4.3.3 Simplexiteration

Größe: px
Ab Seite anzeigen:

Download "4.3.3 Simplexiteration"

Transkript

1 7. Januar Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige Ungleichung is als Gleichung erfüllt) zu einer Basisvariablen (die zugehörige Ungleichung ist i.a. nicht als Gleichung erfüllt) und umgekehrt. Der Übergang von einer Ecke zu einer benachbarten Ecke erfolgt in 6 Schritten. 1. Wahl der Pivotspalte Pivot: Dreh- und Angelpunkt Wähle die Spalte mit (kleinstem) negativem Wert in der letzten Zeile. Der Spaltenindex sei s, d.h. a m+1,s = min{a m+1,j j =1,...,n}, a m+1,s < 0 Falls mehrere Spalten als Pivotspalten in Frage kommen, spricht man von dualer Entartung. Man wählt beliebig einen der Kandidaten aus. Hintergrund: Wenn ich mich von der Startecke in Richtung der entsprechenden wachsenden Nichtbasisvariable bewege, wächst die Zielfunktion am stärksten (verglichen mit den anderen n-1 Möglichkeiten). Die etsprechnede Nichtbasisvariable soll jetzt Basisvariable werden. Eine Basisvariable muß dafür zur Nichtbasisvariable werden s. Waschpulver, s =1 2. Wahl der Pivotzeile Wähle diejenige Zeile, die den kleinsten nichtnegativen Quotienten aus dem Wert der letzten Spalte und dem technischen Koeffizienten der Pivotspalte aufweist. Der entsprechende Zeilenindex sei z, d.h. a z,n+1 = min{ a i,n+1 a is i =1,...,m} a z,n+1 0 Hintergrund: Man versucht so weit wie möglich in der ausgewählten Richtung zu gehen, aber dabei nicht den zulässigen Bereich zu verlassen. Beispiel Waschpulver

2 54 7. Januar 2013 Mögliche Entartungen werden später behandelt. s. Waschpulver: z =3 3. Umrechnung des Pivotelements, s. AB 7, Folie a zs := 1 4. Umrechnung der restlichen Pivotspalte a is := a is, i =1,...,m+1 i z 5. Umrechnung der restlichen Pivotzeile a zj := a zj, j =1,...,n+1 j s 6. Umrechnung des restlichen Tableaus a ij := a ij a is a zj i =1,...,m+1 i z, j =1,...,n+1 j s. oder Umrechnung mit Hilfe der Kellerzeile (s. ATV) Bemerkung: Tritt in der letzten Spalte ein negativer Wert auf, so liegt ein Fehler bei der Wahl des Pivotelementes (zul. Bereich verlassen) oder in der Rechnung vor Lösung des LOP (a) Abbruchkriterium, Optimalitätskriterium Die Elemente a m+1,...,a m+1,n der letzten Zeile heißen Optimalitätsindikatoren Der Algorithmus endet, wenn alle Optimalitätsindikatoren positiv sind. Die eindeutige Optimallösung wurde gefunden.

3 7. Januar (b) Beispiel Waschpulver: (c) Basislösungen Eine Basislösung ist eine zulässige Lösung des kanonischen Gleichungssystems (s. 3.1.(a)) mit höchstens m Nicht-Null-Einträgen (alle NBV = 0). Jede Basislösung entspricht einer Ecke des zulässigen Bereiches. Eine Basislösung heißt nicht degeneriert wenn sie genau m Nicht-Null-Einträge enthält, sonst heißt sie degeneriert. (d) Schattenpreise: Den Schattenpreis einer NBV liest man in der letzten Zeile der zugehörigen Spalte ab. Der Schattenpreis einer Basisvariablen ist 0. (Interpretation später) (e) Angabe der Lösung (am Beispiel):

4 56 7. Januar Sensitivitätsanalyse Bemerkung: Der optimale Zielfunktionswert Z max und die optimale Lösung x eines LOP hängen wesentlich ab von den Koeffizienten c j der Zielfunktion und von den rechten Seiten b i der Restriktionen Aus dem optimalen Tableau der Simplex-Methode kann abgelesen werden, wie stark eine Veränderung jedes einzelnen Koeffizienten b i oder c j den optimalen Zielfunktionswert beeinflusst, und innerhalb welcher Intervalle für die Veränderung dieser Koeffizienten (einzeln!) diese Aussagen gelten. Bezeichnungen: x B :enthält die Werte der Basisvariablen (Spalte n +1) Δ N :enthält die Schattenpreise der Nichtbasisvariablen (Zeile m +1) Gültigkeitsbereich und Bedeutung des Schattenpreises Abhängigkeit des optimalen Zielfunktionswertes und der optimalen Lösung von der Änderung der rechten Seite b i der i-ten Restriktionen: b i := b i + t Aus dem Endtableau wird durch die Bestimmung der Grenzen für t der Gültigkeitsbereich,b (o) ] des Schattenpreises der Restriktion berechnet. [b (u) i i Für LOP in Standard-Maximum-Form gilt Falls die zugehörige Schlupfvariable y i Basisvariable ist (Restriktion ist inaktiv), gilt t [ y i, ): Z max und x B ändern sich nicht. Falls die zugehörige Schlupfvariable y i Nichtbasisvariable ist (Restriktion ist aktiv), gilt t mit x B = x B + t (a 1i,...,a mi ) T 0 ((a 1i,...,a mi,a m+1,i ) T ist die zu y i gehörige Spalte des Simplextableaus )

5 7. Januar Z max := Z max + t a m+1,i, x B = x B + t (a 1i,...,a mi ) T Stabilitätsbereiche Abhängigkeit des optimalen Zielfunktionswertes von der Änderung eines Koeffizienten c j der Zielfunktion: c j := c j + t Aus dem Endtableau wird durch die Bestimmung der Grenzen für t der Stabilitätsbereich des Zielfunktionskoeffizienten berechnet. Für LOP in Standard-Maximum-Form gilt Falls x j Nichtbasisvariable ist, gilt t (,a m+1,j ]=(, Δ j ]: Z max und x B ändern sich nicht. Δ j ist der Schattenpreis von x j. Falls x j Basisvariable ist, gilt t mit Δ N = Δ N + t (a j1,...,a jn ) T 0 ((a j1,...,a jn ) ist die zu x j gehörende Zeile des Simplextableaus) Bemerkung: x B ändert sich nicht, Z max := Z max + t x j. Für LOP, die nicht in Standard-Maximum-Form gegeben sind, gelten analoge Formeln, wobei speziell die Vorzeichen für die Änderungen neu zu überlegen sind. Bei einer Verschärfung der Restriktionen kann sich der optimale Zielfunktionswert nur verschlechtern, bei einer Abschwächung von Restriktionen kann er sich nur verbessern.

6 58 7. Januar Sonderfälle des Simplexalgorithmus (a) Duale Entartung Problem: Bei der Wahl der Pivotspalte kommen mehrere Spalten in Frage. Lösung: Wähle eine beliebige davon aus. Wirkung: Die Wahl hat zwar möglicherweise Einfluß auf die Anzahl der Iterationsschritte, aber nicht auf die Lösung. (b) Primale Entartung 1. Art Problem: Bei der Wahl der Pivotzeile kommen mehrere Zeilen mit dem gleichen Wert in Frage. Es schneiden sich mehrere Restriktionen in einer Ecke. Die zugehörige Basislösung ist entartet. Durch entsprechende Austauschschritte ergeben sich eventuell mehrere Vektoren für die Schattenpreise: Δ (1),..., Δ (k) der optimalen Basislösung (s. Sensitivitätsanalyse): Beispiel: Z =2x 1 +3x 2 max! 4x 1 +5x 2 20 x 2 4 x 1,x 2 0 Δ i = min{ Δ (j) i,j=1,...,k} rechnerisch + graphisch: x =(0, 4 0, 0) T, Δ (1) =(0, 0 1 2, 1 2 )T, Δ (2) =( 2 5, 0 3 5, 0)T Es kann passieren, daß man bei ungünstiger Wahl der Zeile nach mehreren Schritten zum gleichen Tableau zurückkommt - und das kann sich endlos wiederholen. Das Problem nennt man Kreiseln. Lösung: Es gibt kein einfaches Rezept dagegen. Üblicherweise (insbesondere in der rechentechnischen Umsetzung) wählt man die Zeile zufällig. Damit steigt die Wahrscheinlichkeit, daß man nicht endlos kreiselt. (c) Primale Entartung 2. Art Problem: Es kommt keine Pivotzeile in Frage: Alle entsprechenden Elemente sind negativ oder null. Beispiel: Z =3x 1 +2x 2 max! x 2 4

7 7. Januar x 1,x 2 0 rechnerisch+graphisch: Das Problem hat keine endliche Lösung: Z max (d) Mehrere Lösungen, Lösungsmenge Problem: Alle Optimalitätsindikatoren sind nichtnegativ, aber es gibt Indikatoren gleich Null: a m+1,j 0 j =1,...,n und s : a m+1,s =0 Vorgehensweise: Das Simplexverfahren wird solange mit einer Pivotspalte mit a m+1,s = 0 wiederholt, solange sich neue Basislösungen ergeben. Seien x (1),..., x (k) die so ermittelten optimalen Lösungen. Lösungsmenge: Die Menge aller Optimallösungen ist dann die Menge der konvexen Linearkombinationen der x (l) : { } k k L = x R n x = λ l x (l), λ l =1,λ l 0 für l =1,...,k l=1 Beispiel: Z =3x 1 +2x 2 max! x 2 4 3x 1 +2x 2 12 x 1,x 2 0 rechnerisch+graphisch (nur Lösung, keine Schattenpreise): x (1) =(4, 0 4, 0) T, x (2) =( 4, 4 0, 0)T 3 L = { x R 2 x = λ 1 x (1) + λ 2 x (2),λ 1,λ 2 0,λ 1 + λ 2 =1} oder L = { x R 2 x = x (1) + λ( x (2) x (1) ), 0 λ 1} oder L = { x R 2 x =(1 λ) x (1) + λ x (2), 0 λ 1} l=1 Spezialfall: a m+1,s = 0 und a is 0 i =1,...,m d.h. es kommt keine Pivotzeile in Frage (s. Serie 12, 1 (e)). Der zulässige Bereich ist unbeschränkt und Z verläuft parallel zu einer der Restriktionsgleichungen. Sei a m+1,s = 0 und a is 0 i =1,...,m Sei x 1 die zum Tableau gehörige Basislösung. Berechne 2. Lösung x mit Hilfe des Tableaus für beliebiges λ, z.b. λ =1: -) Setze die zur Pivotspalte gehörige NBV = λ -) Die restlichen NBV sind = 0 -) Für i =1,...,m ist die Basisvariable der i-ten Zeile = a i,m+1 λ a is L = { x R n x = x (1) + λ( x ( ) x (1) ), 0 λ}

8 60 7. Januar Die 2-Phasen-Methode Problem: Das LOP liegt häufig nicht in Standard Form vor. Um trotzdem den Simplexalgorithmus anwenden zu können ist eine Transformation des Problems in ein Ersatzproblem in Standard Form nötig Transformation in Standard Form Beispiel: Serie 13, 3 (g) (a) Transformation der Zielfunktion: (s. AB 8, Folie) Falls ein Minimierungsproblem Z = c T x min vorliegt, so erhält man daraus das äquivalente Maximierungsproblem Z =( c) T x max, indem alle Zielfunktionskoeffizienten mit ( 1) multipliziert werden. (b) Transformation der Restriktionen: Zuerst wird jede Restriktion, deren rechte Seite negativ ist, mit ( 1) multipliziert z.b.: 3x 1 4x 2 5 3x 1 +4x 2 5; Danach werden in den so entstandenen Restriktionen Schlupfvariable y i 0 und/oder Hilfsschlupfvariable h i 0 eingeführt, um ein Gleichungssystem in kanonischer Form zu erhalten. Problem: Bei Restriktionen mit = oder ist die übliche Startlösung x 1 = = x n =0möglicherweise nicht zulässig. Es muß zunächst eine erste zulässige Lösung berechnet und dafür passende Basisvariable gefunden werden. s. AB(8) (Folie) 1. a T i x b i = a T i x + y i = b i (BV : y i ) 2. a T i x = b i = a T i x + h i = b i (BV : h i ) 3. a T i x b i = a T i x y i + h i = b i (BV : h i ) mit a T i =(a i1,...,a in ) (c) Transformation der Variablen: (s. AB 8, Folie) In Abhängigkeit von den vorgegebenen Vorzeichenbeschränkungen werden die Variablen x j gegebenenfalls durch neue, nichtnegative Variable x j,x j substituiert: 1. x j 0 = keine Substitution 2. x j 0 = (x j = x j) = x j 0 3. x j bel. = (x j = x j x j ) = x j,x j 0

9 7. Januar Die zwei Phasen (a) Phase 1: Bestimmung einer zulässigen Basislösung durch Eliminierung der Hilfsschlupfvariablen: Phase-1-Zielfunktion Z1: Bemerkung: Das originale LOP ist lösbar h i =0 i Zielstellung: h i min. Daraus ergibt sich als Hilfszielfunktion: i Z1 = i h i max Optimalitätsindikatoren für Z1: Stelle sämtliche Restriktionen, die eine Hilfsschlupfvariable h i enthalten nach h i um und setze diese in Z1 ein. Wir erhalten Z1 inabhängigkeit von den Nichtbasisvariablen. Die entsprechenden Koeffizienten dienen als Optimalitätsindikatoren. Z1 im Tableau: Im Tableau wird eine zusätzliche (letzte) Z1-Zeile mitgeführt. über diese Zeile wird in Phase 1 die Wahl der Pivotspalte gesteuert. Bemerkung: Die Z1-Zeile berechnet sich einfach als die negative Summe aller Zeilen, die Hilfsschlupfvariable enthalten. Iteration in Phase 1: Die Iteration erfolgt wie gewohnt mit dem einzigen Unterschied, daß die Wahl der Pivotspalte auschließlich über die Z1-Zeile gesteuert wird. Spalten die zu einer Hilsschlupfvariable der Nichtbasis gehören werden gestrichen. Ende von Phase 1: Phase 1 endet erfolgreich, wenn keine Hilfsschlupfvariablen mehr in der Basis ist, d.h. h i =0 i. Die Z1 Zeile enthält dann nur noch Nullen und kann gestrichen werden. Eine zulässige Startlösung für das Originalproblem wurde gefunden. (b) Phase 2: Bestimmung einer optimalen Basislösung Ausgehend vom Endtableau von Phase 1 wird die übliche Simplexiteration durchgeführt. (c) Mögliche Probleme in Phase 1:

10 62 7. Januar 2013 Wird in Phase 1 eine optimale Lösung des Ersatzproblems (Phase-1-Zielfunktion) erreicht, bei der noch mindetsens eine Hilfsschlupfvariable positiv ist, so ist das LOP nicht lösbar - der zulässige Bereich ist leer Wird in Phase 1 eine entartete optimale Lösung des Ersatzproblems gefunden, bei der noch Hilfsschlupfvariablen in der Basis sind, aber Z1 = 0 gilt, so sind noch weitere Austauschschritte auszuführen. Wahl des Pivotelementes: wähle aus einer zu einer Hilfsschlupfvariablen gehörenden Zeile ein Element 0.

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

6 Korrektheit des Simplexalgorithmus

6 Korrektheit des Simplexalgorithmus 6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2 Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Zeilenstufenform eines Gleichungssystems

Zeilenstufenform eines Gleichungssystems Zeilenstufenform eines Gleichungssystems Ein lineares Gleichungssystem mit einer m n-koeffizientenmatrix lässt sich mit Gauß-Transformationen auf Zeilenstufenform (Echelon-Form) transformieren: Ax = b...

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

2 Lineare Gleichungssysteme

2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme Betrachte ein beliebiges System von m linearen Gleichungen in den n Unbekannten x,,x n : a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 () a m x + a m2 x

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Aufgaben zu Kapitel 23

Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,

Mehr

Aufgabe 5.3 Duale Simplexverfahren

Aufgabe 5.3 Duale Simplexverfahren Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung)

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung) Lineare Optimierung Unterbestimmte LGS und Optimierung Bei lösbaren unterbestimmten linearen Gleichungssystemen haben wir die Qual der Wahl in Abhängigkeit von den freien Parametern (Anzahl = Anzahl Unbekannte

Mehr

Kap. 4.2: Simplex- Algorithmus

Kap. 4.2: Simplex- Algorithmus Kap. 4.: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO V. Chvatal: Linear Programming D. ertsimas:

Mehr

Lineare Optimierung Dantzig 1947

Lineare Optimierung Dantzig 1947 Lineare Optimierung Dantzig 947 Lineare Optimierungs-Aufgaben lassen sich mit Maple direkt lösen: with(simplex): g:= 4*x + x2

Mehr

8. Lineare Optimierung

8. Lineare Optimierung 8. Lineare Optimierung 1 Einführung (1) Praktische Probleme sind oft Probleme mit Nebenbedingungen, z.b.: Ein Produktionsprozess hängt von Lieferterminen ab Die Menge der verstaubaren Güter ist durch die

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Dualität Anwendung: Spieltheorie Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? Inhaltsübersicht für heute: Dualität

Mehr

4 Lineare Optimierung

4 Lineare Optimierung 4 Lineare Optimierung In diesem Kapitel werden wir uns mit effizienten Verfahren im Bereich der linearen Optimierung beschäftigen. 4.1 Einführung Als Einführung betrachten wir das Beispiel einer Erdölraffinerie.

Mehr

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg

Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 2008 Teil 2, Lineare Optimierung, Aufgabe 2 Baden-Württemberg Berufliches Gymnasium (WG, EG, AG, SG) Hauptprüfung 8 Teil, Lineare Optimierung, Aufgabe Baden-Württemberg.. Ein Fertigungsbetrieb für Frottierartikel stellt unter anderem Handtücher und Badetücher her.

Mehr

Lineare Optimierung und Simplex-Algorithmus

Lineare Optimierung und Simplex-Algorithmus Lineare Optimierung und Simplex-Algorithmus Problemstellung Beispiel : Unser Unternehmen verfügt über drei Maschinen A, B, C, mit denen zwei verschiedene Produkte P, P2 hergestellt werden. Die Maschinen

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 2 Lineare Gleichungssysteme 21 Lineare Gleichungssysteme und Matrizen Lernziele 2 Lineare Gleichungssysteme definieren Matrizen, Matrizen definieren lineare Abbildungen, Lösen von linearen Gleichungssystemen

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

Bonusmaterial Lineare Optimierung ideale Ausnutzung von Kapazitäten

Bonusmaterial Lineare Optimierung ideale Ausnutzung von Kapazitäten Bonusmaterial Lineare Optimierung ideale Ausnutzung von Kapazitäten 23 231 Die Zweiphasenmethode Beim Simplexalgorithmus zur Lösung linearer Optimierungsprobleme in Standardform wählt man im zugehörigen

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Sensitivitätsanalyse in der Linearen Optimierung

Sensitivitätsanalyse in der Linearen Optimierung Sensitivitätsanalyse in der Linearen Optimierung Bei der Sensitivitätsanalyse werden i. allg. Größen des Ausgangsproblems variiert, und es wird untersucht, welche Wirkung eine derartige Modifikation auf

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

Optimierung. Nürnberg, Oktober 2015

Optimierung. Nürnberg, Oktober 2015 1 Optimierung Nürnberg, Oktober 2015 Prof. Dr. Yvonne Stry Technische Hochschule Nürnberg Fakultät Angewandte Mathematik, Physik und Allgemeinwissenschaften Keßlerplatz 12 90461 Nürnberg Germany 1 Beispiel

Mehr

4 Der Gauß Algorithmus

4 Der Gauß Algorithmus 4 Der Gauß Algorithmus Rechenverfahren zur Lösung homogener linearer Gleichungssysteme Wir betrachten ein GLS (1) a 11 x 1 + a 1 x + + a 1n x n = a 1 x 1 + a x + + a n x n = a m1 x 1 + a m x + + a mn x

Mehr

Simplex-Umformung für Dummies

Simplex-Umformung für Dummies Simplex-Umformung für Dummies Enthält die Zielfunktion einen negativen Koeffizienten? NEIN Optimale Lösung bereits gefunden JA Finde die Optimale Lösung mit dem Simplex-Verfahren! Wähle die Spalte mit

Mehr

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren

Länge eines Vektors und Abstand von zwei Punkten 2. 4 = 6. Skalarprodukt und Winkel zwischen Vektoren Länge eines Vektors und Abstand von zwei Punkten Aufgabe Bestimme die Länge des Vektors x. Die Länge beträgt: x ( ) =. Skalarprodukt und Winkel zwischen Vektoren Aufgabe Es sind die Eckpunkte A(; ), B(

Mehr

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form 2... 22 4.2 Die Bedingungen vom komplementären Schlupf... 23 4.3 Das Kürzeste-Wege-Problem und zugehörige duale Problem... 24 4.4 Das Farkas Lemma... 25 4.5 Duale Information im Tableau... 26 4.6 Der duale

Mehr

x a 2n + + a mn

x a 2n + + a mn Lineare Gleichungssysteme(LGS Es sei a i j R und i R für alle (i = 1,, m und ( j = 1,, n. Dann heißt a 11 + a 12 + + a 1n = 1 + a 22 + + a 2n = 2 + a m2 + + a mn = m ein lineares Gleichungssystem mit m

Mehr

TEIL II LINEARE ALGEBRA

TEIL II LINEARE ALGEBRA TEIL II LINEARE ALGEBRA 1 Kapitel 10 Lineare Gleichungssysteme 101 Motivation Sei K ein fest gewählter Körper (zb K = R, C, Q, F p ) Betrachten das lineare Gleichungssystem (L) α 11 x 1 + α 12 x 2 + +

Mehr

Methoden der linearen Optimierung

Methoden der linearen Optimierung Methoden der linearen Optimierung Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Lineare Optimierung 3 2.1 Lineares Modell............................

Mehr

λ i x i λ i 0, x i X, nur endlich viele λ i 0}.

λ i x i λ i 0, x i X, nur endlich viele λ i 0}. jobname LinOpt Sommer Aufgabe a) Sei X R n. Dann ist b) Cone X = { x i X λ i x i λ i, x i X, nur endlich viele λ i }. x Cone S = Lin S x Lin S = Cone S. Also gibt es nicht-negative Koeffizienten µ i von

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

1. Entscheidung bei Unsicherheit

1. Entscheidung bei Unsicherheit Prof. Dr. Ma C. Wewel Lösungen zu den Übungsaufgaben Management Science Seite. Entscheidung bei Unsicherheit A. B. C. 6 km 6 km 6 km D. a) Nutzenmatri (Kundenanteile von K in %) u(k A,M A ), 6 +, 6 +,

Mehr

1. Das klassische Transportproblem

1. Das klassische Transportproblem schreier@math.tu-freiberg.de (03731) 39 2261 1. Das klassische Transportproblem 1.1. Formulierung der Aufgabe Problemstellung Die einfachste Transportaufgabe, nach Hitchcock benannt, läßt sich wie folgt

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner

Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1 Vortrag: Lineare Gleichungen am 11. März 2009 von Maximilian Wahner Technische Universität Dortmund Fakultät für Mathematik Proseminar Lineare

Mehr

10. Lineare Optimierung

10. Lineare Optimierung 10. Lineare Optimierung Im Kontext der Optimierungsmodelle: Zielfunktion lineare Funktion Nebenbedingungen lineare Funktionen Lösungsraum Unterraum des n Problem der linearen Optimierung Minimiere unter

Mehr

Standard-/kanonische Form Simplex Dualität Kompl./Sensitivität Spaltengen. Schnittebenen Welchen? Inhalt

Standard-/kanonische Form Simplex Dualität Kompl./Sensitivität Spaltengen. Schnittebenen Welchen? Inhalt Inhalt Lineare Optimierung Standardform und kanonische Form Der Simplex-Algorithmus Dualität Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? 54:

Mehr

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung.

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung. Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil : Lineare Algebra und Optimierung Wintersemester Matrizenrechnung Aufgabe ( 3 0 Gegeben sind die Matrizen A = 2 5 2 4 D =

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Zuordnungsproblem. Beispiele. Mathematisches Modell. Lösungsmethoden. auch Ernennungs-, Zuweisungs-, Assignmentproblem

Zuordnungsproblem. Beispiele. Mathematisches Modell. Lösungsmethoden. auch Ernennungs-, Zuweisungs-, Assignmentproblem Zuordnungsproblem auch Ernennungs-, Zuweisungs-, Assignmentproblem Beispiele Mathematisches Modell Lösungsmethoden HTW-Berlin FB3 Prof. Dr. F. Hartl 1 2 Anwendungen Zuordnung von - 1 ME von A i nach B

Mehr

Lineare Optimierung. Master 1. Semester

Lineare Optimierung. Master 1. Semester Prof. Dr.-Ing. Fritz Nikolai Rudolph Fachhochschule Trier Fachbereich Informatik Master 1. Semester Inhaltsverzeichnis 1 Einleitung... 2 1.1 Lineare Gleichungssysteme... 2 1.2 sprobleme... 3 2 Standardform...

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 11. Februar 2014 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

Mathematische Methoden der Algorithmik

Mathematische Methoden der Algorithmik Mathematische Methoden der Algorithmik Dozent: Prof. Dr. Sándor P. Fekete Assistent: Nils Schweer Digitalisierung: Winfried Hellmann Wintersemester 2008/2009 Inhaltsverzeichnis 2 1 Einführung Problem 1.1

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Martin Gubisch Lineare Algebra I WS 27/28 Definition (a ij ) 1 j n 1 i n heiÿt eine m n-matrix mit Komponenten a ij K Dabei bezeichnet i den Zeilenindex und j den Spaltenindex

Mehr

Mathematischer Vorkurs

Mathematischer Vorkurs Mathematischer Vorkurs Dr. Agnes Lamacz Mathematischer Vorkurs TU Dortmund Seite 1 / 170 Vollständige Induktion Kapitel 13 Vollständige Induktion Mathematischer Vorkurs TU Dortmund Seite 117 / 170 Vollständige

Mehr