Der Simplex-Algorithmus
|
|
|
- Franka Schuster
- vor 9 Jahren
- Abrufe
Transkript
1 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis durch Basisaustausch zu einer Ecke mit besserem Zielfunktionswert fortzuschreiten Da es nur endlich viele Ecken gibt, erhält man nach endlich vielen Schritten die optimale Lösung Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 77
2 5 Lineare Programmierung Simplex-Algorithmus Beispiel 56 Wir bleiben beim Problem des Eisverkäufers und ordnen die Daten in einem Tableau an: x x 2 x x 4 x 5 b i x x x 5 9 z 25 Die Strukturvariablen x, x 2 sind NBV, die Schlupfvariablen x, x 4, x 5 sind BV Die Werte der BV ergeben sich aus den Nebenbedingungsgleichungen, die durch die Zeilen des Tableaus repräsentiert werden Letzte Zeile ist Zielfunktionszeile, Zielfunktionswert ganz rechts Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 78
3 5 Lineare Programmierung Simplex-Algorithmus Basisaustausch: x verspricht den größeren Zuwachs, x -Spalte ist die Pivotspalte x kann höchstens den Wert /5 = 6 annehmen, x 4 wird dann Null x 4 -Zeile ist die Pivotzeile Pivotspalte und Pivotzeile schneiden sich im Pivotelement, hier a 2 = 5 Die Pivotzeile entspricht der Gleichung 5x + 2x 2 + x 4 = Somit x = x 2 5 x 4 Dies setzen wir in alle übrigen Gleichungen ein Für die erste Zeile erhalten wir ( x 2 5 x 4) +x2 +x = Dies ergibt 5 x 2 + x 5 x 4 = 4 Die Pivotzeile wird zu x x x 4 = 6 Die dritte Zeile bleibt unverändert, da x dort nicht auftritt Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 79
4 5 Lineare Programmierung Simplex-Algorithmus Die Zielfunktionszeile wird zu (6 2 5 x 2 5 x 4) 25x 2 + z =, also x 2 + 6x 4 + z = 8 Das neue Tableau: x x 2 x x 4 x 5 b i x x x 5 9 z 6 8 Man dividiert also die Pivotzeile durch den Pivotwert Zu den übrigen Zeilen addiert man ein Vielfaches der Pivotzeile, so daß in der Pivotspalte Nullen entstehen Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 8
5 5 Lineare Programmierung Simplex-Algorithmus Durch Vertauschen der Spalten für x und x 4 bringt man das Tableau wieder in die übliche Form: x 4 x 2 x x x 5 b i x x x 5 9 z 6 8 Die zugehörige Ecke ist Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 8
6 5 Lineare Programmierung Simplex-Algorithmus Der nächste Austauschschritt liefert das Tableau: Das heißt in der Ecke wird das Optimum mit z = 8 angenommen x 4 x x 2 x x 5 b i x x 2 x z 2 7 Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 82
7 5 Lineare Programmierung Simplex-Algorithmus Algorithmus 5 [Simplexalgorithmus] Start: Es liege ein kanonisches Maximumproblem (b i, i =,, m) vor Ecke des Ausgangstableaus ist: x x n m x n m+ x n = b b m mit z = Schlupfvariablen sind BV, Strukturvariablen sind NBV Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 8
8 5 Lineare Programmierung Simplex-Algorithmus Ausgangstableau: x x t x n m x n m+ x n m+s x n b i x n m+ a a t a,n m b x n m+s a s a s,n m b s x n a m a mt a m,n m b m z c c t c n m Wahl der Pivotspalte: Ist die Zielfunktionszeile von der Gestalt z d d t d n m d mit d j, (j =,, n m), so liegt eine Optimallösung vor Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 84
9 5 Lineare Programmierung Simplex-Algorithmus Andernfalls mache man eine Spalte t mit negativem d j zur Pivotspalte und die NBV x t zur BV Wahl der Pivotzeile: Sind in der Pivotspalte alle a it, so wächst z unbeschränkt, da x t unbeschränkt wachsen kann Es gibt dann keine Optimallösung Andernfalls bestimme man eine Zeile s durch b s = min m i= b i a it für a it > Die NBV x t wird BV und bekommt den Wert b s Die bisherige BV x n m+s wird BV und nimmt den Wert an Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 85
10 5 Lineare Programmierung Simplex-Algorithmus Austauschschritt: Das neue Tableau lautet: Linke Hälfte: x x t x n m a a t a s a,n m a t a s,n m a s a s,n m a m a mt a s a m,n m a mt a s,n m z d d t a s d n m d t a s,n m x n m+ x t x n Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 86
11 5 Lineare Programmierung Simplex-Algorithmus Rechte Hälfte: x n m+ x n m+s x n b i a t b b s a t b s a mt b m b s a mt d t d b s d t Terminierung: Wenn alle Koeffizienten der Zielfunktionszeile nichtnegative Werte haben, beschreibt das Tableau eine optimale Ecke Rechts unten steht z max Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 4/5 87
Eigenschaften von LPs
2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört
Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298
Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)
Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl
Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines
Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)
Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.
Zugeordneter bipartiter Graph
Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten
4.3.3 Simplexiteration
7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige
Lösung allgemeiner linearer Programme
Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt
Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung
Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................
6 Korrektheit des Simplexalgorithmus
6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt
Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg
Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 8 Teil, Lineare Optimierung, Aufgabe Baden-Württemberg.. Ein Fertigungsbetrieb für Frottierartikel stellt unter anderem Handtücher und Badetücher her.
mit. Wir definieren (Skalarprodukt = Winkel).
1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert
3. Schnittebenenverfahren
3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research
Übung 3, Simplex-Algorithmus
Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung
Lineare Optimierung Teil 2
Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine
Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2
Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der
Allgemeines zur Vorlesung
Operations Research Peter Becker Fachbereich Informatik FH Bonn-Rhein-Sieg [email protected] Vorlesung Master Computer Science Spezialisierung Wirtschaftsinformatik Wintersemester 2007/08
Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme
Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter
1 Lineare Optimierung, Simplex-Verfahren
1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und
VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max
VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind
Kombinatorische Optimierung
Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales
Aufgabe 5.3 Duale Simplexverfahren
Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation
Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2006 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg
Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2006 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg 2.1 Weinbauer Müller kann maximal 30 Hektar Rebfläche bewirtschaften. Er möchte Gutedel-
10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G
48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x
Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn
Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,
Klausurkolloquium. Musterlösung Produktionscontrolling: Lineare Programmierung
Klausurkolloquium Musterlösung Produktionscontrolling: Lineare Programmierung Fallstudie Die GOGO GmbH ist ein mittelständisches gewinnorientiertes Unternehmen. Das taktische Produktionsprogramm einer
Simplex-Umformung für Dummies
Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit
x a 2n + + a mn
Lineare Gleichungssysteme(LGS Es sei a i j R und i R für alle (i = 1,, m und ( j = 1,, n. Dann heißt a 11 + a 12 + + a 1n = 1 + a 22 + + a 2n = 2 + a m2 + + a mn = m ein lineares Gleichungssystem mit m
Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren
A2.1 Lineare Optimierung mit dem Simplexverfahren Wenn ein Unternehmen ermitteln möchte, wie viele Mengeneinheiten von verschiedenen Produkten zu produzieren sind, damit bei gegebenen Verkaufspreisen der
8. Lineare Optimierung
8. Lineare Optimierung 1 Einführung (1) Praktische Probleme sind oft Probleme mit Nebenbedingungen, z.b.: Ein Produktionsprozess hängt von Lieferterminen ab Die Menge der verstaubaren Güter ist durch die
OPERATIONS-RESEARCH (OR)
OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:
Lineare Optimierungsmodelle
Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung
Kap. 4.2: Simplex- Algorithmus
Kap. 4.: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO V. Chvatal: Linear Programming D. ertsimas:
1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1
1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1
Aufgaben zu Kapitel 23
Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor
Probeklausur Optimierung
Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)
Dualitätssätze der linearen Optimierung
Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =
Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung
Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit
Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 7
Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt
Operations Research für Wirtschaftsinformatiker. Vorlesungsskript von Richard Mohr
Operations Research für Wirtschaftsinformatiker Vorlesungsskript von Richard Mohr Fachhochschule Esslingen, SS 2005 INHALTSVERZEICHNIS i Inhaltsverzeichnis Lineare Optimierung. Graphische Lösung des linearen
Schranken für zulässige Lösungen
Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform
Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck
Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach
Lineare Programmierung Teil I
Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was
Lineare Optimierung und Simplex-Algorithmus
Lineare Optimierung und Simplex-Algorithmus Problemstellung Beispiel : Unser Unternehmen verfügt über drei Maschinen A, B, C, mit denen zwei verschiedene Produkte P, P2 hergestellt werden. Die Maschinen
Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung
Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des
Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b
Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung
z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist
Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,
Kap. 4.3: Das Dualitätstheorem der linearen Optimierung
Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur
1 Der Simplex Algorithmus I
1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier
Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n
Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander
Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren
Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(
4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form
2... 22 4.2 Die Bedingungen vom komplementären Schlupf... 23 4.3 Das Kürzeste-Wege-Problem und zugehörige duale Problem... 24 4.4 Das Farkas Lemma... 25 4.5 Duale Information im Tableau... 26 4.6 Der duale
Sensitivitätsanalyse in der Linearen Optimierung
Sensitivitätsanalyse in der Linearen Optimierung Bei der Sensitivitätsanalyse werden i. allg. Größen des Ausgangsproblems variiert, und es wird untersucht, welche Wirkung eine derartige Modifikation auf
Kap. 4: Lineare Programmierung
Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.
Zielfunktion lineare Funktion Nebenbedingungen lineare Funktionen
be/ji/3(2) 2-1 2 im Kontext der OR-Optimierungsmodelle Zielfunktion lineare Funktion Nebenbedingungen lineare Funktionen Standardform: - Planungsziel min bzw. min Z(x) = c 1 x 1 + c 2 x 2 + + c n x n Z(x)
Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...
Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den
Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.
Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber
Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester
Optimierung für Wirtschaftsinformatiker: Lineare Programme
Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen
Zeilenstufenform eines Gleichungssystems
Zeilenstufenform eines Gleichungssystems Ein lineares Gleichungssystem mit einer m n-koeffizientenmatrix lässt sich mit Gauß-Transformationen auf Zeilenstufenform (Echelon-Form) transformieren: Ax = b...
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche
Lineare Algebra I (WS 12/13)
Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung
Lineare Optimierung. Master 1. Semester
Prof. Dr.-Ing. Fritz Nikolai Rudolph Fachhochschule Trier Fachbereich Informatik Master 1. Semester Inhaltsverzeichnis 1 Einleitung... 2 1.1 Lineare Gleichungssysteme... 2 1.2 sprobleme... 3 2 Standardform...
Operations Research / Graphentheorie Inf. 1.1/ 1.2
Operations Research / Graphentheorie Inf. 1.1/ 1.2 Inhaltsangabe Simplex-Algorithmus Simplex-Verfahren (Maximierung)...2 Gleichungen als Restriktionen...4 Minimierung der Zielfunktion...4 Graphische Lösung
Hamiltonsche Graphen
Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält,
Mathematische Optimierung
Mathematische Optimierung Geschrieben von Jan Pöschko auf Grundlage der Vorlesung von Bettina Klinz TU Graz Sommersemester 2007 Stand: 27. Oktober 2009 Inhaltsverzeichnis I Lineare Optimierung 7 1 Grundlegende
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7
Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe
Das Lösen linearer Gleichungssysteme
Das Lösen linearer Gleichungssysteme Lineare Gleichungen Die Gleichung a 1 x 1 + a 2 x 2 +... + a n x n = b ist eine lineare Gleichung in den n Variablen x 1, x 2,..., x n. Die Zahlen a 1, a 2,..., a n
Berechnung von Abständen
3. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 3.4. Es sei G = (V, E) ein Graph. Der Abstand d(v, w) zweier Knoten v, w V ist die minimale Länge eines Weges von v nach w.
3.2.5 Dualität der linearen Optimierung I
3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem
Hausarbeit Operations Research
Hausarbeit Operations Research - Der Simplex-Algorithmus - Eingereicht von: Christoph Böhm MatrikelNr.: 10014637 Am Anger 30a 91365 Weilersbach (0163) 26 09 738 [email protected] vorgelegt bei:
Algorithmische Anwendungen
Lineare Programmierung Studiengang: Allgemeine Informatik 7.Semester Gruppe: A blau Sibel Cilek 3835 Daniela Zielke 36577..6 Inhaltsverzeichnis Einleitung...3. Was ist lineare Optimierung?... 3. Anwendungsbeispiele...
6. Softwarewerkzeuge für die Lineare Programmierung
6. Softwarewerkzeuge für die Lineare Programmierung Inhalt 6. Softwarewerkzeuge für die Lineare Programmierung GNU Linear Programming Kit Operations Research I Hochschule Bonn-Rhein-Sieg, SS 2013 314 GNU
Mathematik II für Wirtschaftswissenschaftler. Vorlesungsskript zur Vorlesung von Prof. Dr. C. Hesse
Mathematik II für Wirtschaftswissenschaftler Vorlesungsskript zur Vorlesung von Prof Dr C Hesse Universität Stuttgart, Sommersemster 2010 159 Inhaltsverzeichnis 10 Matrizen und lineare Gleichungssysteme
Kapitel 2: Lineare Optimierung
Kapitel 2: Lineare Optimierung Aufgabe 2.1: Lösen Sie zeichnerisch die folgenden LP-Modelle: a) Max. F(x,y) = 4x + 3y b) Max. F(x,y) = x + y c) Max. F(x,y) = x y x + 3y 9 5x + y 1 2x y x + 2y 2 x + 2y
Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.
Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt
Grundlagen der Optimierung. Übung 6
Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren
Lineare Optimierung Dantzig 1947
Lineare Optimierung Dantzig 947 Lineare Optimierungs-Aufgaben lassen sich mit Maple direkt lösen: with(simplex): g:= 4*x + x2
λ i x i λ i 0, x i X, nur endlich viele λ i 0}.
jobname LinOpt Sommer Aufgabe a) Sei X R n. Dann ist b) Cone X = { x i X λ i x i λ i, x i X, nur endlich viele λ i }. x Cone S = Lin S x Lin S = Cone S. Also gibt es nicht-negative Koeffizienten µ i von
Die Verbindung von Linearer Programmierung und Graphentheorie
Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der
Einführung in die Lineare Programmierung
Einführung in die Lineare Programmierung Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 RWTH Aachen 28. Mai 2008 Elementares Beispiel Die kanonische Form Die algebraische Gleichungsform Gegeben seien
4 Lineare Optimierung
4 Lineare Optimierung In diesem Kapitel werden wir uns mit effizienten Verfahren im Bereich der linearen Optimierung beschäftigen. 4.1 Einführung Als Einführung betrachten wir das Beispiel einer Erdölraffinerie.
Lineare Differenzengleichungen
Lineare Differenzengleichungen Die Fibonacci-Zahlen F n sind definiert durch F 0 = 0 F 1 = 1 F n = F n 1 +F n 2 für n >= 2 Die letzte Zeile ist ein Beispiel für eine homogene lineare Differenzengleichung
Inhaltsverzeichnis. 4 Praxisbeispiel 7
Inhaltsverzeichnis Geschichte und Entwicklung. Grundidee................................2 George B. Dantzig...........................3 Diäten-Problem von G.J. Stigler.................. 2.4 John von Neumann
(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung)
Lineare Optimierung Unterbestimmte LGS und Optimierung Bei lösbaren unterbestimmten linearen Gleichungssystemen haben wir die Qual der Wahl in Abhängigkeit von den freien Parametern (Anzahl = Anzahl Unbekannte
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
Lineare Gleichungssysteme (Teschl/Teschl 11.1)
Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...
4. Lösung linearer Gleichungssysteme
4. Lösung linearer Gleichungssysteme a x + : : : + a m x m = b a 2 x + : : : + a 2m x m = b 2 : : : a n x + : : : + a nm x m = b n in Matrix-Form: A~x = ~ b (*) mit A 2 R n;m als Koe zientenmatrix, ~x
Methoden der linearen Optimierung
Methoden der linearen Optimierung Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Lineare Optimierung 3 2.1 Lineares Modell............................
Einheitsmatrix E = , Nullmatrix O = c c Diagonalmatrix diag(c 1, c 2,..., c n ) = Rang
3 Matrizen 1 0 0 0 0 0 0 1 0 0 0 0 Einheitsmatrix E =, Nullmatrix O = 0 0 1 0 0 0 c 1 0 0 0 c Diagonalmatrix diag(c 1, c 2,, c n ) = 2 0 0 0 c n, Rang Definition: Die Zahl r heißt Rang einer Matrix, falls
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
Bonusmaterial Lineare Optimierung ideale Ausnutzung von Kapazitäten
Bonusmaterial Lineare Optimierung ideale Ausnutzung von Kapazitäten 23 231 Die Zweiphasenmethode Beim Simplexalgorithmus zur Lösung linearer Optimierungsprobleme in Standardform wählt man im zugehörigen
1 Lineare Gleichungssysteme und Matrizen
1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe
Operations Research. Zürcher Hochschule für Angewandte Wissenschaften Richard Bödi
Operations Research Zürcher Hochschule für Angewandte Wissenschaften Richard Bödi Basierend auf Manuskripten von Johanna Schönenberger-Deuel und Andreas Klinkert. Inhaltsverzeichnis Was ist Operations
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
