Kap. 4.2: Simplex- Algorithmus

Größe: px
Ab Seite anzeigen:

Download "Kap. 4.2: Simplex- Algorithmus"

Transkript

1 Kap. 4.2: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund VO A&D WS 08/ Petra Mutzel Alg. & Dat. WS 08/09 1

2 Literatur für diese VO V. Chvatal: Linear Programming D. Bertsimas: Linear Programming Petra Mutzel Alg. & Dat. WS 08/09 2

3 Überblick 4.2 Der Simplex-Algorithmus Einführung Basisaustauschsatz Tableau-Methode (Standard-Simplex) Revidierte Simplex-Methode mit Eta- Faktorisierung Spalten- und Zeilenauswahlregeln Terminierung Analyse der Laufzeit Petra Mutzel Alg. & Dat. WS 08/09 3

4 3.2 Der Simplex-Algorithmus Lineare Programme werden in der Praxis mit Hilfe des Simplex-Algorithmus gelöst [Dantzig 1955]. Max 3x 1 + 2x 2 + 2x 3 Subject to x 1 + x 3 8 x 1 + x 2 7 x 1 + 2x 2 12 x 1, x 2, x 3 0 Petra Mutzel Alg. & Dat. WS 08/09 4

5 Visualisierung des Simplex-Algorithmus Max z = 3x 1 + 2x 2 + 2x 3 x 3 (0,0,8) (0,6,8) Optimal! (2,5,6) z = 28 z = 0 (0,6,0) x 2 (7,0,1) z = 23 (2,5,0) x 1 (7,0,0) z = 21

6 Simplex-Algorithmus Gegeben: LP mit Lösungspolyeder P (1) Bestimme einen beliebige Ecke (Initialecke) v von P. (2) Falls es keine verbessernde Kante inzident zu v gibt stop: v ist optimal. (3) Folge einer beliebigen verbessernden Kante e von v. Falls e unbeschränkt ist, d.h. keinen anderen Endpunkt hat stop: Das LP ist unbeschränkt. (4) Sei u der andere Endpunkt von e. Setze v=u. Gehe zu (2)

7 Offene Fragen zu Simplex-Algorithmus Wie findet man eine Initialecke v von P? Bei zulässigen LPs in Standardform mit nicht-negativen a ij und b i ist der Ursprung (Punkt 0) immer ein Knoten von P. Ansonsten verwendet man ein Preprocessing (Phase 1), das an einem Schnittpunkt evtl. außerhalb von P startet und durch ähnliche Basisaustauschschritte zu einer Ecke in P läuft. Wie wird das Polyeder abgespeichert? Man speichert das durch die Restriktionen beschriebene Gleichungssystem in Form eines Tableaus ab. In jedem Simplexschritt verändert sich das Tableau und die ausgehenden Kanten des aktuellen Ecke können aus dem Tableau berechnet werden. Teste, ob die aktuelle Ecke optimal ist? Falls nicht, welche verbessernde Kante wählt man? Terminiert der Algorithmus? s. Vorlesung: gleich

8 Definitionen Gegeben sei ein Gleichungssystem Ax=b mit A R m n, m<n, b R m, rang(a)=m. Sei B=(p 1,p 2,...,p m ) {1,2,...,n} m Spaltenindexmenge und N=(q 1,q 2,...,q n-m ) {1,2,...,n} n-m Spaltenindexmengen mit B N={1,2,...,n} und B N=. Für J {1,2,...n}: A J ist die Untermatrix von A nach Streichen der Spalten aus {1,2,...,n} \ J. Wir schreiben A B statt A B und A N statt A N. Ist A B regulär (=invertierbar), so heißt A B Basismatrix oder Basis von A und B Basisindexvektor oder Basis von A; analog A N, N Nichtbasisindexvektor. Der Vektor x R n mit x N =0, x B =A B -1 b heißt Basislösung von Ax=b zur Basis A B.

9 Definitionen Ist A B regulär (=invertierbar), so heißt A B Basismatrix oder Basis von A und B Basisindexvektor oder Basis von A; analog A N, N Nichtbasisindexvektor. Der Vektor x R n mit x N =0, x B =A B -1 b heißt Basislösung von Ax=b zur Basis A B. Ist A B eine Basis, so heißen die Variablen x j, j B, Basisvariablen und die x j, j N Nichtbasisvariablen. Ist A B Basis und gilt A B -1 b 0, so heißen A B, B und die zugehörige Basislösung x zulässig, sonst unzulässig. Eine zulässige Basislösung x zur Basis A B heißt nichtdegeneriert, falls (x B ) i =(A B -1 b) i >0 für alle i B, sonst degeneriert.

10 Simplex-Gleichungsschema und Simplex Tableau max c T x s.t. Ax=b, x 0 max c B c N T x B x N s.t. (A B, A N ) x B = b, x B 0 x N x N A B x B + A N x N = b x B = A B 1 b A B 1 A N x N Zielfunktionswert: z = c B T x B + c N T x N = c B T (A B 1 b A B 1 A N x N ) + c N T x N = = c T B A 1 B b + (c T N c T B A 1 B A N )x N Simplex-Gleichungsschema: x B = A 1 B b A 1 B A N x N z = c T B A 1 B b + (c T N c T B A 1 B A N )x N

11 Simplex-Gleichungsschema und Simplex Tableau Simplex-Gl.schema: x B = A B 1 b A B 1 A N x N z = c B T A B 1 b + (c N T c B T A B 1 A N )x N Zielfunktionswert Simplex-Tableau: Werte der Basisvariablen - c B T A B 1 b A B 1 b c N T c B T A B 1 A N A B 1 A N reduzierte Kosten

12 Basisaustauschsatz Beispiel, s. Tafel

13 Beweis: (a) (b1) Petra Mutzel Alg. & Dat. WS 08/09 14

14 (b2) A B entsteht aus A B durch Ersetzen der r-ten Spalte durch A qs. Es gilt A B = A B F, wobei F = ā 1s ā r 1,s ā rs ā r+1,s ā ms Denn: Wir haben Ā s = A 1 B A q s und deshalb ist die s-te Spalte von A B F gleich A B Ā s = A B A 1 B A s = A qs und alle anderen Spalten bleiben wie in A B. Es gilt ā rs > 0, also ist F regulär und somit ist A B eine Basis. Petra Mutzel Alg. & Dat. WS 08/09 15

15 Weiterhin ist x B = A 1 b = F 1 A 1 B B b = F 1 x B = F 1 b mit ā1s ā rs ār 1,s F 1 ā rs 1 = ā rs ār+1,s ā rs āms ā rs Also gilt für i 1, 2,..., m: r-te Spalte Falls ā is > 0: x p i = b i āis ā rs br b i āis ā bi is =0 insbesondere für i = r: x p r = b r ārs ā rs br = 0 (neue Nichtbasisvariable) Falls ā is 0: x p i = b i āis ā rs br b i 0 und x q s = b r ā rs 0 (neue Basisvariable) Also ist x zulässige Basislösung zur Basis B. Petra Mutzel Alg. & Dat. WS 08/09 16

16 (b3) nicht-degenerierter Fall: λ 0 >0: Petra Mutzel Alg. & Dat. WS 08/09 17

17 Simplex-Algorithmus (1) Start mit einer zulässigen Basis (2) Iterierte Anwendung des Satzes: (a) STOP, Optimalität (b1) STOP, Unbeschränktheit (b2) Basiswechsel: Pivot mit Pivotspalte s und Pivotzeile r 2 Varianten: Tableau-Methode (Standard-Simplex) Revidierte Methode

18 Tableau-Methode Zielfunktionswert - c B T A B 1 b c N T c B T A B 1 A N reduzierte Kosten Werte der Basisvariablen A B 1 b A B 1 A N t 00 t t 0n t 10 t t 1n t m0 t m1... t mn Das Tableau ist zulässig falls t i0 0 für alle i {1,2,...,m}. Das Tableau ist optimal falls t 0j 0 für alle j {1,2,...,n}.

19 Rechenregeln (aus Basisaustausch-Satz) Berechnung von Ā = A 1 B A N : A 1 B A N =(A B F ) 1 A N = F 1 (A 1 B A N ) A N unterscheidet sich von A N nur durch die r-te Spalte (gehört zur Variablen mit Index p r ). Zur Neuberechnung von Ā muss Ā also im Wesentlichen mit F 1 multipliziert werden; Ausnahmen bilden die r-te Spalte sowie die s-te Zeile. Dasselbe gilt für die Berechnung von b und c. Das Element ā rs wird als Pivotelement bezeichnet. Daraus ergeben sich die folgenden Rechenregeln: Petra Mutzel Alg. & Dat. WS 08/09 20

20 Rechenregeln (aus Basisaustausch-Satz)

21 Beispiel

22 Beispiel ff

23 Beispiel fff

24 Beobachtungen zum Simplex-Algorithmus In jeder Iteration wird eine Basislösung durch eine andere ersetzt. Zur Berechnung der neuen Basislösung x B wird nur ein sehr kleiner Teil des Tableaus benutzt: man benötigt A -1 B, b=x B und c sowie die s-te Spalte von A. Idee: Statt jedes Mal die ganze Matrix zu berechnen, berechne nur den Teil, der wirklich gebraucht wird, und dies direkt aus den Originaldaten revidierte Simplexmethode

25 Revidierte Simplex-Methode Petra Mutzel Alg. & Dat. WS 08/09 26

26 Petra Mutzel Alg. & Dat. WS 08/09 27

27 Beispiel Gleiches Beispiel wie vorhin mit B = (4, 5),N = (1, 2, 3), c = (3, 5, 4, 0, 0), ( ) ( ) ( ) ( ) 1 0 x A B =, x 0 1 B = =, A = x 5 1. Iteration: y T A B = c T B : y T ( ) = (0 0) y = ( ) 0 0 F r x 2 sind die reduzierten Kosten c 2 y T ( ) 2 2 = c 2 =5. x 2 tritt ein t = 3 2 und x 4 raus. A B d = a d = ( ) 2 2

28 Beispiel Damit haben wir die neue Basis sowie Basislösung: x 2 = 3 2 x B := ( x4 x 5 B = (2, 5) ) N = (1, 4, 3) ( 3 ) x B := 2 2 = Es gilt: A B = A Balt F = ( ) ( ) 2 2 = ( ) 0 2 ( )( ) = ( ) Petra Mutzel Alg. & Dat. WS 08/09 29

29 2. Iteration Beispiel ( ) y T = (5, 0) y = ( ) Reduzierte Kosten: x 1 :3 ( 5 ( ) 2 2, 0) 1 x 4 :0 ( 5 ( ) 1 2, 0) 0 x 3 :4 ( 5 ( ) 1 2, 0) 4 = 2 0 = = 3 2 x 3 rein Petra Mutzel Alg. & Dat. WS 08/09 30

30 t = 2 3 und x 5 raus. A B d = a : Beispiel ( ) 2 0 d = 2 1 ( ) 1 4 d = ( ) x 3 = 2 3 x B := ( x2 x 5 ) = ( ) 2 3( ) = ( B = (2, 3),N = (1, 4, 5) ( 7 ) 6 x B := 2 3 ( )( ) Es gilt: A B = A Balt F = ) = ( ) Petra Mutzel Alg. & Dat. WS 08/09 31

31 Beispiel 3. Iteration: Reduzierte Kosten: ( ) y T = (5 4) y = ( ( x 1 :3 2, 1 )( ) 2 = ( x 4 :0 2, 1 )( ) 1 = ( x 5 :0 2, 1 )( ) 0 = ) Optimal!

32 Lösung der Gleichungssysteme durch Eta-Faktorisierung der Basis Ziel: Lösung nicht mittels Neuberechnung der Inversen B r-te Spalte wird ersetzt durch d Petra Mutzel Alg. & Dat. WS 08/09 33

33 Eta-Faktorisierung der Basis Z.B. Lösen von y T A B4 = c T B : (((yt E 1 )E 2 )E 3 )E 4 = c T B : u T E 4 = c T B,vT E 3 = u T,w T E 2 = v T,y T E 1 = w T. Lösen von A B4 d = a: E 1 (E 2 (E 3 (E 4 d))) = a E 1 u = a, E 2 v = u, E 3 w = v, E 4 d = w. BTRAN für back transformation FTRAN für forward transformation Speicherung der Eta-Matrizen: jeweils nur die Spalte und die Position. Eta-File: E 1,E 2,..., E k.

34 Bemerkung zur Eta-Faktorisierung Mit der Eta-Faktorisierung hat man zwar mehr Gleichungssysteme zu lösen, da diese aber sehr dünn besetzt ist, ist dies mit sehr geringem Aufwand verbunden: Wenn die Eta-Spalte k Nicht-Nullen besitzt, dann werden hierzu nur k-1 Multiplikationen, k-1 Additionen und 1 Division benötigt. Denn das Lösen von E k d = a ist einfach: Sei die r-te Spalte von E k gegeben durch ā: Dann ist d r = a rs /ā rs und d i = a 1s ā is d r

35 Faktorisierung / Refaktorisierung Problem 1: In jeder Iteration kommt eine neue Eta-Matrix hinzu Zunehmende Ineffizienz, da immer mehr Gleichungssysteme zu lösen sind und damit auch neben dem Zeitfaktor numerische Fehler verbunden sind Lösung: Neuberechnung von A B k alle h Iterationen (Chvatal empfiehlt h=20) (z.b. als LU-Zerlegung oder trianguläre Faktorisierung) und setze diese als neues A B 0. Problem 2: Was tun, wenn A B 0 I? Periodische Refaktorisierung Faktorisierung Lösung: Faktorisierung von A B 0 (z.b. als LU-Zerlegung oder trianguläre Faktorisierung)

36 Vorteile der revidierten Methode Rechenaufwand ist bei einer großen und dünn besetzten Matrix deutlich kleiner als bei Tableau- Methode Spalten werden nur bei Bedarf generiert Eta-Faktorisierung (und Refaktorisierung) statt Speicherung der inversen Matrix Rechengenauigkeit ist deutlich besser, denn man kann die inverse Basismatrix regelmäßig neu berechnen. Simplexalgorithmus läßt noch einige Freiheiten, z.b. bei Zeilen und Spaltenauswahl, denn es können jeweils mehrere Kandidaten existieren.

37 Spaltenauswahlregeln Kleinster-Index-Regel: Wähle die Spalte mit kleinstem Index Kleinster-Variablenindex-Regel: Wähle die Spalte mit dem kleinsten Variablenindex Steilster-Anstieg-Regel: Wähle diejenige Spalt mit den größten reduzierten Kosten Größter-Fortschritt-Regel: Berechne den neuen Zielfunktionswert über alle möglichen Spalten aus und wähle dann diejenige Spalte, die den größten Wert bringt. Lexikographische Spaltenauswahlregel: Betrachte jeweils die Vektoren der in Frage kommenden Spalten und wähle den lexikographisch kleinsten aus. Petra Mutzel Alg. & Dat. WS 08/09 38

38 Zeilenauswahlregeln Diese Regeln werden dann angewendet, falls es mehrere Kandidaten zur Auswahl gibt Kleinster-Index-Regel: Wähle die Zeile mit kleinstem Index Kleinster-Variablenindex-Regel: Wähle die Zeile mit dem kleinsten Variablenindex Lexikographische Zeilenauswahlregel: Betrachte jeweils die Vektoren der in Frage kommenden Zeilen und wähle den lexikographisch kleinsten aus. Petra Mutzel Alg. & Dat. WS 08/09 39

39 Terminierung Problem: Man kann Beispiele konstruieren, für die sich eine Basis wiederholt: Phänomen des Zykelns (nur bei Degenerität) keine Terminierung Lösung: Es gibt Spalten- bzw. Zeilenauswahlregeln, von denen man zeigen kann, dass in diesem Fall der Simplex-Algorithmus terminiert. Petra Mutzel Alg. & Dat. WS 08/09 40

40 Terminierung Bland s Regel: Eintretende und austretende Variable ist immer diejenige mit dem kleinsten Index. Satz (Bland, 1977): Bei der Anwendung von Bland s Regel terminiert der Simplexalgorithmus. Bemerkungen: Wendet man die kleinste Indexregel auf nur eine Spalten- oder Zeilenauswahl an, dann kann man Beispiele konstruieren, bei denen das Verfahren nicht terminiert. Es gibt aber auch Regeln (z.b. die lexikographische Zeilen- bzw. Spaltenauswahlregel), die nur auf eines der beiden angewendet werden müssen um Terminierung zu erhalten.

41 Bemerkungen Achtung: Bland s Regel verhindert zwar das Zykeln, aber in der Praxis hat sich gezeigt, dass i.a. die Anzahl der Pivotoperationen bei Anwendung der Bland-Regel wesentlich höher liegt als z.b. bei der Steilster Anstieg-Regel. In der Praxis wird daher meist die steilste Anstieg Regel zur Spaltenauswahl verwendet.

42 Laufzeit Worst Case: Zu fast allen bekannten Pivotauswahlregeln kennt man heute eine Klasse von Polyedern und Zielfunktionen, so dass der Simplexalgorithmus bei Anwendung einer zugehörigen Auswahlregel durch alle Ecken des Polyeders läuft. Da die Anzahl der Ecken dieser Polyeder exponentiell mit der Anzahl der Variablen wächst exponentielle worst-case Laufzeit.

43 Laufzeitvergleich von Tableau- mit Revidierter Simplexmethode Laufzeit pro Iteration für dünn-besetzte Matrizen: Schätzung laut Chvatal-Buch: Annahme: Tableauspalten und Zeilen enthalten m/2 bzw. n/2 Nicht-NullElemente; Faktorisierungsmatrizen von B k : 12m Nicht-Null-Elemente; Eta-Spalten: ca. 25%-50% dicht FTRAN: ca. 10m, BTRAN: ca. 20m Auswahl der Eingangsvariablen: 10n Berechnung der Ausgangsvariablen: m Aktualisierung von x B und B: m Gesamtzeit Revidierter Simplex: 32m+10n Gesamtzeit Tableau-Methode: mn/4

Kap. 4.2: Simplex- Algorithmus

Kap. 4.2: Simplex- Algorithmus Kap. 4.: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO V. Chvatal: Linear Programming D. ertsimas:

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Optimierung. Vorlesung 02

Optimierung. Vorlesung 02 Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

4 Lineare Optimierung

4 Lineare Optimierung 4 Lineare Optimierung In diesem Kapitel werden wir uns mit effizienten Verfahren im Bereich der linearen Optimierung beschäftigen. 4.1 Einführung Als Einführung betrachten wir das Beispiel einer Erdölraffinerie.

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

Optimierung. Vorlesung 04

Optimierung. Vorlesung 04 Optimierung Vorlesung 04 Übungsbetrieb Mangels Teilnehmer keine Dienstagsübung mehr. Prüfung laut Paul: Di, 10. Feb. 2015 00:01-23:59 2 Was bisher geschah LP: Maximiere c T x unter Ax = b, x 0. Basis:

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

6. Einführung 43. gilt. Dann soll also A B x B = b eindeutig lösbar sein, also A B vollen Rang haben, d. h. invertierbar (regulär) sein.

6. Einführung 43. gilt. Dann soll also A B x B = b eindeutig lösbar sein, also A B vollen Rang haben, d. h. invertierbar (regulär) sein. 6. Einführung 43 und aus der linearen Unabhängigkeit der (a i ) i I(x) folgt y i = z i auch für i I(x). Insgesamt gilt also y = z, d. h., nach Definition 6.9 ist x eine Ecke von P. Beachte: Der Koordinatenvektor

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

Die duale Simplexmethode

Die duale Simplexmethode Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Optimierung. Vorlesung 08

Optimierung. Vorlesung 08 Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T

Mehr

Aufgabe 5.3 Duale Simplexverfahren

Aufgabe 5.3 Duale Simplexverfahren Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,

Mehr

Hauptsatz und Optimalitätskriterium der Simplexmethode

Hauptsatz und Optimalitätskriterium der Simplexmethode Kapitel 4 Hauptsatz und Optimalitätskriterium der Simplexmethode In diesem Abschnitt wird das wichtigste Verfahren zur Lösung linearer Optimierungsprobleme eingeführt die Simplexmethode Es existiere für

Mehr

Einführung in die Lineare Programmierung

Einführung in die Lineare Programmierung Einführung in die Lineare Programmierung Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 RWTH Aachen 28. Mai 2008 Elementares Beispiel Die kanonische Form Die algebraische Gleichungsform Gegeben seien

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Inhaltsverzeichnis Grundlagen der Linearen Optimierung

Inhaltsverzeichnis Grundlagen der Linearen Optimierung Inhaltsverzeichnis 4 Grundlagen der Linearen Optimierung 1 4.1 Grundbegriffe............................. 1 4.1.1 Lineare Optimierung..................... 1 4.1.2 Das Grundmodell eines linearen Optimierungsproblems

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

1. Transport- und Zuordnungsprobleme

1. Transport- und Zuordnungsprobleme 1. Transport- und Zuordnungsprobleme Themen 1. Transport- und Zuordnungsprobleme Themen: Analyse der Problemstruktur Spezielle Varianten des Simplexalgorithmus für Transport- und Zuordnungsprobleme Bezug

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Numerik für Informatiker und Bioinformatiker. Daniel Weiß

Numerik für Informatiker und Bioinformatiker. Daniel Weiß Numerik für Informatiker und Bioinformatiker Daniel Weiß SS 202 Folgende Literatur bildet die Grundlage dieser Vorlesung: P Deuflhard, A Hohmann, Numerische Mathematik, Eine algorithmisch orientierte Einführung,

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

6 Korrektheit des Simplexalgorithmus

6 Korrektheit des Simplexalgorithmus 6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Mitschrift der Vorlesung: Kombinatorische Optimierung

Mitschrift der Vorlesung: Kombinatorische Optimierung Mitschrift der Vorlesung: Kombinatorische Optimierung bei Prof. Socher-Ambrosius Niels-Peter de Witt 26. April 2002 Inhaltsverzeichnis 1 Einführung 2 1.1 Beispiel: Profil zersägen.......................

Mehr

4.1. Basislösung und kanonische Form

4.1. Basislösung und kanonische Form 4.1. asislösung und kanonische Form ekannt: Jedes LOP kann äquivalent in ein Programm vom Typ III umgeformt werden. Jedes nichtleere Polyeder vom Typ III ist spitz. Für ein LOP vom Typ III gehört im Falle

Mehr

Basiswissen Matrizen

Basiswissen Matrizen Basiswissen Matrizen Mathematik GK 32 Definition (Die Matrix) Eine Matrix A mit m Zeilen und n Spalten heißt m x n Matrix: a a 2 a 4 A a 2 a 22 a 24 a 4 a 42 a 44 Definition 2 (Die Addition von Matrizen)

Mehr

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1 Vortrag: Lineare Gleichungen am 11. März 2009 von Maximilian Wahner Technische Universität Dortmund Fakultät für Mathematik Proseminar Lineare

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht A t t Τ = α Y t Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Matrizen als Modellierungswerkzeug Speyer, Juni 24 - Beispiele mathematischer Medellierung Seite Matrizen als

Mehr

Inhaltsverzeichnis. 4 Praxisbeispiel 7

Inhaltsverzeichnis. 4 Praxisbeispiel 7 Inhaltsverzeichnis Geschichte und Entwicklung. Grundidee................................2 George B. Dantzig...........................3 Diäten-Problem von G.J. Stigler.................. 2.4 John von Neumann

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2009)

Vorlesung Lineare Optimierung (Sommersemester 2009) 1 Vorlesung Lineare Optimierung (Sommersemester 2009) Kapitel 7: Der Simplex-Algorithmus Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 18. Juni 2009) Gliederung 2 Ecken, Kanten, Extremalstrahlen

Mehr

Prof. Dr. Roland Griesse. Höhere Mathematik für Bachelorstudiengänge I.2

Prof. Dr. Roland Griesse. Höhere Mathematik für Bachelorstudiengänge I.2 Höhere Mathematik für Bachelorstudiengänge I.2 Wir nehmen an, dass die LOA bereits in Normalform vorliegt: Maximiere c x, wobei A x = b sowie x 0 mit A R m n, b R m und c R n. Neben b 0 nehmen wir noch

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

3. Der Simplexalgorithmus Der Simplexalgorithmus 3.1 Formen des Linearen Optimierungsproblem. (3.1) Allgemeine Form !"#! " # # R $ %!

3. Der Simplexalgorithmus Der Simplexalgorithmus 3.1 Formen des Linearen Optimierungsproblem. (3.1) Allgemeine Form !#!  # # R $ %! 11 3.1 Formen des Linearen Optimierungsproblem... 12 3.2 Zulässige Basislösungen... 13 3.3 Die Geometrie von Linearen Programmen... 14 3.4 Lokale Suche unter den zulässigen Basislösungen... 15 3.5 Organisation

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 5. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 2, 207 Erinnerung Definition. Ein Skalarprodukt ist eine Abbildung, : E n E n E, v, w v, w = n k= v

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende) . Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen 10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen Bisher haben wir immer vorausgesetzt, dass alle Variablen eines LOP der Bedingung x i 0 liegen. Im Folgenden wollen wir auch sogenannte freie

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 12. Übung: Woche vom (Lin.Alg. Übungsaufgaben 12. Übung: Woche vom 16. 1.-20. 1. 2017 (Lin.Alg. I): Heft Ü 3: 2.1.11; 2.1.8; 2.1.17; 2.2.1; 2.2.3; 1.1.1; 1.1.4; Hinweis 1: 3. Test (Integration, analyt. Geom.) ist seit 9.1. freigeschalten

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Unterschrift. Zur Beachtung. Bitte nicht ausfüllen

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Unterschrift. Zur Beachtung. Bitte nicht ausfüllen RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen L i n e a r e A l g e b r a 25.5.2007 (SS 2007) Name Vorname Teilnehmer-Nr. Unterschrift Zur Beachtung Die

Mehr

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz

Aufwand und Komplexität Vorlesung vom Komplexität und Effizienz Aufwand und Komplexität Vorlesung vom 15.12.17 Komplexität und Effizienz Aufwand: Anzahl dominanter Operationen (worst-case). Beispiel. Landau-Symbol O(n). Beispiel. Definition: Aufwand eines Algorithmus.

Mehr

Methoden der linearen Optimierung

Methoden der linearen Optimierung Methoden der linearen Optimierung Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Lineare Optimierung 3 2.1 Lineares Modell............................

Mehr

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2 Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der

Mehr

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik

Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik Lösungsskizzen zu den Klausuraufgaben zum Kurs 1142 Algorithmische Mathematik 1142KWL09 Aufgabe 1. Zeigen Sie, dass für alle n 2 gilt: n paarweise verschiedene Geraden im R 2 schneiden sich untereinander

Mehr

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a.

Determinanten - II. Falls n = 1, gibt es offenbar nur die identische Permutation, und für eine 1 1 Matrix A = (a) gilt det A = a. Determinanten - II. Berechnung von Determinanten Wir erinnern, dass für A M(n n; K) gilt : det A = σ S n signσ a σ() a 2σ(2)...a nσ(n). Falls n =, gibt es offenbar nur die identische Permutation, und für

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Aufgaben zu Kapitel 23

Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Simplex-Verfahren. Kapitel 3. Simplex-Verfahren. Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/ / 372

Simplex-Verfahren. Kapitel 3. Simplex-Verfahren. Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/ / 372 Kapitel 3 Simplex-Verfahren Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/18 104 / 372 Inhalt Inhalt 3 Simplex-Verfahren Primaler Simplexalgorithmus Unbeschränktheit

Mehr

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen

RUHR - UNIVERSITÄT BOCHUM KLAUSUR. Name. Vorname. Teilnehmer-Nr. Zur Beachtung. Bitte nicht ausfüllen RUHR - UNIVERSITÄT BOCHUM Fakultät für Wirtschaftswissenschaft KLAUSUR Mathematik für Ökonomen L i n e a r e A l g e b r a 15.5.1998 (SS 1998) Name Vorname Teilnehmer-Nr. Zur Beachtung Die Klausur umfaßt

Mehr

Cramersche Regel. Satz 2.26

Cramersche Regel. Satz 2.26 ramersche Regel Satz 6 Es sei A R n n eine quadratische Matrix mit det(a) 6= Für das LGS Ax = b sei A j := (a,,a j, b, a j+,,a n ), also die Matrix, die entsteht, wenn in A die j-te Spalte durch den Vektor

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen

Lineare Algebra I 3. Tutorium Inverse Matrizen und Gruppen Lineare Algebra I Tutorium Inverse Matrizen und Gruppen Fachbereich Mathematik WS / Prof Dr Kollross November Dr Le Roux Dipl-Math Susanne Kürsten Aufgaben Aufgabe G (Die zweite Variante des Gauß-Algorithmus)

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR

bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR A = LR LR-Zerlegung bekannt: Eliminationsverfahren von Gauß Verfahren führt zu einer Zerlegung der Koeffizientenmatrix: A = LR Definition 2.17 Unter einer LR-Zerlegung einer Matrix A R n n verstehen wir eine

Mehr

Dr. Anita Kripfganz SS 2014

Dr. Anita Kripfganz SS 2014 Dr. Anita Kripfganz SS 2014 4. Lösungsverfahren 4.1. Schnittebenenmethode Im Jahre 1958 hat R. Gomory ein allgemeines Schnittebenenverfahren zur Lösung ganzzahliger linearer Optimierungsprobleme vorgeschlagen.

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

36 2 Lineare Algebra

36 2 Lineare Algebra 6 Lineare Algebra Quadratische Matrizen a a n sei jetzt n m, A, a ij R, i, j,, n a n a nn Definition Eine quadratische Matrix A heißt invertierbar genau dann, wenn es eine quadratische Matrix B gibt, so

Mehr