5. Klassifikation. 5.6 Support Vector Maschines (SVM)

Größe: px
Ab Seite anzeigen:

Download "5. Klassifikation. 5.6 Support Vector Maschines (SVM)"

Transkript

1 5. Klassifikation 5.6 Support Vector Maschines (SVM) übernommen von Stefan Rüping, Katharina Morik, Universität Dortmund Vorlesung Maschinelles Lernen und Data Mining, WS 2002/03 und Katharina Morik, Claus Weihs, Universität Dortmund Wissensentdeckung in Datenbanken, SS 2006 Vorlesung Knowledge Discovery 276

2 Gegeben: Beispiele X in LE Funktionslernen die anhand einer Wahrscheinlichkeitsverteilung P auf X erzeugt wurden und mit einem Funktionswert Y = t(x) versehen sind (alternativ: Eine Wahrscheinlichkeitsverteilung P(Y X) der möglichen Funktionswerte - verrauschte Daten). H die Menge von Funktionen in LH. Ziel: Eine Hypothese h(x) H, die das erwartete Fehlerrisiko R(h) minimiert. Risiko: R ( h) = Q( x, h) P( x) x Vorlesung Knowledge Discovery 277

3 Beispiel: Funktionenlernen 0% 50% 5% % 0% 20% H = { f a f a (x) = 1, für x a, f a (x) = -1 sonst, a R} R(f 0 ) = 0, ,20 = 0,45 R(f 1,5 ) = ,20 = 0,20 R(f 3,5 ) = 0 + 0,5 + 0,05 = 0,55 Vorlesung Knowledge Discovery 278

4 Reale Beispiele Klassifikation: Q(x,h) = 0, falls t(x) = h(x), 1 sonst Textklassifikation (x = Worthäufigkeiten) Handschriftenerkennung (x = Pixel in Bild) Vibrationsanalyse in Triebwerken (x = Frequenzen) Intensivmedizinische Alarmfunktion (x = Vitalzeichen) Regression: Q(x,h) = (t(x)-h(x))) 2 Zeitreihenprognose (x = Zeitreihe, t(x) = nächster Wert) Vorlesung Knowledge Discovery 279

5 Erinnerung: Minimierung des beobachteten Fehlers Funktionslernaufgabe nicht direkt lösbar. Problem: Die tatsächliche Funktion t(x) ist unbekannt. Die zugrunde liegende Wahrscheinlichkeit ist unbekannt. Ansatz: eine hinreichend große Lernmenge nehmen und für diese den Fehler minimieren. Empirical Risk Minimization Vorlesung Knowledge Discovery 280

6 Beispiel Vorlesung Knowledge Discovery 281

7 Beispiel II Vorlesung Knowledge Discovery 282

8 Probleme der ERM Aufgabe ist nicht eindeutig beschrieben: Mehrere Funktionen mit minimalem Fehler existieren. Welche wählen? Overfitting: Verrauschte Daten und zu wenig Beispiele führen zu falschen Ergebnissen. Vorlesung Knowledge Discovery 283

9 Die optimale Hyperebene Beispiele heißen linear trennbar, wenn es eine Hyperebene H gibt, die die positiven und negativen Beispiele voneinander trennt. H heißt optimale Hyperebene, wenn ihr Abstand d zum nächsten positiven und zum nächsten negativen Beispiel maximal ist. Satz: Es existiert eine eindeutig bestimmte optimale Hyperebene. d d H Vorlesung Knowledge Discovery 284

10 Vorlesung Knowledge Discovery 285

11 Vorlesung Knowledge Discovery 286

12 Vorlesung Knowledge Discovery 287

13 Vorlesung Knowledge Discovery 288

14 Vorlesung Knowledge Discovery 289

15 Vorlesung Knowledge Discovery 290

16 Berechnung der opt. Hyperebene Hyperebene H = {x w*x+b = 0} H trennt (x i,y i ), y i {±1} H ist optimale Hyperebene Entscheidungsfunktion f(x) = w*x+b f(x i ) > 0 y i > 0 w minimal und f(x i ) 1, wenn y i = 1 f(x i ) -1, wenn y i = -1 H +1 f -1 Vorlesung Knowledge Discovery 291

17 Optimierungsaufgabe der SVM Minimiere w 2 so dass für alle i gilt: f(x i ) = w*x i +b 1 für y i = 1 und f(x i ) = w*x i +b -1 für y i = -1 Äquivalente Nebenbedingung: y i *f(x i ) 1 Konvexes, quadratisches Optimierungsproblem eindeutig in O(n 3 ) lösbar. Satz: w = 1/d, d = Abstand der optimalen Hyperebene zu den Beispielen. Vorlesung Knowledge Discovery 292

18 Vorlesung Knowledge Discovery 293

19 Vorlesung Knowledge Discovery 294

20 Vorlesung Knowledge Discovery 295

21 Vorlesung Knowledge Discovery 296

22 Vorlesung Knowledge Discovery 297

23 Vorlesung Knowledge Discovery 298

24 Vorlesung Knowledge Discovery 299

25 Vorlesung Knowledge Discovery 300

26 Optimierungsalgorithmus s = Gradient von W(α) // s i = α j (x j *x i ) while(nicht konvergiert(s)) // auf ε genau WS = working_set(s) // suche k gute Variablen α = optimiere(ws) // k neue α-werte s = update(s, α ) // s = Gradient von W(α ) Gradientensuchverfahren Trick: Stützvektoren allein definieren Lösung Weitere Tricks: Shrinking, Caching von x i *x j Vorlesung Knowledge Discovery 301

27 Vorlesung Knowledge Discovery 302

28 Nicht linear trennbare Daten In der Praxis sind linear trennbare Daten selten. 1. Ansatz: Entferne eine minimale Menge von Datenpunkten, so dass die Daten linear trennbar werden (minimale Fehlklassifikation). Problem: Algorithmus wird exponentiell.? Vorlesung Knowledge Discovery 303

29 Weich trennende Hyperebene Wähle C R >0 und minimiere so dass für alle i gilt: f(x i ) = w*x i +b 1-ξ i für y i = 1 und f(x i ) = w*x i +b -1+ξ i für y i = -1 Äquivalent: y i *f(x i ) 1- ξ i w 2 + C n i= 1 ξ i +1 f ξ ξ Vorlesung Knowledge Discovery 304

30 Bedeutung von ξ und α ξ=0, α=0 ξ=0, 0 α<c ξ>1, α=c 0<ξ<1, 0<α<C f(x)=-1 f(x)=0 f(x)=1 Beispiele x i mit α i >0 heißen Stützvektoren SVM Vorlesung Knowledge Discovery 305

31 Was wissen wir jetzt über SVM s? Funktionslernen als allgemeine Lernaufgabe Minimierung des empirischen Risikos als Lösungsstrategie Optimale Hyperebene präzisiert die ERM Praxis: weich trennende Hyperebene Berechnung mittels SVM und dualem Problem Offene Fragen: Generelles Prinzip hinter der optimalen Hyperebene? Nicht lineare Daten? Kernel-Methoden Vorlesung Knowledge Discovery 306

Funktionslernen. 5. Klassifikation. 5.6 Support Vector Maschines (SVM) Reale Beispiele. Beispiel: Funktionenlernen

Funktionslernen. 5. Klassifikation. 5.6 Support Vector Maschines (SVM) Reale Beispiele. Beispiel: Funktionenlernen 5. Klassifikation 5.6 Support Vector Maschines (SVM) übernommen von Stefan Rüping, Katharina Morik, Universität Dortmund Vorlesung Maschinelles Lernen und Data Mining, WS 2002/03 und Katharina Morik, Claus

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Gliederung Vorlesung Wissensentdeckung Stützvektormethode 1 Hinführungen zur SVM Katharina Morik, Claus Weihs 26.5.2009 2 Maximum Margin Methode Lagrange-Optimierung 3 Weich trennende SVM 1 von 40 2 von

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Stützvektormethode Katharina Morik, Uwe Ligges 10.6.2010 1 von 40 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung 3 Weich trennende SVM 2 von

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik 8.11.2011 1 von 38 Gliederung 1 2 Lagrange-Optimierung 2 von 38 Übersicht über die Stützvektormethode (SVM) Eigenschaften

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Stützvektormethode Katharina Morik LS 8 Informatik Technische Universität Dortmund 12.11.2013 1 von 39 Gliederung 1 Hinführungen zur SVM 2 Maximum Margin Methode Lagrange-Optimierung

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Stützvektormethode Katharina Morik, Uwe Ligges 23.5.2013 1 von 48 Gliederung 1 Geometrie linearer Modelle: Hyperebenen Einführung von Schölkopf/Smola 2 Lagrange-Optimierung

Mehr

Neuronale Netze. Prof. Dr. Rudolf Kruse

Neuronale Netze. Prof. Dr. Rudolf Kruse Neuronale Netze Prof. Dr. Rudolf Kruse Computational Intelligence Institut für Intelligente Kooperierende Systeme Fakultät für Informatik rudolf.kruse@ovgu.de Rudolf Kruse Neuronale Netze 1 Überwachtes

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Support Vector Machine Nico Piatkowski und Uwe Ligges 30.05.2017 1 von 14 Überblick Was bisher geschah... Modellklassen Verlustfunktionen Numerische Optimierung Regularisierung

Mehr

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele

Erinnerung: Funktionslernen. 5.6 Support Vector Maschines (SVM) Beispiel: Funktionenlernen. Reale Beispiele Ererug: Fuktoslere 5.6 Support Vector Masches (SVM) überomme vo Stefa Rüpg, Kathara Mork Uverstät Dortmud Vorlesug Maschelles Lere ud Data Mg WS 2002/03 Gegebe: Bespele X LE de ahad eer Wahrschelchketsvertelug

Mehr

Maschinelles Lernen Vorlesung

Maschinelles Lernen Vorlesung Maschinelles Lernen Vorlesung SVM Kernfunktionen, Regularisierung Katharina Morik 15.11.2011 1 von 39 Gliederung 1 Weich trennende SVM 2 Kernfunktionen 3 Bias und Varianz bei SVM 2 von 39 SVM mit Ausnahmen

Mehr

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines

Mustererkennung. Support Vector Machines. R. Neubecker, WS 2018 / Support Vector Machines Mustererkennung R. Neubecker, WS 018 / 019 (SVM) kommen aus der statistischen Lerntheorie gehören zu den optimalen Klassifikatoren = SVMs minimieren nicht nur den Trainingsfehler, sondern auch den (voraussichtlichen)

Mehr

Lineare Klassifikatoren. Volker Tresp

Lineare Klassifikatoren. Volker Tresp Lineare Klassifikatoren Volker Tresp 1 Einführung Lineare Klassifikatoren trennen Klassen durch eine lineare Hyperebene (genauer: affine Menge) In hochdimensionalen Problemen trennt schon eine lineare

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Universität Ulm 12. Juni 2007 Inhalt 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor- und Nachteile der SVM 1 2 3 Grundlegende Idee Der Kern-Trick 4 5 Multi-Klassen-Einteilung Vor-

Mehr

Überwachtes Lernen / Support Vector Machines. Rudolf Kruse Neuronale Netze 246

Überwachtes Lernen / Support Vector Machines. Rudolf Kruse Neuronale Netze 246 Überwachtes Lernen / Support Vector Machines Rudolf Kruse Neuronale Netze 246 Überwachtes Lernen, Diagnosesystem für Krankheiten Trainingsdaten: Expressionsprofile von Patienten mit bekannter Diagnose

Mehr

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp

Optimal-trennende Hyperebenen und die Support Vector Machine. Volker Tresp Optimal-trennende Hyperebenen und die Support Vector Machine Volker Tresp 1 (Vapnik s) Optimal-trennende Hyperebenen (Optimal Separating Hyperplanes) Wir betrachten wieder einen linearen Klassifikator

Mehr

5.1 Einleitung. 5. Klassifikation. 5.1 Einleitung. 5.1 Der Prozess der Klassifikation. Inhalt dieses Kapitels. Beispiel. Konstruktion des Modells

5.1 Einleitung. 5. Klassifikation. 5.1 Einleitung. 5.1 Der Prozess der Klassifikation. Inhalt dieses Kapitels. Beispiel. Konstruktion des Modells 5.1 Einleitung 5. Klassifikation Inhalt dieses Kapitels Das Klassifikationsproblem, Bewertung von Klassifikatoren 5.2 Bayes-Klassifikatoren Optimaler Bayes-Klassifikator, Naiver Bayes-Klassifikator, Anwendungen

Mehr

Textklassifikation, Informationsextraktion

Textklassifikation, Informationsextraktion Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Textklassifikation, Informationsextraktion Tobias Scheffer Thomas Vanck Textklassifikation, Informationsextraktion 2 Textklassifikation,

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Strukturelle Modelle SVMstruct Katharina Morik, Claus Weihs LS 8 Informatik 16.6.2009 1 von 37 Gliederung LS 8 Informatik 1 Überblick Lernaufgaben 2 Primales Problem 3

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Gliederung Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik, Claus Weihs 24520 Überblick Lernaufgaben 2 Primales Problem 3 Duales Problem 4 Optimierung der SVMstruct 5 Anwendungen

Mehr

Support Vector Machines, Kernels

Support Vector Machines, Kernels Support Vector Machines, Kernels Katja Kunze 13.01.04 19.03.2004 1 Inhalt: Grundlagen/Allgemeines Lineare Trennung/Separation - Maximum Margin Hyperplane - Soft Margin SVM Kernels Praktische Anwendungen

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Gliederung Vorlesung Maschinelles Lernen SVM SMO, Kernfunktionen, Anwendungen Katharina Morik 5.11.008 1 Lösung des Optimierungsproblems mit SMO Kernfunktionen 3 Bias und Varianz bei SVM 4 Anwendungen

Mehr

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel

Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Ridge Regression und Kernalized Support Vector Machines : Einführung und Vergleich an einem Anwendungsbeispiel Dr. Dominik Grimm Probelehrveranstaltung Fakultät für Informatik und Mathematik Hochschule

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Gliederung Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik 6.2.2008 Überblick Lernaufgaben 2 Primales Problem 3 Duales Problem 4 Optimierung der SVMstruct 5 Anwendungen von

Mehr

Support Vector Machines (SVM)

Support Vector Machines (SVM) Seminar Statistische Lerntheorie und ihre Anwendungen Support Vector Machines (SVM) Jasmin Fischer 12. Juni 2007 Inhaltsverzeichnis Seite 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Lineare Trennung 3 2.1 Aufstellung

Mehr

Die Datenmatrix für Überwachtes Lernen

Die Datenmatrix für Überwachtes Lernen Die Datenmatrix für Überwachtes Lernen X j j-te Eingangsvariable X = (X 0,..., X M 1 ) T Vektor von Eingangsvariablen M Anzahl der Eingangsvariablen N Anzahl der Datenpunkte Y Ausgangsvariable x i = (x

Mehr

2.4 Verallgemeinerte Ungleichungen

2.4 Verallgemeinerte Ungleichungen 2.4 Verallgemeinerte Ungleichungen 2.4.1 Eigentliche Kegel und verallgemeinerte Ungleichungen Ein Kegel K R heißt eigentlicher Kegel, wenn er die folgenden Bedingungen erfüllt: K ist konvex K ist abgeschlossen

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell

Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Textmining Klassifikation von Texten Teil 2: Im Vektorraummodell Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten Teil

Mehr

Pareto optimale lineare Klassifikation

Pareto optimale lineare Klassifikation Seminar aus Maschinellem Lernen Pareto optimale lineare Klassifikation Vesselina Poulkova Betreuer: Eneldo Loza Mencía Gliederung 1. Einleitung 2. Pareto optimale lineare Klassifizierer 3. Generelle Voraussetzung

Mehr

Data Mining Kapitel 11: Machine Learning. Johannes Zschache Wintersemester 2018/19

Data Mining Kapitel 11: Machine Learning. Johannes Zschache Wintersemester 2018/19 Data Mining Kapitel 11: Machine Learning Johannes Zschache Wintersemester 2018/19 Abteilung Datenbanken, Universität Leipzig http://dbs.unileipzig.de Data Mining 111 112 Data Mining Übersicht Hochdimension.

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Einführung in Support Vector Machines (SVMs)

Einführung in Support Vector Machines (SVMs) Einführung in (SVM) Januar 31, 2011 Einführung in (SVMs) Table of contents Motivation Einführung in (SVMs) Outline Motivation Vektorrepräsentation Klassifikation Motivation Einführung in (SVMs) Vektorrepräsentation

Mehr

Kontinuierliche Optimierung

Kontinuierliche Optimierung Kontinuierliche Optimierung Markus Herrich Wintersemester 2018/19 ii Inhaltsverzeichnis 2 Optimalitäts- und Regularitätsbedingungen 1 2.1 Einleitung und Wiederholung.................... 1 2.2 Optimalitätsbedingungen

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Einführung 5.4.2011 Gliederung 1 Modellbildung und Evaluation 2 Verlaufsmodell der Wissensentdeckung 3 Einführung in das Werkzeug RapidMiner Problem Wir haben nur eine endliche

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Strukturelle Modelle SVMstruct Katharina Morik LS 8 Künstliche Intelligenz Fakultät für Informatik 16.12.2008 1 von 35 Gliederung LS 8 Künstliche Intelligenz Fakultät für

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Teil 12 Bernhard Nessler Institut für Grundlagen der Informationsverabeitung TU Graz SS 2007 Übersicht 1 Maschinelles Lernen Definition Lernen 2 agnostic -learning Definition

Mehr

Optimierungstheorie Scheinklausur Sommersemester Juli 2007

Optimierungstheorie Scheinklausur Sommersemester Juli 2007 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Prof. Dr. Christian Wieners, Dipl.-Math. techn. Martin Sauter Institut für Angewandte und Numerische Mathematik Optimierungstheorie Scheinklausur

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Clusteranalyse. Tobias Scheffer Thomas Vanck Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse Tobias Scheffer Thomas Vanck Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

Hauptseminar Machine Learning: Support Vector Machines, Kernels. Katja Kunze

Hauptseminar Machine Learning: Support Vector Machines, Kernels. Katja Kunze Hauptseminar Machine Learning: Support Vector Machines, Kernels Katja Kunze 13.01.2004 Inhaltsverzeichnis 1 Einführung 2 1.1 Grundlagen............................ 2 2 Lineare Seperation 5 2.1 Maximum

Mehr

Technische Universität

Technische Universität Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Support Vector Machines Hauptseminar Robert Rackl Betreuer: Abgabetermin: 8. Juli.2004 Dipl.-Inform. Simone

Mehr

Das Trust-Region-Verfahren

Das Trust-Region-Verfahren Das Trust-Region-Verfahren Nadine Erath 13. Mai 2013... ist eine Methode der Nichtlinearen Optimierung Ziel ist es, das Minimum der Funktion f : R n R zu bestimmen. 1 Prinzip 1. Ersetzen f(x) durch ein

Mehr

Support-Vektor Maschinen: Feature-Funktionen. 27. Juni / 62

Support-Vektor Maschinen: Feature-Funktionen. 27. Juni / 62 Support-Vektor Maschinen: Feature-Funktionen 27. Juni 2017 1 / 62 Feature Funktionen Beispiele werden durch Zusatzinformationen, Features, aufbereitet. Eine Funktion φ : X R N heißt eine Feature-Funktion.

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 18. Januar 2006 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung

Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung Grundlagen von Support Vector Maschinen und Anwendungen in der Bildverarbeitung Jan Eichhorn jan.eichhorn@tuebingen.mpg.de Max-Planck-Institut für biologische Kybernetik 72076 Tübingen Danksagung Olivier

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Maschinelles Lernen Universität Potsdam Institut für Informatik Lehrstuhl Niels Landwehr, Silvia Makowski, Christoph Sawade, Tobias Scheffer Organisation Vorlesung/Übung, praktische Informatik. 4 SWS. Übung: Di 10:00-11:30

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Statistical Learning

Statistical Learning Statistical Learning M Gruber KW 45 Rev 1 1 Support Vector Machines Definition 1 (Lineare Trennbarkeit) Eine Menge Ü µ Ý µ Ü Æµ Ý Æµ R ist linear trennbar, wenn mindestens ein Wertepaar Û R µ existiert

Mehr

Lineare Klassifikationsmethoden

Lineare Klassifikationsmethoden Verena Krieg Fakultät für Mathematik und Wirtschaftswissenschaften 08. Mai 2007 Inhaltsverzeichnis 1. Einführung 2. Lineare Regression 3. Lineare Diskriminanzanalyse 4. Logistische Regression 4.1 Berechnung

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Größter Kreis in konvexem Polygon [vgl. Kapitel 6

Mehr

Signalverarbeitung 2. Volker Stahl - 1 -

Signalverarbeitung 2. Volker Stahl - 1 - - 1 - Überblick Bessere Modelle, die nicht nur den Mittelwert von Referenzvektoren sondern auch deren Varianz berücksichtigen Weniger Fehlklassifikationen Mahalanobis Abstand Besseres Abstandsmaß basierend

Mehr

Der Satz von Krein-Milman und der Satz von der trennenden Hyperebene

Der Satz von Krein-Milman und der Satz von der trennenden Hyperebene Der Satz von Krein-Milman und der Satz von der trennenden Hyperebene Sascha Schleef 28.10.2011 Ausarbeitung im Rahmen des Proseminars Analysis auf Grundlage des Buches A course in convexity von Alexander

Mehr

1. Hausaufgabenblatt (16.04./ )

1. Hausaufgabenblatt (16.04./ ) Lehrstuhl Ingenieurmathematik Modul: (Wirtschaftsingenieurwesen/Betriebswirtschaftslehre/Informatik) Sommersemester 2014 1. Hausaufgabenblatt (16.04./23.04.2015) Aufgabe H 1.1 Lösen Sie die linearen Gleichungssysteme

Mehr

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1)

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Anna Raaz 21.12.2007 Einführung Die Relaxierung von Lagrange wird in der stochastischen Optimierung meistens

Mehr

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 5 Optimierung mit Nebenbedingungen Thomas Brox, Fabian Kuhn Optimierung Vorlesung 5 Optimierung mit Nebenbedingungen 1 Minimierung mit Gleichheitsrestriktionen Gegeben: Funktion,,,, : Ziel:,,, Unrestringierter Fall: Notwendige Bedingung für lokales Minimum keine

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

(1) Der Anwender hat stets die Möglichkeit, die Beispiele durch Zusatzinformationen (Features) aufzubereiten.

(1) Der Anwender hat stets die Möglichkeit, die Beispiele durch Zusatzinformationen (Features) aufzubereiten. Feature Funktionen Eine unbekannte Klassifizierung f : X {0, 1} sei zu erlernen. (1) Der Anwender hat stets die Möglichkeit, die Beispiele durch Zusatzinformationen (Features) aufzubereiten. Eine Funktion

Mehr

Wissensentdeckung in Datenbanken

Wissensentdeckung in Datenbanken Wissensentdeckung in Datenbanken Katharina Morik und Claus Weihs Fakultäten Informatik und Statistik Technische Universität Dortmund Einl. Anwendungen Modellbildung Aufgaben Zusammenfassung Vorlesungsablauf

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

One-class Support Vector Machines

One-class Support Vector Machines One-class Support Vector Machines Seminar Wissensbasierte Systeme Dietrich Derksen 3. Januar 204 Motivation One-class Support Vector Machines: Detektion von Ausreißern (Systemfehlererkennung) Klassifikation

Mehr

Thema: Support Vector Machines Johannes Lächele

Thema: Support Vector Machines Johannes Lächele Proseminar: Machine Learning 26. Juli 2006 Johannes Lächele Zusammenfassung: In dieser Seminararbeit wird das Basiswissen für das Verständnis von Support Vector Machines oder SVM vermittelt. Nach einer

Mehr

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen

Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Kapitel 6 Differential- und Integralrechnung in mehreren Variablen Inhaltsverzeichnis FUNKTIONEN IN MEHREREN VARIABLEN... 3 BEISPIELE UND DARSTELLUNGEN... 3 GRENZWERT UND STETIGKEIT (ABSTANDSBEGRIFF)...

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Statistische Lerntheorie und Empirische Inferenz Statistical Learning Theorie and Empirical Inference

Statistische Lerntheorie und Empirische Inferenz Statistical Learning Theorie and Empirical Inference Statistische Lerntheorie und Empirische Inferenz Statistical Learning Theorie and Empirical Inference Schölkopf, Bernhard Max-Planck-Institut für biologische Kybernetik, Tübingen Korrespondierender Autor

Mehr

Einführung in die Bioinformatik: Lernen mit Kernen

Einführung in die Bioinformatik: Lernen mit Kernen Einführung in die Bioinformatik: Lernen mit Kernen Dr. Karsten Borgwardt Forschungsgruppe für Maschinelles Lernen und Bioinformatik Max-Planck-Institut für Intelligente Systeme & Max-Planck-Institut für

Mehr

Lineare Regression. Volker Tresp

Lineare Regression. Volker Tresp Lineare Regression Volker Tresp 1 Die Lernmaschine: Das lineare Modell / ADALINE Wie beim Perzeptron wird zunächst die Aktivierungsfunktion gewichtete Summe der Eingangsgrößen x i berechnet zu h i = M

Mehr

Linear nichtseparable Probleme

Linear nichtseparable Probleme Linear nichtseparable Probleme Mustererkennung und Klassifikation, Vorlesung No. 10 1 M. O. Franz 20.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Duda et al., 2001. Übersicht

Mehr

Bekannte Anwendungen. Wissensentdeckung in Datenbanken. Interesse an Anwendungen. CRISP-DM: CRoss Industry Standard Process for Data Mining

Bekannte Anwendungen. Wissensentdeckung in Datenbanken. Interesse an Anwendungen. CRISP-DM: CRoss Industry Standard Process for Data Mining Einl. Anwendungen Modellbildung Aufgaben Zusammenfassung Vorlesungsablauf Bekannte Anwendungen Wissensentdeckung in banken Katharina Morik und Claus Weihs Fakultäten Informatik und Statistik Technische

Mehr

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern

Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Vergleich von SVM und Regel- und Entscheidungsbaum-Lernern Chahine Abid Bachelor Arbeit Betreuer: Prof. Johannes Fürnkranz Frederik Janssen 28. November 2013 Fachbereich Informatik Fachgebiet Knowledge

Mehr

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode

6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode 6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Einführung in das statistische Lernen

Einführung in das statistische Lernen Universität Ulm 24. April 2007 Inhalt Motivation Grundbegriffe Kleinste Quadrate und k-nächste-nachbar-methode Statistische Entscheidungstheorie Regressionsmodelle und Kernmethoden Zusammenfassung Modellwahl

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes-Klassifikator

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

1.3 Differenzierbarkeit

1.3 Differenzierbarkeit 1 1.3 Differenzierbarkeit Definition Sei B R n offen, a B, f : B R eine Funktion und v 0 ein beliebiger Vektor im R n. Wenn der Grenzwert D v f(a) := lim t 0 f(a + tv) f(a) t existiert, so bezeichnet man

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle

Mehr

Machine Learning. ML Kapitel 7: Support Vector Machines. Prof. Dr. Johannes Maucher. Version November HdM CSM

Machine Learning. ML Kapitel 7: Support Vector Machines. Prof. Dr. Johannes Maucher. Version November HdM CSM Machine Learning Kapitel 7: Support Vector Machines HdM CSM Version 1.5 16. November 2017 Document History Version Date Changes Nr. 1.0 18.06.2009 1.1 14.06.2010 Eigene Beispiele hinzugefügt 1.2 16.05.2011

Mehr

Optimalitätsbedingungen

Optimalitätsbedingungen Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,

Mehr

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0.

Näherungsverfahren zur Bestimmung der Nullstelle α sind iterativ, d.h. sie liefern eine Folge {x (k) } k=0 mit α = lim x (k). (3.0. 3 Nullstellenbestimmung von Funktionen Sei x f(x) eine reellwertige Funktion, definiert auf einem Intervall I = [a, b] R. suchen Nullstellen der Funktion f, d.h. Wir finde α R so, das f(α) = 0. (3.0.1)

Mehr

Rückblick auf die letzte Vorlesung. Bemerkung

Rückblick auf die letzte Vorlesung. Bemerkung Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo sungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS2/ Dipl.-Math. T. Pawlaschyk, 29.0.2 Thema: Wiederholung Aufgabe Zeigen Sie, dass

Mehr

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 4 Newton und Quasi Newton Verfahren (Teil II) 1 Newton Verfahren Taylor Approximation 1. Ordnung von Newton Verfahren! 0 Setze 0und berechne Löse lineares Gleichungssystem für : 2

Mehr

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung!

1. Klausur zur Vorlesung Informatik III Wintersemester 2003/2004. Mit Lösung! Universität Karlsruhe Theoretische Informatik Fakultät für Informatik WS 23/4 ILKD Prof. Dr. D. Wagner 2. Februar 24. Klausur zur Vorlesung Informatik III Wintersemester 23/24 Mit Lösung! Beachten Sie:

Mehr

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x)

y (k) (0) = y (k) y(z) = c 1 e αz + c 2 e βz. c 1 + c 2 = y 0 k=1 k=1,...,m y k f k (x) 9 Ausgleichsrechnung 9.1 Problemstelllung Eine Reihe von Experimenten soll durchgeführt werden unter bekannten Versuchsbedingungen z Ê m. Es sollen Größen x Ê n bestimmt werden, für die ein Gesetz gelten

Mehr

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2)

Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Algorithmische Geometrie: Delaunay Triangulierung (Teil 2) Nico Düvelmeyer WS 2009/2010, 2.2.2010 Überblick 1 Delaunay Triangulierungen 2 Berechnung der Delaunay Triangulierung Randomisiert inkrementeller

Mehr

Konvexe Mengen. Kanglin,Chen. Universität Bremen, Proseminar WS 04/05

Konvexe Mengen. Kanglin,Chen. Universität Bremen, Proseminar WS 04/05 Konvexe Mengen Kanglin,Chen Universität Bremen, Proseminar WS 04/05 Satz. (Satz von Kirchberger) Sei P, Q E n kompakt und nicht leer. Dann gilt: P, Q sind durch eine Hyperebene streng trennbar. Für jede

Mehr

Vorlesung Wissensentdeckung in Datenbanken

Vorlesung Wissensentdeckung in Datenbanken Vorlesung Wissensentdeckung in Datenbanken SVM Anwendungen Kristian Kersting, (Katharina Morik), Claus Weihs LS 8 Informatik Computergestützte Statistik Technische Universität Dortmund 05.06.2014 1 von

Mehr

Mehrkriterielle Optimierung mit Metaheuristiken

Mehrkriterielle Optimierung mit Metaheuristiken Sommersemester 2006 Mehrkriterielle Optimierung mit Metaheuristiken (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering (LS XI) Fachgebiet Computational Intelligence

Mehr

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Gliederung 1 : Einführung 2 Differenzieren 2 3 Deskriptive 4 Wahrscheinlichkeitstheorie

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr