Lineare Optimierung: Simplexverfahren Phase Ⅰ
|
|
|
- Frieda Auttenberg
- vor 7 Jahren
- Abrufe
Transkript
1 Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren konstruiert man eine Folge von Ecken von G (zulässiger Bereich), deren Elemente nicht steigende Zielfunktionswerte aufweisen. Sei x eine zulässige Basislösung und J B und J N zugehörige Indexmengen. Es gilt: b = Bx B + Nx N x B = B b B Nx N = B (b Nx N ) Es folgt: c T x = c N T x N + c B T x B = c N T x N c B T B Nx N + c B T B b = c N T x N + c B T (B Nx N + B b) = c N T x N + c B T x B Damit ergibt sich das zu (.) äquivalente, reduzierte Problem (c N T c B T B N)x N + c B T B b + c 0 min (.2) bei x B = B (b Nx N ) 0, x N 0 Bezeichnungen: q (c T N c T B B N) T q 0 c T B B b (+c 0 ) P B N p B b Damit ergibt sich die zu (.) und (.2) äquivalente Formulierung q T x N + q 0 min (.) bei x B = Px N + p 0, x N 0 und die Schreibweise in Tableau-Form x N T x B = P p z = q T q 0 (.4)
2 BEISPIEL (bereits mit Schlupfvariablen x 4, x 5, x 6 formuliert) z = x + 7x 2 + 2x + 48 min bei x 2x 2 x + x 4 = 2 2x 5x 2 x + x 5 = 4 x x 2 x + x 6 = x i 0 (i =,,6) x x 2 x x 4 = 2 2 x 5 = x 6 = z = Wir haben eine erste zulässige (da p = ( 2 4 ) 0) Basislösung x 0 = (0, 0, 0, 2, 4, ). DEFINITION Ein zulässiges Schema (d.h. p 0) heißt Simplexschema oder Simplextableau. Dieses ist zeilenweise zu lesen, d.h. x i = P ij x j + p j j J N (x) i J B (x) z = q j x j + q 0 j J N (x) Analyse des Schemas. Fall: Es gilt: q 0. Das Tableau ist optimal, d.h. der Punkt ( x B) = ( p ) ist zulässige Basislösung und x N 0 optimal. Das Schema ist entscheidbar. 2. Fall: Es gilt: k J N (x) mit q k < 0 und P ik 0 i J B (x). Das Tableau ist nicht optimal und nicht lösbar (unbegrenztes Fallen der Zielfunktion). Das Schema ist entscheidbar.. Fall: In allen anderen Fällen ist das Simplextableau nicht entscheidbar und es müssen Austauschschritte vorgenommen werden. 2
3 BEMERKUNG Das Schema aus BEISPIEL ist damit nicht entscheidbar. Das Simplexverfahren Das Ziel ist es, ausgehend vom vorliegenden Simplextableau mittels der folgenden drei Simplexregeln ein entscheidbares Simplextableau zu bestimmen. (SR) Wähle Spalte (Pivotspalte) k J N (x) mit q k < 0 minimal (im Fall der Mehrdeutigkeit k kleinstmöglich). (SR2) Wähle Zeile (Pivotzeile) l J B k (x) = {i J B (x): P ik < 0} und berechne t min { p i P ik : i J B k (x)} = p l t heißt charakteristischer Quotient. heißt Pivotelement. (SR) Führe mittels Austauschverfahren mit dem Pivotelement den Austausch x l x k durch. Für das Austauschverfahren gelten laut Gauß schem Algorithmus folgende Austauschregeln: P lk = P lj = P lj P ik = P ik P ij = P ij P lj P P ik lk j J N (x) {k}, i J B (x) {l} p l = p l p i = p i p l P P ik lk q j = q j P lj q P k lk q k = q k q P 0 = q 0 p l q lk P k lk Damit erhalten wir ein neues Simplextableau mit nicht größerem Wert q 0. Falls der Entartungsfall t = 0 im Verlauf der Austauschschritte nicht auftritt, so überführt das Simplexverfahren ein nicht entscheidbares Simplextableau in endlich vielen Schritten in ein entscheidbares Schema.
4 BEISPIEL 2 Gegeben sei wieder die Zielfunktion z aus BEISPIEL sowie das erste zulässige Simplextableau mit den Quotienten p i P ik mit i J B k (x). x 0 x x 2 x x 4 = ( ) = 2 x 5 = ( 2) = 2 x 6 = ( ) = z = x x 6 x 2 x x 4 = 0 ( ) = x 5 = ( ) = 2 x = z = 2 5 x 2 x 6 x 4 x x 2 = 0 x 5 = ( ) = x = 2 4 z = 2 x x 6 x 4 x 5 x 2 = 0 x = x = 2 5 z = 0 2 Wir haben die optimale Lösung x = (5,,,0,0,0) erhalten. 4
5 2. Gewinnung eines ersten Simplexschemas Phase des Simplexverfahrens Die Phase des Simplex-Verfahrens dient dazu, eine erste zulässige Basislösung zu bestimmen. Betrachte die Standardaufgabe (.) z = c T x + c 0 min bei Ax = b, x 0 Ohne Beschränkung der Allgemeinheit kann man voraussetzen, dass b 0 gilt. Andernfalls multipliziert man die Gleichungen in Ax = b mit b i < 0 (i =,. n) mit. Betrachte den erweiterten Bereich LEMMA G = {( x y ) Rn R m Ax + Iy = b, x 0, y 0}. Es gilt G {0} G. Ist (x, 0) Ecke von G, so ist x Ecke von G und umgekehrt. Um also eine Ecke x von G zu ermitteln, genügt es, eine Ecke (x, y ) von G zu bestimmen, für die y = 0 gilt. Dies versucht man mit der Hilfszielfunktionsmethode zu erreichen. Dazu betrachte die Hilfsaufgabe m h = y i min i= bei Ax + Iy = b, x 0, y 0 (.5) h wird Hilfszielfunktion genannt, y,, y m heißen künstliche Variablen. LEMMA 2 Sei eine Optimierungsaufgabe der Form (.) mit G gegeben und es existiere ein α ε R mit z(x) α x G. Dann besitzt (.) eine optimale Lösung, insbesondere auch eine optimale Ecke. SATZ Sei G = {x R n + : Ax = b} = {x R n : Ax = b, x 0}. Dann besitzt G mindestens eine Ecke. BEMERKUNG: Hier wird erstmalig keine Vollrangbedingung der Matrix A vorausgesetzt. 5
6 Beweis: Betrachte G und die Hilfsaufgabe (.5). Es gilt: i. ( x y ) = (0 b ) ist eine erste zulässige Basislösung von G, also ist G. ii. Wegen y 0 folgt h 0 für alle zulässigen ( x y ) G. Damit ist die Hilfsaufgabe lösbar und es existiert eine optimale Ecke ( x y ) (nach LEMMA 2). iii. Da G G {0} G. Für jedes bezüglich (.) zulässige x gilt ( x 0 ) G und der Zielfunktionswert ist h = h (( )) = 0. x 0 Weiterhin ist rg(a I) = m J B = m und J N = n. Wegen h = h (( x y )) = 0 ist y B = 0 und b = B ( x B y B) + N ( x N y N). Die (x-komponenten) der optimale(n) Basislösung erzeugen die rechte Seite des Linearen Gleichungssystems wie folgt: j J x ja j B or = b, wobei JB or J B {,, n} Falls nun J B or < m, so kann entweder durch Hinzunahme von weiteren Indizes j J B or die Matrix B or zu einer regulären Matrix B = (a j ) j B ergänzt werden (neue Basiskomponenten a j = 0 entartete Basis) oder die Matrix A besitzt keinen vollen Rang. Dann können aber überflüssige Zeilen gestrichen werden (s. Lineare Algebra: Gauss-Algorithmus). Mit Wiederholung der Überlegungen folgt die Behauptung. SATZ 2 Das Ausgangsproblem (.) besitzt genau dann eine zulässige Lösung, falls für den Optimalwert von (.5) gilt h min = 0. Beweis: i. und ii. laufen analog zum Beweis von SATZ. iii. zeigt die Implikation G h = 0. Es bleibt nun noch zu zeigen, dass auch h = 0 G. Es gilt: h = 0 y B = 0 und damit y = 0. Damit ist ( x B ) zulässige Basislösung des Ausgangsproblems (.) und G. 0 6
7 BEMERKUNG Die Lösung der Hilfsaufgabe (.5) wird in der Literatur auch als Phase der Simplexmethode bezeichnet, die Lösung der Originalaufgabe (falls G ) entsprechend als Phase 2. Falls in der Lösung von (.5) h 0 (d.h. h(y ) > 0) gilt, ist der zulässige Bereich G der Standardaufgabe (.) leer. Andernfalls hat man mit x eine erste Ecke von G gefunden. Konstruktion des ersten Simplexschemas für Phase 2 Die Hilfsaufgabe sei gelöst mit h min = 0. Dann wird wie folgt verfahren: i. Falls die Variable y i nicht mehr in der Basis ist, dann wird diese gestrichen (mit zulässiger Spalte) erstes zulässiges Schema für Phase 2 ii. Sei (ein) y l noch in der Basis. Da h min = 0, muss p l = 0 gelten. Fall : k J N mit 0: Austausch y l x k Fall 2: P lj = 0 j J N Streichung der l-ten Zeile BEISPIEL Gegeben sei folgendes lineares Optimierungsproblem: z = 2x + x 2 + x min bei x + 2x 2 + x = x x 2 x = 2x + x 2 = 2 x i 0 (i =,2,) Die Voraussetzung b i > 0 (i =,2,) wird durch Multiplikation der zweiten Nebenbedingung mit erfüllt, also x + x 2 + x = Außerdem sind drei Hilfsvariablen y i (i =,2,) erforderlich: x + 2x 2 + x + y = x + x 2 + x + y 2 = 2x + x 2 + y = 2 7
8 Das Optimierungsproblem wird in Tableau-Form geschrieben: x 0 x x 2 x y y 2 y x B GA y y I 2II y III II h IV + 4II z V II x x x 2 x y y 2 y x B GA y 0 0 : x II + I y 0 0 III I h IV + 6I z V I x 2 x x 2 x y y 2 y x B x 0 0 x y h z Da h min = 0, ist diese Basislösung optimal für Phase und es existiert eine für das Originalproblem zulässige Basislösung. Die künstliche Variable y ist noch eine Basisvariable (bezüglich Phase ), allerdings stellt sie im Tableau eine Nullzeile dar. Das Lineare Gleichungssystem hatte in der Originalaufgabe keinen vollen Rang. Die Zeile und Spalte zu y werden gestrichen. Wir erhalten das Simplex-Tableau für das Ausgangsproblem mit Basislösung x 2 = (, 4, 0). Diese ist bereits optimal, da q > 0. Falls die LOA die Voraussetzungen für Phase 2 die Existenz einer zulässigen Basislösung sowie die Vollrangbedingung der Matrix A nicht erfüllt, kann dies mit Hilfe der Phase des Simplex-Verfahrens aufgedeckt werden. 8
1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)
. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)
10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen
10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen Bisher haben wir immer vorausgesetzt, dass alle Variablen eines LOP der Bedingung x i 0 liegen. Im Folgenden wollen wir auch sogenannte freie
Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)
Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.
Eigenschaften von LPs
2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört
4.3.3 Simplexiteration
7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige
VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind
Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:
Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten
Übung 3, Simplex-Algorithmus
Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung
VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung
Grundlagen der Optimierung. Übung 6
Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren
Die duale Simplexmethode
Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen
Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.
Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme
1. Transport- und Zuordnungsprobleme
1. Transport- und Zuordnungsprobleme Themen 1. Transport- und Zuordnungsprobleme Themen: Analyse der Problemstruktur Spezielle Varianten des Simplexalgorithmus für Transport- und Zuordnungsprobleme Bezug
1 Lineare Optimierung, Simplex-Verfahren
1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und
Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung
Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................
Dualitätssätze der linearen Optimierung
Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =
Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung
Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit
Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme
Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter
Lineare Algebra 1. Roger Burkhardt
Lineare Algebra 1 Roger Burkhardt [email protected] Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition
Numerische Lineare Algebra
Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)
Teil I. Lineare Optimierung
Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,
Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298
Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)
Lösung allgemeiner linearer Programme
Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt
1 Der Simplex Algorithmus I
1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier
Lineare Optimierung Teil 2
Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine
Hauptsatz und Optimalitätskriterium der Simplexmethode
Kapitel 4 Hauptsatz und Optimalitätskriterium der Simplexmethode In diesem Abschnitt wird das wichtigste Verfahren zur Lösung linearer Optimierungsprobleme eingeführt die Simplexmethode Es existiere für
VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max
Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005
Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner
Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1 Vortrag: Lineare Gleichungen am 11. März 2009 von Maximilian Wahner Technische Universität Dortmund Fakultät für Mathematik Proseminar Lineare
Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme
Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)
Lineare Algebra und Numerische Mathematik für D-BAUG
R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes
Angewandte Mathematik für die Informatik
Angewandte Mathematik für die Informatik PD Dr. Louchka Popova-Zeugmann PD Dr. Wolfgang Kössler 17. Mai 2017 1 Lineare Optimierung Allgemeine LOA Ganzzahlige Optimierung Differentialgleichungen Differentialgleichungen
2 Vektorräume und Gleichungssysteme
2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum Definition 21 Seien K = (K, +, ) ein Körper, V eine Menge und
Optimierung. Vorlesung 02
Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j
Aufgabe 5.3 Duale Simplexverfahren
Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation
6 Lineare Gleichungssysteme
6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α
6 Korrektheit des Simplexalgorithmus
6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt
Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck
Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach
z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist
Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,
MODULPRÜFUNG Numerische Methoden (Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik)
Karlsruher Institut für Technologie KIT) Institut für Analysis Dr. S. Wugalter Herbst 7.9.7 MODULPRÜFUNG Numerische Methoden Elektrotechnik, Meteorologie, Geodäsie und Geoinformatik) Aufgabe 4 Punkte)
Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b
Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung
Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2
Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der
Prof. Dr. Roland Griesse. Höhere Mathematik für Bachelorstudiengänge I.2
Höhere Mathematik für Bachelorstudiengänge I.2 Wir nehmen an, dass die LOA bereits in Normalform vorliegt: Maximiere c x, wobei A x = b sowie x 0 mit A R m n, b R m und c R n. Neben b 0 nehmen wir noch
Ausgewählte Lösungen zu den Übungsblättern 4-5
Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit
Optimale Steuerung 1 Prozessoptimierung 1
Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung
Optimierung. Vorlesung 04
Optimierung Vorlesung 04 Übungsbetrieb Mangels Teilnehmer keine Dienstagsübung mehr. Prüfung laut Paul: Di, 10. Feb. 2015 00:01-23:59 2 Was bisher geschah LP: Maximiere c T x unter Ax = b, x 0. Basis:
05. Lineare Gleichungssysteme
05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
1 Matrizenrechnung zweiter Teil
MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten
Der Simplex-Algorithmus
5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der
Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg
Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 8 Teil, Lineare Optimierung, Aufgabe Baden-Württemberg.. Ein Fertigungsbetrieb für Frottierartikel stellt unter anderem Handtücher und Badetücher her.
5 Lineare Gleichungssysteme und Determinanten
5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von
Kap. 4.2: Simplex- Algorithmus
Kap. 4.2: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14.-17. VO A&D WS 08/09 2.12.-16.12.2008 Petra Mutzel Alg. & Dat.
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,
8. Lineare Optimierung
8. Lineare Optimierung 1 Einführung (1) Praktische Probleme sind oft Probleme mit Nebenbedingungen, z.b.: Ein Produktionsprozess hängt von Lieferterminen ab Die Menge der verstaubaren Güter ist durch die
CARL HANSER VERLAG. Peter Stingl. Operations Research Linearoptimierung
ARL HANSER VERLAG Peter Stingl Operations Research Linearoptimierung -446-228-6 wwwhanserde 2 Lineare Optimierungsprobleme x 2 6 P P sentartete Ecke ( 4) x +x 2 5 PPPPPPPPPPPPPPP X x + x 2 7 2x +x 2 8
1 Transponieren, Diagonal- und Dreiecksmatrizen
Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix
Zugeordneter bipartiter Graph
Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten
a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:
Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag
3 Lineare Gleichungen
Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a
D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10
D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)
Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018
(Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,
4.1. Basislösung und kanonische Form
4.1. asislösung und kanonische Form ekannt: Jedes LOP kann äquivalent in ein Programm vom Typ III umgeformt werden. Jedes nichtleere Polyeder vom Typ III ist spitz. Für ein LOP vom Typ III gehört im Falle
Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung.
Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil : Lineare Algebra und Optimierung Wintersemester Matrizenrechnung Aufgabe ( 3 0 Gegeben sind die Matrizen A = 2 5 2 4 D =
Über- und unterbestimmte
Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche
3 Systeme linearer Gleichungen
3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +
Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl
Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines
Kapitel V. Affine Geometrie
Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b
Kap. 4.3: Das Dualitätstheorem der linearen Optimierung
Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur
Mathematik IT 2 (Lineare Algebra)
Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme
1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1
1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 22.10.2013 Alexander Lytchak 1 / 16 Wiederholung des Beispiels 3x 6 + x 7 = 2 2x 2 + 4x 4 + 6x 5 + 5x 7 = 3 2x 2 + x
3.1. Existenzsatz und Struktur der Lösungsmenge
3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall
1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4
Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte
Aufgabe 1: Betrachtet werde das Matrixspiel mit der Auszahlungsmatrix a. 1. Für welche Werte von a gibt es ein Nash sches Gleichgewicht?
Lösungen zu den Übungsaufgaben im Kapitel 7 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier Aufgabe : Betrachtet werde das Matrixspiel mit
Der Kern einer Matrix
Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis
Ganzzahlige lineare Programme
KAPITEL 5 Ganzzahlige lineare Programme Wir betrachten nun Optimierungsprobleme vom Typ (42) min c T x s.d. Ax = b, x 0, x ganzzahlig, wobei die Matrix A R m n und die Vektoren c R n, b R m gegeben seien.
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
3.2.5 Dualität der linearen Optimierung I
3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem
2.5 Smith-Normalform für Matrizen über Euklidischen Ringen
2.5. SMITH-NORMALFORM FÜR MATRIZEN ÜBER EUKLIDISCHEN RINGEN73 2.5 Smith-Normalform für Matrizen über Euklidischen Ringen Bemerkung 2.74. Sei K ein Körper und A K n m, b K n 1. Das lineare Gleichungssystem
Kombinatorische Optimierung
Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
3 Lineare Gleichungssysteme
3 Lineare Gleichungssysteme 3 Fortsetzung des Matrizenkalküls Als erstes beweisen wir einen einfachen Satz über den Rang von Matrizenprodukten Satz 3 (a) Für Matrizen A : Ã l m, B : Ã m n gilt rang AB
Das lineare Komplementaritätsproblem
Springer-Lehrbuch Das lineare Komplementaritätsproblem Eine Einführung Bearbeitet von Uwe Schäfer Auflage 28 Taschenbuch x Paperback ISBN 978 3 54 79734 Format (B x L): 5,5 x 23,5 cm Gewicht: 428 g Wirtschaft
Dr. Anita Kripfganz SS 2014
Dr. Anita Kripfganz SS 2014 4. Lösungsverfahren 4.1. Schnittebenenmethode Im Jahre 1958 hat R. Gomory ein allgemeines Schnittebenenverfahren zur Lösung ganzzahliger linearer Optimierungsprobleme vorgeschlagen.
7.1 Matrizen und Vektore
7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit
