSA Data Security) Rechner rechneten ca. 4 Monate 1998: Reduktion auf 39 Tage, teilweise 56 h 1999: Unterschreitung der 24 h-grenze Rechner rechneten 22 h Ab ca. 2000: Bau von speziellen Maschinen DES gehört zu den am besten untersuchten Verfahren. Ursprünglich wollte IBM einen 128 bit-schlüssel benutzen und wurde von der US-Regierung daran gehindert. 13 Schlüssellängen - Ein weiteres Gedankenexperiment Schlüssellänge Dauer der Entschlüsselung 56 bit 1 s 64 bit 4 Minuten 80 bit 194 Tage 112 bit 10 9 Jahre 128 bit Jahre 192 bit Jahre 256 bit Jahre Erläuterung: Wenn das Durchprobieren aller 56 bit-schlüssel 1s dauern würde, dann würde bei einem 64 bit-schlüssel das Probieren schon 4 Minuten dauern... 14

8 Doppelte Verschlüsselung Es entsteht eine doppelte Verschlüsselung und damit eine theoretische Verlängerung des Schlüssels auf 2*56 also 112 bit. Dies wäre ausreichend. Dabei wird vorausgesetzt, dass eine doppelte Verschlüsselung nicht durch eine einzige mit einem anderen Schlüssel ersetzt werden kann. Diese Bedingung erfüllt DES, aber z.b. nicht XOR. Es gibt aber einen Angriff: Meet in the Middle. 15 Meet in the Middle I (A) (B) (M) Plaintext ist bekannt Chiffretext ist bekannt Es ist ein Paar(Plaintext, Chiffretext) bekannt. (A): vom Plaintext ausgehend werden alle Schlüssel (2 56 ) angewendet und in in einer Tabelle abgespeichert. Das ist die Menge aller Werte (M). Dann wird vom Chiffretext ausgehend alle Schlüssel (2 56 ) schrittweise entschlüsselt. Bei jedem Schritt wird geprüft, ob ein Wert aus der Tabelle der (M) gefunden wurde. Falls ja, dann ist das Paar (K 1, K 2 ) ein Kandidat der gesuchten Schlüssel. Leider/zum Glück ist das nicht eindeutig, denn es werden mehrere Kandidaten gefunden. Dann wären weitere Paare(Plaintext, Chiffretext) notwendig, um die falschen Kandidaten auszusortieren. 16

9 Meet in the Middle II - Aufwand Ein volles Durchprobieren für K 1 : 2 56 DES Abspeichern und Sortieren in der Datenbank Ein volles Durchprobieren für K 2 : 2 56 DES Bei jedem Schritt: Suchen in der Datenbank Ergebnis: Menge von Kandidaten Anhand eines weiteren Paares (Plaintext, Chiffretext) wird jeder Kandidat jeweils 1x geprüft und gegebenenfalls aussortiert. Sind noch Kandidaten übrig, müssen diese mit einem weiteren Paar (Plaintext, Chiffretext) ausgeschlossen werden. d.h. bestenfalls eine effektive Schlüssellänge von 2 58, eher Dreifache Verschlüsselung I (A) (B) (M) Nun hätten wir 3x56 bit, also einen 168 bit-schlüssel. Aber auch hier funktioniert der Meet in the Middle-Angriff, so dass für K 1 je 2 56 und für K 2 auch 2 56 Schlüssel zu probieren und in der Tabelle abzuspeichern sind: Dazu kommt noch der rechte Zweig mit 2 56, was aber in Anbetracht von zu vernachlässigen ist. Die effektive Schlüssellänge ist 112 bit, was (heute) ausreichend ist (siehe Gedankenexperiment von oben) 18

10 Dreifache Verschlüsselung II - Triple-DES (3DES) Die 2. Verschlüsselung ist eine "Entschlüsselung" Optional steht dann noch eine 1DES zur Verfügung, wenn K 1 = K 2 = k 3 ist. Sonst keine Vor- oder Nachteile, außer Performanz e: Verschlüsselung, d: Entschlüsselung, m: Klartext, c: Chiffretext: c= e(k 1,d(k 2,e(k 3,m))) Falls K 1 = K 3, dann ist die Schlüssellänge 112 bit. In der Praxis wird so gearbeitet. 19 Weitere Verfahren neben AES und DES Blowfish Twofish Teilnehmer am AES-Wettbewerb CAST-256 Wird von PGP benutzt RFC 2144, 128 bit-schlüssel Teilnehmer am AES-Wettbewerb MISTY Mitsubishi 64 bit-blöcke, variable Runden mit 128 bit-schlüssel Parallelisierbarkeit Und noch: Safer, GOST, LOKI, Khufu, Khafre... 20

11 Betriebsarten von Blockchiffren Der Zweck der Betriebsarten/Modi liegt darin, verschiedene Blöcke so zu verknüpfen, dass bei Unkenntnis des Schlüssels das Entschlüsseln erschwert wird. Voraussetzung dazu ist das Auffüllen des letzten Blocks auf das Mehrfache der Blocklänge (Padding). Diese Zusatzbits müssen beim Entschlüsseln wieder entfernt werden. Es werden folgende Betriebsarten vorgestellt: Electronic Codebook Mode (ECB-Mode) Cipher Block Chaining Mode (CBC-Mode) Output Feedback Mode (OFB-Mode) Cipher Feedback Mode (CFB-Mode) Siehe auch: 21 Electronic Codebook Mode (ECB-Mode) I Plain 1 Plain 2 Plain 3 Plain n Verschlüsselung Cypher 1 Cypher 2 Cypher 3 Cypher n Vorteile und Probleme Parallelität ist sehr einfach zu realisieren. Für kurze Nachrichten ist ECB vollkommen geeignet Ansonsten: nicht benutzen! 22

12 Electronic Codebook Mode (ECB-Mode) II Cypher 1 Cypher 2 Cypher 3 Cypher n Entschlüsselung decrypt k decrypt k decrypt k decrypt k Plain 1 Plain 2 Plain 3 Plain n Probleme Angriff durch Häufigkeitsanalyse möglich Gleiche Blöcke werden gleich verschlüsselt. Siehe auch: 23 Cipher Block Chaining Mode (CBC-Mode) I Plain 1 Plain 2 Plain 3 Plain n Verschlüsselung Initialisierungsvektor Cypher 1 Cypher 2 Cypher 3 Cypher n Der Initialisierungsvektor ist ein nicht geheimer Block, mit dem als erstes per XOR verschlüsselt wird. Nun gibt es keine gleichen Chiffreblocks bei denselben Klartextblöcken mehr. Mit einer XOR-Funktion wird "addiert". 24

13 Cipher Block Chaining Mode (CBC-Mode) II Cypher 1 Cypher 2 Cypher 3 Cypher n Entschlüsselung decrypt k decrypt k decrypt k decrypt k Initialisierungsvektor Plain 1 Plain 2 Plain 3 Plain n Dies ist die zu empfehlende Betriebsart Siehe auch: 25 Output Feedback Mode (OFB-Mode) I Initialisierungsvektor Plain 1 Plain 2 Plain 3 Plain n Verschlüsselung Cypher 1 Cypher 2 Cypher 3 Cypher n Der Initialvektor wird in einer Fortschaltfunktion wiederholt mit dem Schlüssel verschlüsselt. Mit jeweils dem neuen verschlüsselten Wert werden per XOR die Klartextblöcke verschlüsselt. 26

14 Output Feedback Mode (OFB-Mode) II Initialisierungsvektor Cypher 1 Cypher 2 Cypher 3 Cypher n Entschlüsselung Plain 1 Plain 2 Plain 3 Plain n Die Verschlüsselungsketten können im Voraus/parallel berechnet werden, so dass Parallelität erreicht werden kann. Diese Art der mehrfach verschlüsselten Werte wird uns bei dem Pseudozufallsgeneratoren und bei den Stromchiffren wieder begegnen. Siehe auch: 27 Counter Mode (CTR) I - Verschlüsselung Plain 1 Plain 2 Plain 3 Plain n Startwert Cypher 1 Cypher 2 Cypher 3 Cypher n Beginnend mit einem Startwert, wird dieser verschlüsselt mit dem geheimen Schlüssel. Für jeden Folgeblock wird der Startwert um 1 erhöht. 28

15 Counter Mode (CTR) II - Entschlüsselung Cypher 1 Cypher 2 Cypher 3 Cypher n Startwert Plain 1 Plain 2 Plain 3 Plain n Die Entschlüsselung verläuft genauso wie die Verschlüsselung. 29 Counter Mode (CTR) III - Startwert Nonce 0 +1 Nonce 1 Counter Nonce = number used once = eine (lange) ganze Zahl, die nur ein einziges Mal benutzt wird Damit die Wahrscheinlichkeit für eine mehrfache Benutzung sehr klein ist, sollte eine lange, echte Zufallszahl benutzt werden. Es darf niemals bei diesem Modus ein Nonce-Wert doppelt benutzt werden. Siehe

16 Stromchiffren Blockchiffren haben den Nachteil, dass der Klartext in Einheiten der Blockgröße vorliegen sollte. Für interaktive Anwendungen heißt dies, dass gewartet werden muss bis ein Block vorhanden ist oder dass der Block mit Füllinformation aufgefüllt werden muss. Stromchiffren = Verschlüsselungsalgorithmen, die keine Einheiten mit festgelegter Größe (Blöcke) benötigen und bei denen die Einheiten ähnlich den Blockmodi verknüpft sind. 31 Verfahren von Ron Rivest RC2 (Rivest Cipher), RFC 2268 Einsatz in S/MIME Relativ wenig untersucht RC4 Entwickelt 1987 Geheim gehalten bis 1994 RC5 RC6 Schnell und einfach Teilnehmer am AES-Wettbewerb Siehe:

17 RC 4 - Vorbereitung Schlüssellänge: bit, praktisch: 128 oder 256 bit In ein Feld S mit 256 Zellen wird der jeweiligen Index zugewiesen. Das Feld k wird mit Schlüssel der Länge L des Schlüssels gefüllt, nötigenfalls mehrfach hintereinander. Dann werden 256 mal die Elemente in S anhand von k vertauscht: S 0 S 1 S 2 S 3 S 4 S 5... S 255 :=Index k 0 k 1 k 2 k 3 k 4 k 5... k 255 Byteweise mit Schlüssel füllen Falls Schlüssel kürzer als 2048 bit: Mehrfach wiederholen for j:=0, i:=0 to 255 do j:=(j + S[i] + k[i mod L]) mod 256 swap(s[i],s[j]) od 34

18 RC 4 - Durchführung Das Feld S von 256 Elementen, in denen die Werte von 0 bis 255 entsprechend dem Schlüssel gesetzt wurden, wird nach dem Verfahren unten bearbeitet. Das Ergebnis eines Durchlaufs Key wird mit XOR mit den Klartext verschlüsselt. Für das nächste Byte wird ein erneuter Durchlauf durchgeführt. i:= (i+1) mod 256; j:= (j+s[i]) mod 256; swab(s[i],s[j]) key:= (S[i]+S[j]) mod 256; Cipher[..]:= Plain[..] xor key 35

19 RC 4 Verbesserung durch SPRITZ i:= i+w mod 256; j:= k+s[j+s[i]mod 256] mod 256; k:= i+k+s[j] mod 256; swab(s[i],s[j]) key:= S[j+S[i+S[key+k mod 256] mod 256] mod 256]; Cipher[..]:= Plain[..] xor key Die Zahl w ist teilerfremd zu 256; die Schlüsselinitialisierung ist anders als bei RC4. Siehe Weitere Stromchiffren (Beispiele) A5 Einsatz in Mobil Telefonen: D1, D2 E-Plus und E2 Gehört zum GSM-Standard War zunächst geheim Ist in den beiden einfachen Versionen recht unsicher, die dritte ist besser (A5/3) Siehe: SEAL Sicherheit und Schnelligkeit ähnlich RC4 Salsa20 und ChaCha20 Eigenes Verfahren in winzip Sehr unsicher 38

20 Nach dieser Anstrengung etwas Entspannung... 39

Literatur. ISM WS 2016/17 7/Symmetrische Verschlüsselung

Literatur. ISM WS 2016/17 7/Symmetrische Verschlüsselung Literatur [7-1] Schäfer, Günter: Netzsicherheit. dpunkt, 2003 [7-2] Stallings, William: Sicherheit im Internet. Addison-Wesley, 2001 [7-3] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne

Mehr

IT-Sicherheitsmanagement Teil 7: Symmetrische Verschlüsselung

IT-Sicherheitsmanagement Teil 7: Symmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 7: Symmetrische Verschlüsselung 08.05.17 1 Literatur [7-1] Schäfer, Günter: Netzsicherheit. dpunkt, 2003 [7-2] Stallings, William: Sicherheit im Internet. Addison-Wesley,

Mehr

IT-Security. Teil 12: Symmetrische Verschlüsselung

IT-Security. Teil 12: Symmetrische Verschlüsselung IT-Security Teil 12: Symmetrische Verschlüsselung 20.09.18 1 Literatur [8-1] Schäfer, Günter: Netzsicherheit. dpunkt, 2003 [8-2] Stallings, William: Sicherheit im Internet. Addison-Wesley, 2001 [8-3] Beutelspacher,

Mehr

IT-Sicherheitsmanagement Teil 11: Symmetrische Verschlüsselung

IT-Sicherheitsmanagement Teil 11: Symmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 11: Symmetrische Verschlüsselung 16.06.16 1 Literatur [11-1] Schäfer, Günter: Netzsicherheit. dpunkt, 2003 [11-2] Stallings, William: Sicherheit im Internet. Addison-Wesley,

Mehr

Klassische Verschlüsselungsverfahren

Klassische Verschlüsselungsverfahren Klassische Verschlüsselungsverfahren Matthias Morak 10. Dezember 2008 Inhaltsverzeichnis 1 Einleitung 2 1.1 Definitionen........................................ 2 1.2 Geschichte.........................................

Mehr

Literatur. [8-9] ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung

Literatur. [8-9]   ISM WS 2018/19 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 6. Auflage, 2017 [8-3] Schneier,

Mehr

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung

Literatur. ISM SS 2017 Teil 8/Asymmetrische Verschlüsselung Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [8-2] Schmeh, Klaus: Kryptografie. dpunkt, 4. Auflage, 2009 [8-3] Schneier,

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 17.04.2014 1 / 26 Logistisches Überschneidungsfreiheit Vorlesung: nachfragen Übungsblatt nicht vergessen Frage: Wie viele würden korrigiertes Übungsblatt nutzen?

Mehr

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 8: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 8: Asymmetrische Verschlüsselung 02.01.18 1 Literatur [8-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001

Mehr

Kryptographie für CTFs

Kryptographie für CTFs Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication

Mehr

Grundlagen der Verschlüsselung und Authentifizierung (1)

Grundlagen der Verschlüsselung und Authentifizierung (1) Grundlagen der Verschlüsselung und Authentifizierung (1) Proseminar im SS 2010 Friedrich-Alexander-Universität Erlangen-Nürnberg 18.05.2010 1 Motivation

Mehr

Kryptographie für CTFs

Kryptographie für CTFs Kryptographie für CTFs Eine Einführung KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kitctf.de Einführung Cryptography is the practice and study of techniques for secure communication

Mehr

Allgemeiner Aufbau der Information

Allgemeiner Aufbau der Information Inhalt Definition Allgemeiner Aufbau der Information Arbeitsweise Unterschiedliche Arten Kryptographische Modi Definition Verschlüsselungsverfahren Plaintext wird in gleichlange Blöcke zerlegt immer mit

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen, SS Vorlesung. Doppelstunde 3

Kryptologie. Bernd Borchert. Univ. Tübingen, SS Vorlesung. Doppelstunde 3 Kryptologie Bernd Borchert Univ. Tübingen, SS 2017 orlesung Doppelstunde 3 isuelle Kryptographie Sie sehen an den mitgebrachten Folien: + = HALLO! Man kann es aber auch so sehen: die Information wird in

Mehr

II.1 Verschlüsselungsverfahren

II.1 Verschlüsselungsverfahren II.1 Verschlüsselungsverfahren Definition 2.1 Ein Verschlüsselungsverfahren ist ein 5-Tupel (P,C,K,E,D), wobei 1. P die Menge der Klartexte ist. 2. C die Menge der Chiffretexte ist. 3. K die Menge der

Mehr

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik

Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Kryptograhie Wie funktioniert Electronic Banking? Kurt Mehlhorn Adrian Neumann Max-Planck-Institut für Informatik Übersicht Zwecke der Krytographie Techniken Symmetrische Verschlüsselung( One-time Pad,

Mehr

9.5 Blockverschlüsselung

9.5 Blockverschlüsselung 9.5 Blockverschlüsselung Verschlüsselung im Rechner: Stromverschlüsselung (stream cipher): kleine Klartexteinheiten (Bytes, Bits) werden polyalphabetisch verschlüsselt Blockverschlüsselung (block cipher):

Mehr

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre

monoalphabetisch: Verschiebechiffren (Caesar), multiplikative Chiffren polyalphabetisch: Vigenère-Chiffre Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Algorithmische Anwendungen

Algorithmische Anwendungen Algorithmische Anwendungen Projekt: Data Encryption Standard Team: Adil Sbiyou El Moussaid Tawfik Inhalt Projekt DES 2. Geschichte des DES 3. Eigenschaften 4. Funktionsweise im Detail 5. Sicherheit des

Mehr

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg

Mehr

Socrative-Fragen aus der Übung vom

Socrative-Fragen aus der Übung vom Institut für Theoretische Informatik Prof. Dr. J. Müller-Quade Übungsleiter: Björn Kaidel, Alexander Koch Stammvorlesung Sicherheit im Sommersemester 2016 Socrative-Fragen aus der Übung vom 28.04.2016

Mehr

Die (Un-)Sicherheit von DES

Die (Un-)Sicherheit von DES Die (Un-)Sicherheit von DES Sicherheit von DES: Bester praktischer Angriff ist noch immer die Brute-Force Suche. Die folgende Tabelle gibt eine Übersicht über DES Kryptanalysen. Jahr Projekt Zeit 1997

Mehr

IT-Sicherheit: Kryptographie

IT-Sicherheit: Kryptographie IT-Sicherheit: Kryptographie Kryptologie = Kryptographie + Kryptoanalyse! Kryptographie: Methoden zur Ver- und Entschlüsselung von Nachrichten und damit zusammenhängende Methoden! Kryptoanalyse: Entschlüsselung

Mehr

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, e, d) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Betriebsarten von Blockchiffren. ECB Electronic Code Book Mode. Padding. ECB Electronic Code Book Mode

Betriebsarten von Blockchiffren. ECB Electronic Code Book Mode. Padding. ECB Electronic Code Book Mode Betriebsarten von Blockchiffren Blocklänge ist fest und klein. Wie große Mengen an Daten verschlüsseln? Blockchiffre geeignet verwenden: ECB Mode (Electronic Code Book) CBC Mode (Cipher Block Chaining)

Mehr

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo

Kryptographische Verfahren. zur Datenübertragung im Internet. Patrick Schmid, Martin Sommer, Elvis Corbo Kryptographische Verfahren zur Datenübertragung im Internet Patrick Schmid, Martin Sommer, Elvis Corbo 1. Einführung Übersicht Grundlagen Verschlüsselungsarten Symmetrisch DES, AES Asymmetrisch RSA Hybrid

Mehr

[2-1] Burnett, Steve; Paine, Spephen: Kryptographie. RSA Security s Official Guide. RSA Press, mitp, 2001

[2-1] Burnett, Steve; Paine, Spephen: Kryptographie. RSA Security s Official Guide. RSA Press, mitp, 2001 Literatur I mit ein paar Kommentaren [2-1] Burnett, Steve; Paine, Spephen: Kryptographie. RSA Security s Official Guide. RSA Press, mitp, 2001 Einführung und Überblick [2-2] Nash, Andrew; Duane, William,

Mehr

9. Einführung in die Kryptographie

9. Einführung in die Kryptographie 9. Einführung in die Kryptographie Grundidee: A sendet Nachricht nach B über unsicheren Kanal. Es soll verhindert werden, dass ein Unbefugter Kenntnis von der übermittelten Nachricht erhält. Grundbegriffe:

Mehr

Einführung in die. Kryptographie WS 2016/ Lösungsblatt

Einführung in die. Kryptographie WS 2016/ Lösungsblatt Technische Universität Darmstadt Fachgebiet Theoretische Informatik Prof. Johannes Buchmann Thomas Wunderer Einführung in die Kryptographie WS 6/ 7. Lösungsblatt 8..6 Ankündigungen Arithmetik modulo n

Mehr

Alice (A) und Bob (B) wollen sicher kommunizieren (vgl. Schutzziele) Oskar (O) versucht, die Schutzziele zu durchbrechen

Alice (A) und Bob (B) wollen sicher kommunizieren (vgl. Schutzziele) Oskar (O) versucht, die Schutzziele zu durchbrechen Vorlesung am 21.04.2015 3 Symmetrische Verschlüsselung Alice (A) und Bob (B) wollen sicher kommunizieren (vgl. Schutzziele) Oskar (O) versucht, die Schutzziele zu durchbrechen Passiver Angri : Abhören

Mehr

IT-Sicherheitsmanagement. Teil 2: Einführung in die Kryptographie

IT-Sicherheitsmanagement. Teil 2: Einführung in die Kryptographie IT-Sicherheitsmanagement Teil 2: Einführung in die Kryptographie 05.10.18 1 Literatur I mit ein paar Kommentaren [2-1] Burnett, Steve; Paine, Spephen: Kryptographie. RSA Security s Official Guide. RSA

Mehr

[6-1] Burnett, Steve; Paine, Spephen: Kryptographie. RSA Security s Official Guide. RSA Press, mitp, 2001

[6-1] Burnett, Steve; Paine, Spephen: Kryptographie. RSA Security s Official Guide. RSA Press, mitp, 2001 Literatur I mit ein paar Kommentaren [6-1] Burnett, Steve; Paine, Spephen: Kryptographie. RSA Security s Official Guide. RSA Press, mitp, 2001 Einführung und Überblick [6-2] Nash, Andrew; Duane, William,

Mehr

IT-Security. Teil 6: Einführung in die Kryptographie

IT-Security. Teil 6: Einführung in die Kryptographie IT-Security Teil 6: Einführung in die Kryptographie 08.12.16 1 Literatur I mit ein paar Kommentaren [6-1] Burnett, Steve; Paine, Spephen: Kryptographie. RSA Security s Official Guide. RSA Press, mitp,

Mehr

CodeMeter. Ihr Führerschein zum Kryptographie-Experten. Rüdiger Kügler Professional Services

CodeMeter. Ihr Führerschein zum Kryptographie-Experten. Rüdiger Kügler Professional Services CodeMeter Ihr Führerschein zum Kryptographie-Experten Rüdiger Kügler Professional Services ruediger.kuegler@wibu.com Alvaro Forero Security Expert Alvaro.Forero@wibu.com 04.09.2014 Ihr Führerschein zum

Mehr

VP WAP Kryptographie

VP WAP Kryptographie VP WAP Kryptographie Martin Hargassner, Claudia Horner, Florian Krisch Universität Salzburg 11. Juli 2002 header 1 Übersicht Definiton Ziele Entwicklung Private- / Public-Key Verfahren Sicherheit Anwendungsbeispiel:

Mehr

Angewandte Kryptographie

Angewandte Kryptographie 14.02.2017 Angewandte Kryptographie 1 Angewandte Kryptographie Rüdiger Kügler Security Expert ruediger.kuegler@wibu.com 14.02.2017 Angewandte Kryptographie 2 Legendäre Fehler Verschlüsseltes Geschlecht

Mehr

Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln):

Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Was bisher geschah Kryptographische Systeme (M, C, K, E, D) Symmetrische Verfahren (gleicher Schlüssel zum Verschlüsseln und Entschlüsseln): Substitutions-Chiffren (Permutationschiffren): Ersetzung jedes

Mehr

Name:... Vorname:... Matrikel-Nr.:... Studienfach:...

Name:... Vorname:... Matrikel-Nr.:... Studienfach:... Christian Forler DHBW Mosbach 2. April 2015 Klausur Name:.............................. Vorname:........................... Matrikel-Nr.:....................... Studienfach:........................ Wichtige

Mehr

Betriebssysteme und Sicherheit Sicherheit. Florian Kerschbaum TU Dresden Wintersemester 2011/12

Betriebssysteme und Sicherheit Sicherheit. Florian Kerschbaum TU Dresden Wintersemester 2011/12 Betriebssysteme und Sicherheit Sicherheit Florian Kerschbaum TU Dresden Wintersemester 2011/12 Begriffe Kryptographie: Geheimschrift Nachrichten schreiben ohne das sie von einem Anderen gelesen (verändert)

Mehr

Data Encryption Standard

Data Encryption Standard Sommersemester 2008 1 Blockchiffren 2 Der DES 3 Differentielle Kryptanalyse 4 Lineare Kryptanalyse 5 Triple DES Blockchiffren Klartext Arbeits richtung Schlüssel Chiffretext Wichtige Parameter: Blockgröße,

Mehr

Stromchiffre. Algorithmus Stromchiffre

Stromchiffre. Algorithmus Stromchiffre Stromchiffre Algorithmus Stromchiffre Sei G ein Pseudozufallsgenerator mit Expansionsfaktor l(n). Wir definieren Π s = (Gen, Enc, Dec) mit Sicherheitsparameter n für Nachrichten der Länge l(n). 1 Gen:

Mehr

Übung zur Vorlesung Sicherheit Übung 1. Jessica Koch Thomas Agrikola

Übung zur Vorlesung Sicherheit Übung 1. Jessica Koch Thomas Agrikola Übung zur Vorlesung Sicherheit Übung 1 Jessica Koch Jessica.Koch@kit.edu Thomas Agrikola Thomas.Agrikola@kit.edu 26.04.2018 1 / 38 Literatur zur Vorlesung Jonathan Katz, Yehuda Lindell. Introduction to

Mehr

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013.

Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz. Stammvorlesung Sicherheit im Sommersemester 2013. Institut für Kryptographie und Sicherheit Jun.-Prof. Dr. D. Hofheinz IKS Institut für Kryptographie und Sicherheit Stammvorlesung Sicherheit im Sommersemester 2013 Übungsblatt 2 Aufgabe 1. Wir wissen,

Mehr

Message Authentication Codes

Message Authentication Codes Message Authentication Codes Fabian Eltz / Matthias Schubert Seminar Kryptographie und Datensicherheit WS 06/07 Nested 1. Message Authentication Code () 2. 3. Nested 4. 5. 6. 7. 8. 9. - F. Eltz, M. Schubert

Mehr

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren

VI.3 RSA. - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman. - vorgestellt erstes Public-Key Verschlüsselungsverfahren VI.3 RSA - RSA benannt nach seinen Erfindern R. Rivest, A. Shamir und L. Adleman - vorgestellt 1977 - erstes Public-Key Verschlüsselungsverfahren - auch heute noch das wichtigste Public-Key Verfahren 1

Mehr

DEAL. Zusammenfassung des Vortrags. vorgetragen im Rahmen des Seminars: Analyse kryptographischer Algorithmen

DEAL. Zusammenfassung des Vortrags. vorgetragen im Rahmen des Seminars: Analyse kryptographischer Algorithmen Zusammenfassung des Vortrags DEAL vorgetragen im Rahmen des Seminars: Analyse kryptographischer Algorithmen unter Leitung von Prof. Köbler und M. Schwan am 9. Mai 00 von Ingo Bendel . EINLEITUNG.... DES.....

Mehr

Folie 1. Kryptographie

Folie 1. Kryptographie Folie 1 Kryptographie Klassische Verfahren Etwas Theorie Folie 2 Übersicht Moderne symmetrische Chiffren AES-Entscheidung Die Kunst der Anwendung Fazit Folie 3 Klassische Verfahren Skytala: Vor rund 2.500

Mehr

Lösungen zu. Grundlagen der Kryptologie SS Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Lösungen zu. Grundlagen der Kryptologie SS Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Lösungen zu Grundlagen der Kryptologie SS 008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

Kryptologie. Bernd Borchert. Univ. Tübingen, SS Vorlesung. Doppelstunde 2. - One Time Pad - Authentisierung

Kryptologie. Bernd Borchert. Univ. Tübingen, SS Vorlesung. Doppelstunde 2. - One Time Pad - Authentisierung Kryptologie Bernd Borchert Univ. Tübingen, SS 2017 Vorlesung Doppelstunde 2 - One Time Pad - Authentisierung Homophone Chiffre Monoalphabetische Chiffre : Bijektion der Buchstaben: A B C D E F G H I J

Mehr

Kryptographische Algorithmen

Kryptographische Algorithmen Kryptographische Algorithmen Lerneinheit 3: Data Encryption Standard (DES) Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Wintersemester 2018/2019 4.11.2018 Entstehungsgeschichte Anfang

Mehr

Übung zur Vorlesung Sicherheit Übung 1. Thomas Agrikola

Übung zur Vorlesung Sicherheit Übung 1. Thomas Agrikola Übung zur Vorlesung Sicherheit Übung 1 Thomas Agrikola Thomas.Agrikola@kit.edu 04.05.2017 1 / 36 Literatur zur Vorlesung Jonathan Katz, Yehuda Lindell. Introduction to Modern Cryptography. ISBN 1-584-88551-3.

Mehr

3. Lösungsblatt

3. Lösungsblatt TECHNISCHE UNIVERSITÄT DARMSTADT FACHGEBIET THEORETISCHE INFORMATIK PROF JOHANNES BUCHMANN NABIL ALKEILANI ALKADRI Einführung in die Kryptographie WS 7/ 8 3 Lösungsblatt 67 P Matrizen und Determinanten

Mehr

Denn es geh t um ihr Geld: Kryptographie

Denn es geh t um ihr Geld: Kryptographie Denn es geht um ihr Geld: Kryptographie Ilja Donhauser Inhalt Allgemeines Symmetrisch Asymmetrisch Hybridverfahren Brute Force Primzahlen Hashing Zertifikate Seite 2 Allgemeines Allgemeines Wissenschaft

Mehr

Stromchiffre. Algorithmus Stromchiffre

Stromchiffre. Algorithmus Stromchiffre Stromchiffre Algorithmus Stromchiffre Sei G ein Pseudozufallsgenerator mit Expansionsfaktor l(n). Wir definieren Π s = (Gen, Enc, Dec) mit Sicherheitsparameter n für Nachrichten der Länge l(n). 1 Gen:

Mehr

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren

VI.4 Elgamal. - vorgestellt 1985 von Taher Elgamal. - nach RSA das wichtigste Public-Key Verfahren VI.4 Elgamal - vorgestellt 1985 von Taher Elgamal - nach RSA das wichtigste Public-Key Verfahren - besitzt viele unterschiedliche Varianten, abhängig von zugrunde liegender zyklischer Gruppe - Elgamal

Mehr

Vorlesung Sicherheit

Vorlesung Sicherheit Vorlesung Sicherheit Dennis Hofheinz ITI, KIT 08.05.2017 1 / 32 Überblick 1 Blockchiffren Erinnerung Varianten von DES Beispiel: AES Angriffe auf Blockchiffren 2 Formalisierung von Sicherheit (symmetrischer

Mehr

Netzwerktechnologien 3 VO

Netzwerktechnologien 3 VO Netzwerktechnologien 3 VO Univ.-Prof. Dr. Helmut Hlavacs helmut.hlavacs@univie.ac.at Dr. Ivan Gojmerac gojmerac@ftw.at Bachelorstudium Medieninformatik SS 2012 Kapitel 8 - Netzwerksicherheit 8.1 Was ist

Mehr

Kapitel 7.6: Einführung in Kryptographie

Kapitel 7.6: Einführung in Kryptographie Kapitel 7.6: Einführung in Kryptographie Referenzen Markus Hufschmid, Information und Kommunikation, Teubner, 2006. Buchmann, Einführung in die Kryptographie, Springer, 2009. Bruce Schneier, "Applied Cryptography",

Mehr

10.4 Sichere Blockverschlüsselung

10.4 Sichere Blockverschlüsselung 10.4 Sichere Blockverschlüsselung Verschlüsselung im Rechner: Stromverschlüsselung (stream cipher): kleine Klartexteinheiten (Bytes, Bits) werden polyalphabetisch verschlüsselt Blockverschlüsselung (block

Mehr

Kurze Einführung in kryptographische Grundlagen.

Kurze Einführung in kryptographische Grundlagen. Kurze Einführung in kryptographische Grundlagen. Was ist eigentlich AES,RSA,DH,ELG,DSA,DSS,ECB,CBC Benjamin.Kellermann@gmx.de GPG-Fingerprint: D19E 04A8 8895 020A 8DF6 0092 3501 1A32 491A 3D9C git clone

Mehr

Projekt u23 Symmetrische Kryptografie, Betriebsmodi von Blockchiffren

Projekt u23 Symmetrische Kryptografie, Betriebsmodi von Blockchiffren Symmetrische Kryptografie Betriebsmodi von Blockchiffren und was man sonst damit machen kann Martin e.v. https://koeln.ccc.de 12. Oktober 2015 Definition Krypto-System Tupel (M, C, K, E, D) Message, Ciphertext,

Mehr

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 22. November 2017 WS 2017/2018

IT-Sicherheit. Jun.-Prof. Dr. Gábor Erdélyi. Siegen, 22. November 2017 WS 2017/2018 IT-Sicherheit WS 2017/2018 Jun.-Prof. Dr. Gábor Erdélyi Lehrstuhl für Entscheidungs- und Organisationstheorie, Universität Siegen Siegen, 22. November 2017 Kerckhoffssches Prinzip Die Sicherheit eines

Mehr

Kryptografie & Kryptoanalyse. Eine Einführung in die klassische Kryptologie

Kryptografie & Kryptoanalyse. Eine Einführung in die klassische Kryptologie Kryptografie & Kryptoanalyse Eine Einführung in die klassische Kryptologie Caesar-Verfahren Wie viele Schlüssel-Möglichkeiten gibt es beim Caesar-Verfahren? 26 (Anzahl Buchstaben des Alphabetes Anzahl

Mehr

Sicherheit des CypherMatrix Verfahrens

Sicherheit des CypherMatrix Verfahrens Sicherheit des CypherMatrix Verfahrens (Ernst Erich Schnoor) Das CypherMatrix Verfahren teilt sich in zwei Bereiche: Generator zur Erzeugung aller notwendigen Bestimmungsdaten und Codierbereich für die

Mehr

Häufige Fehler bei der Verwendung von Kryptografie und wie man diese vermeidet

Häufige Fehler bei der Verwendung von Kryptografie und wie man diese vermeidet 16. November 2018 GI DevCamp 2018 Hamburg Häufige Fehler bei der Verwendung von Kryptografie und wie man diese vermeidet Maximilian Blochberger Tom Petersen Arbeitsgruppe SVS, Fachbereich Informatik, Universität

Mehr

Problem: Rückruf während der Bearbeitung eines Objekts

Problem: Rückruf während der Bearbeitung eines Objekts 9 Rückruf von Capabilities (4) Problem: Rückruf während der Bearbeitung eines Objekts inkonsistente Zustände möglich Lösung in Hydra Parameter-Capabilities, die durch eine rechteverstärkende Parameterschablone

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 5.2 ElGamal Systeme 1. Verschlüsselungsverfahren 2. Korrektheit und Komplexität 3. Sicherheitsaspekte Das ElGamal Verschlüsselungsverfahren Public-Key Verfahren von

Mehr

Kapitel 9: Kryptographie: DES. Java SmartCards, Kap. 9 (1/19)

Kapitel 9: Kryptographie: DES. Java SmartCards, Kap. 9 (1/19) Kapitel 9: Kryptographie: DES Java SmartCards, Kap. 9 (1/19) Symmetrische Verschlüsselung (Secret key) Verfahren: DES, Triple-DES, AES, IDEA, Blowfish,... 1 Schlüssel K für Ver-/Entschlüsselung C = E K

Mehr

Betriebsarten für Blockchiffren

Betriebsarten für Blockchiffren Betriebsarten für Blockchiffren Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Betriebsarten für Blockchiffren Was ist eine Betriebsart (engl. Mode of Operation )? Blockchiffre wird genutzt, um

Mehr

Inhaltsverzeichnis. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): ISBN (E-Book):

Inhaltsverzeichnis. Wolfgang Ertel. Angewandte Kryptographie. ISBN (Buch): ISBN (E-Book): Inhaltsverzeichnis Wolfgang Ertel Angewandte Kryptographie ISBN (Buch): 978-3-446-42756-3 ISBN (E-Book): 978-3-446-43196-6 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-42756-3

Mehr

Chaos-based Image Encryption

Chaos-based Image Encryption 1 / 25 PS Einführung Kryptographie und IT-Sicherheit Chaos-based Image Encryption D. Schwarz, S. Ebner SS 2017 2 / 25 Übersicht 1 Einleitung & Motivation 2 Erstellung einer Chaos basierten Verschlüsselung

Mehr

Erinnerung Blockchiffre

Erinnerung Blockchiffre Erinnerung Blockchiffre Definition schlüsselabhängige Permutation Seien F, F 1 pt Algorithmen. F heißt schlüsselabhängige Permutation auf l Bits falls 1 F berechnet eine Funktion {0, 1} n {0, 1} l {0,

Mehr

Literatur. ISM SS 2018 Teil 3/Restklassen

Literatur. ISM SS 2018 Teil 3/Restklassen Literatur [3-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg 2001 [3-2] Schmeh, Klaus: Kryptografie. dpunkt, 5. Auflage, 2013 [3-3] Hoffmann,

Mehr

3 Public-Key-Kryptosysteme

3 Public-Key-Kryptosysteme Stand: 05.11.2013 Vorlesung Grundlagen und Methoden der Kryptographie Dietzfelbinger 3 Public-Key-Kryptosysteme 3.1 Verschlüsselung von Nachrichten Wir betrachten ganz einfache Kommunikationsszenarien.

Mehr

Analyse kryptographischer Algorithmen: Serpent

Analyse kryptographischer Algorithmen: Serpent Analyse kryptographischer Algorithmen: Serpent Michael Ueckerdt mailto://ueckerdt@informatik.hu-berlin.de 23. August 2002 1 Einleitung Dieses Seminar beschäftigt sich mit modernen aber etwas weniger bekannten

Mehr

VI. Public-Key Kryptographie

VI. Public-Key Kryptographie VI. Public-Key Kryptographie Definition 2.1 Ein Verschlüsselungsverfahren ist ein 5-Tupel (P,C,K,E,D), wobei 1. P die Menge der Klartexte ist. 2. C die Menge der Chiffretexte ist. 3. K die Menge der Schlüssel

Mehr

Konstruktion CPA-sicherer Verschlüsselung

Konstruktion CPA-sicherer Verschlüsselung Konstrution CPA-sicherer Verschlüsselung Algorithmus Verschlüsselung Π B Sei F eine längenerhaltende, schlüsselabhängige Funtion auf n Bits. Wir definieren Π B = (Gen, Enc, Dec) für Nachrichtenraum M =

Mehr

Grundlagen der Kryptographie

Grundlagen der Kryptographie Grundlagen der Kryptographie Geschichte Einfache Verschlüsselungsverfahren Symmetrische Verschlüsselungsverfahren Asymmetrische Verschlüsselungsverfahren Authentisierung H. Lubich Sicherheit in Datennetzen

Mehr

Übungen zur Vorlesung Systemsicherheit

Übungen zur Vorlesung Systemsicherheit Übungen zur Vorlesung Systemsicherheit Symmetrische Kryptographie Tilo Müller, Reinhard Tartler, Michael Gernoth Lehrstuhl Informatik 1 + 4 17. November 2010 c (Lehrstuhl Informatik 1 + 4) Übungen zur

Mehr

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier

Kryptologie. K l a u s u r WS 2006/2007, Prof. Dr. Harald Baier Kryptologie K l a u s u r WS 2006/2007, 2007-02-01 Prof. Dr. Harald Baier Name, Vorname: Matrikelnummer: Hinweise: (a) Als Hilfsmittel ist nur der Taschenrechner TI-30 zugelassen. Weitere Hilfsmittel sind

Mehr

Designziele in Blockchiffren

Designziele in Blockchiffren Designziele in Blockchiffren Konstruiere Verschlüsselungsfunktion die sich wie eine zufällige Funktion verhalten soll. Konfusion: Verschleiern des Zusammenhangs zwischen Klartext und Chiffretext. Diffusion:

Mehr

DOAG 2009 Konferenz Nürnberg. Klaus Reimers ORDIX AG, Köln

DOAG 2009 Konferenz Nürnberg. Klaus Reimers ORDIX AG, Köln DOAG 2009 Konferenz 17. - 19.11.2009 Nürnberg Klaus Reimers ORDIX AG, Köln kr@ordix.de www.ordix.de Agenda Intention PL/SQL - dbms_obfuscation_toolkit toolkit - dbms_crypto - Schlüsselmanagement Transparente

Mehr

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW...

12 Kryptologie. ... immer wichtiger. Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... 12 Kryptologie... immer wichtiger Militär (Geheimhaltung) Telebanking, Elektronisches Geld E-Commerce WWW... Kryptologie = Kryptographie + Kryptoanalyse 12.1 Grundlagen 12-2 es gibt keine einfachen Verfahren,

Mehr

IT-Security. Teil 15: Zufall

IT-Security. Teil 15: Zufall IT-Security Teil 15: Zufall 09.05.17 1 Literatur [15-1] http://de.wikipedia.org/wiki/kryptographisch_sicherer_zufallszahlen generator [15-2] https://gnupg.org/documentation/manuals/gcrypt/fips-prng- Description.html

Mehr

2 Netzwerksicherheit und Kryptographie. Jan Jürjens: Modellbasierte Softwaretechniken für sichere Systeme 1

2 Netzwerksicherheit und Kryptographie. Jan Jürjens: Modellbasierte Softwaretechniken für sichere Systeme 1 2 Netzwerksicherheit und Kryptographie Jan Jürjens: Modellbasierte Softwaretechniken für sichere Systeme 1 Das Internet Backbone Internet Service Provider Mobiler Teilnehmer FTP Server Mail Server DNS

Mehr

Konstruktion von MACs. Message Authentication Codes. Sicherheitsmodell CBC-MAC

Konstruktion von MACs. Message Authentication Codes. Sicherheitsmodell CBC-MAC Message Authentication Codes Entspricht Hashfunktionen mit geheimen Schlüsseln. h : K M H, MAC = h k (m). h parametrisierte Hashfunktion. m Nachricht. k geheimer Schlüssel. Mit der Nachricht m wird h k

Mehr

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159

Übungen zu. Grundlagen der Kryptologie SS 2008. Hochschule Konstanz. Dr.-Ing. Harald Vater. Giesecke & Devrient GmbH Prinzregentenstraße 159 Übungen zu Grundlagen der Kryptologie SS 2008 Hochschule Konstanz Dr.-Ing. Harald Vater Giesecke & Devrient GmbH Prinzregentenstraße 159 D-81677 München Tel.: +49 89 4119-1989 E-Mail: hvater@htwg-konstanz.de

Mehr

Kryptographie - eine mathematische Einführung

Kryptographie - eine mathematische Einführung Kryptographie - eine mathematische Einführung Rosa Freund 28. Dezember 2004 Überblick Grundlegende Fragestellungen Symmetrische Verschlüsselung: Blockchiffren, Hashfunktionen

Mehr

Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola. Stammvorlesung Sicherheit im Sommersemester 2017

Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola. Stammvorlesung Sicherheit im Sommersemester 2017 Institut für Theoretische Informatik Prof. Dr. Dennis Hofheinz Übungsleiter: Thomas Agrikola Stammvorlesung Sicherheit im Sommersemester 2017 Übungsblatt 1 Aufgabe 1. Gegeben ist der folgende Chiffretext.

Mehr

Advanced Encryption Standard

Advanced Encryption Standard 1 of 5 04.11.2005 14:36 Advanced Encryption Standard aus Wikipedia, der freien Enzyklopädie Der Advanced Encryption Standard (AES) ist ein symmetrisches Kryptosystem, welches als Nachfolger für DES bzw.

Mehr

Regine Schreier

Regine Schreier Regine Schreier 20.04.2016 Kryptographie Verschlüsselungsverfahren Private-Key-Verfahren und Public-Key-Verfahren RSA-Verfahren Schlüsselerzeugung Verschlüsselung Entschlüsselung Digitale Signatur mit

Mehr

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil

Bernd Borchert. Univ. Tübingen WS 13/14. Vorlesung. Kryptographie. Teil Bernd Borchert Univ. Tübingen WS 13/14 Vorlesung Kryptographie Teil 1 18.10.13 1 Kryptologie der Umgang mit Geheimnissen Geheimnisse müssen nichts romantisches oder kriminelles sein, sondern es gibt ganz

Mehr

2.4 Diskussion und Literaturempfehlungen Lessons Learned A ufgaben Literatur... 62

2.4 Diskussion und Literaturempfehlungen Lessons Learned A ufgaben Literatur... 62 Inhaltsverzeichnis 1 Einführung in die Kryptografie und Datensicherheit... 1 1.1 Überblick über die Kryptografie (und dieses Buch)... 1 1.2 Symmetrische Kryptografie... 4 1.2.1 Grundlagen... 4 1.2.2 Die

Mehr

Übung zur Vorlesung Sicherheit. Florian Böhl

Übung zur Vorlesung Sicherheit. Florian Böhl Übung zur Vorlesung Sicherheit Florian Böhl florian.boehl@kit.edu Sicherheit Literatur zur Vorlesung Jonathan Katz, Yehuda Lindell. Introduction to Modern Cryptography. ISBN 1-584-88551-3. http://www.cs.umd.edu/~jkatz/imc.html

Mehr

(Ernst Erich Schnoor)

(Ernst Erich Schnoor) Codegraphie (Ernst Erich Schnoor) Mit dem CypherMatrix Verfahren Bezeichnung vom Autor - werden neue Zusammenhänge in der Kryptographie aufgezeigt. Bedingt durch Bitsysteme und Bit-Konversionen entstehen

Mehr