Lineare Gleichungssysteme

Größe: px
Ab Seite anzeigen:

Download "Lineare Gleichungssysteme"

Transkript

1 Lineare Gleichungssysteme Martin Gubisch Lineare Algebra I WS 27/28 Definition (a ij ) 1 j n 1 i n heiÿt eine m n-matrix mit Komponenten a ij K Dabei bezeichnet i den Zeilenindex und j den Spaltenindex Betrachtet man die m Zeilen als n-tupel v 1,, v m, dann nennt man span(v 1,, v m ) den Zeilenraum der Matrix Entsprechend bilden die n Spalten als m-tupel den Spaltenraum der Matrix dim K (span(v 1,, v n )) heiÿt der Zeilenrang von (a ij ) und dim K (span(w 1,, w m )) der Spaltenrang Der Zeilenraum von (a ij ) ändert sich nicht bei (a) Multiplikation der i-ten Zeile mit λ (b) Addieren eines λ-fachen der j-ten Zeile zur i-ten Zeile (wobei i j) (c) Vertauschen der i-ten mit der j-ten Zeile Behauptung Durch iterierte Anwendung von (a)-(c) kann man jede Matrix in eine Stufenmatrix der folgenden Gestalt überführen: Beschreibung des Gauÿ-Algorithmus (1) Suche erste Spalte j 1 mit einem a ij1 (2) Dividiere die i-te Zeile durch a ij1, vertausche sie mit der ersten Zeile und mache mit (b) alle anderen Komponenten der j 1 -ten Spalte zu (3) Suche eine Spalte j 2 rechts von j 1 mit einem a ij2 für i 1 (4) Dividiere die i-te Zeile durch a ij2, vertausche sie mit der zweiten Zeile und mache mit (b) alle anderen Komponenten der j 2 -ten Spalte zu (5) Suche eine Spalte j 3 rechts von j 2 mit einem a ij3 für i 1, 2 (6) usw Behauptung Die ersten r Zeilen der neuen Matrix sind linear unabhängig r Seien w i = (b i1,, b in ) die ersten r Zeilen der neuen Matrix, i = 1,, r Dann Also α 1 = = α r = = α 1 w α r w r = (,,, α 1,,,, α 2,,, α 3 j 1 j 2 j 3,, α r j r, ) Folgerung Die (neuen) ersten r Zeilen bilden eine Basis des Zeilenraums

2 Definition Seien K ein Körper, a ij K, X 1,, X n Unbestimmte Das System ( ) a 11 X a 1n X n = a m1 X a mn X n = heiÿt ein homogenes (lineares) Gleichungssystem (über K) in den Unbestimmten X 1,, X n Die zugehörige Koezientenmatrix ist (a ij ) 1 j n 1 i m := a 11 a 1n a m1 a mn Beispiele (1) ( x 1 + 2x 2 = 1 2 x 1 x 2 = 1 1 ) = x 1 = x 2 = (2) x 1 + 2x 2 = hat als Lösungsmenge alle Vektoren (x 1, x 2 ) R 2 mit (x 1, x 2 ) (1, 2) Diese ist gerade R(2, 1) (3) x 1 + 2x 2 = x 1 + 2x 2 + x 3 = hat als Lösungsmenge {x = (x 1, x 2, x 3 ) R 3 x (1, 2, ) und x (1, 2, 1)} Die Lösungsmenge von ( ) ist gerade {(x 1,, x n ) K n (x 1,, x n ) (a i1,, a in ) für i = 1,, m} x löst ( ) a 11 X a 1n X n = a m1 X a mn X n = a 11 a 1n a m1 a mn x 1 x m A (i) x = für jede Zeile A (i) A (i) x für jede Zeile A (i) = Definition Sei K ein Körper, n N Dann setzen wir (a 1,, a n ) (b 1,, b n ) := a 1 b a n b n Wir schreiben a b für a b = Für M K n setzen wir M := {x K n x a für alle a M} (1) Für K = R ist das euklidische Skalarprodukt (2) Für K = C ist nicht das Hermitesche Skalarprodukt, denn zb ist (1, i) (1, i) = i ( i) = 2 = i i = (1, i) (1, i)

3 Behauptung Für gelten folgende Rechenregeln: (1) a b = b a (2) (αa + α a ) b = α(a b) + α (a b) (3) a b αa βb (1) a b = (a 1,, a n ) (b 1,, b n ) = a 1 b a n b n = b 1 a b n a n = (b 1,, b n ) (a 1,, a n ) = b a (2) (αa + α a ) b = α(a b) = (αa 1 + α a αa n + α a n) (b 1,, b n ) = αa 1 b 1 + α a 1b αa n b n + α a nb n = α(a 1 b a n b n ) + α (a 1b a nb n ) = α(a 1,, a n ) b + α (a 1,, a n) b = α(a b) + α (a b) (3) a b a b = (αa) (βb) = α(a (βb)) = α((βb) a) = αβ(b a) = αβ(a b) = αβ = (αa) (βb) Lemma Für M K n ist M ein Untervektorraum des K n und M = (span(m)) Seien x, y M, α K Dann gilt: (1) a = a für alle a M, also M (2) (x a = und y a = ) x a + y a = (x + y) a = x + y M (3) x a = (αx) a = αx M Also ist M ein Untervektorraum des K n Weiter gilt: M span(m) M (span(m)) und umgekehrt x a = für alle a M x (α 1 a α m a m ) = für alle a 1,, a m M, α 1,, α m K M )(span(m)) Folgerung Bezeichne M den Zeilenraum von (a ij ) Dann ist der Vektorraum M gerade die Lösungsmenge von ( ) M wir der Lösungsraum von ( ) genannt Bestimmung einer Basis des Lösungsraums von ( ) Gegeben sei das lineare Gleichungssystem ( ) a 11 X a 1n X n = a m1 X a mn X n = mit zugehöriger Koezientenmatrix (a ij ) := a 11 a 1n a m1 a mn Durch elementare Zeilenumformungen (a)-(c) wird (a ij ) auf Stufenform transformiert: j 1 j 2 j 3 j r k 1 k 2 k 3 k 4 k n r r =: (a ij),

4 dh {1,, n} = {j 1,, j r } {k 1,, k n r } Dann hat das zu (a ij ) gehörige Gleichungssystem ( ) X j1 + a 1k 1 X k1 + + a 1k n r X kn r = X j1 + a 2k 1 X k1 + + a 2k n r X kn r = X jr + a rk 1 X k1 + + a rk n r X kn r = den gleichen Lösungsraum wie ( ) Spezielle Lösungen (x 1,, x n ) K n von ( ) sind dann: (1) x k1 = 1, x jl = a lk 1 (2) x k2 = 1, x jl = a lk 2 (n r) x kn r = 1, x jl = a lk n r für 1 l r, x i = sonst Wir bezeichnen diese Lösungen mit c (1),, c (n r), dh es gilt: c (i) := (c (i) 1,, c(i) n ) mit c (i) k i = 1, c (i) j l = a lk i für 1 l r und c (i) k s = für s i Lemma (c (1),, c (n r) ) ist eine Basis des Lösungsraums von ( ) bzw ( ) (1) Lineare Unabhängigkeit: (,, ) = (α 1 c (1) + + α n r c (n r) ) = (, α 1 k 1,, α n r, ) α 1 = = α n r = k n r (2) Erzeugendensystem: Sei b = (b 1,, b n ) eine beliebige Lösung von ( ) Dann ist auch x = (x 1,, x n ) := b b k1 c (1) b k,n r c n r eine Lösung von ( ), also x ki = für alle k i Da x auch ( ) löst, sind auch alle x jl =, dh x = Also b = b k1 c (1) + + b k,n r c n r Beispiel , k 1 j 1 j 2 k 2 k 3 j 3 = k 1 k 2 k 3 c (1) = (1,,,,, ) c (2) = (, 5, 1, 1,, ) c (3) = (, 1, 3,, 1, ) Beispiel x 1 + 2x 2 x 3 2x 4 x 6 = 2x 1 + 2x 2 2x 3 x 4 + x 5 + 2x 6 = 2x 1 + 4x 2 + (5/2)x 3 + 4x 4 2x 5 + 2x 6 = x 1 x 3 x 4 + x 6 =

5 Spezielle Lösungen sind c (1) = ( 5 6, 1 4, 4 ) 3, 1 2, 1, (5/2) (9/2) (3/2) (1/2) 2 (9/2) (25/9) (5/9) (35/9) 1 (3/2) (1/2) 2 1 (16/9) (4/9) (8/9) (5/6) (1/9) 1 (1/4) (1/2) 1 (4/3) (8/9) 1 (1/2) 1 und c (2) = ( 19, 12, 89 ), 1,, 1 Ein homogenes Gleichungssystem ( ) in n Unbestimmten besitzt genau dann nur die triviale Lösung (x 1 =,, x n = ), wenn der Spaltenrang der zugehörigen Koezientenmatrix n beträgt ( ) ist genau dann nur trivial lösbar, wenn der Lösungsraum von ( ) der Nullraum ist Da die einzige Basis des Nullraums die leere Menge ist, kann es keine Lösungen der Gestalt c (i) geben, dh n = r Lemma Für jeden Untervektorraum des K n gilt: (1) dim U + dim U = n (2) (U ) = U (1) Sei U = span(v 1,, v m ) mit v i = (a i1,, a in ) Dann gilt: dim U = n Zeilenrang von (a ij ) = n dim span(v 1,, v m ) = n dim U (2) u U u v für alle v U u (U ) U (U ) Wegen dim U + dim U = n und dim U + dim(u ) = n folgt dim U = dim(u ) Also (U ) = U Definition Sei U ein Untervektorraum von V Für v V heiÿt v + U := {v + u u U} der um v verschobene (ane) Unterraum Also ist v + U genau dann ein Untervektorraum von V, wenn v U

6 Definition Seien K ein Körper, a ij, b i K, X 1,, X n Unbestimmte Das System (+) a 11 X a 1n X n = b 1 a m1 X a mn X n = b m heiÿt ein inhomogenes lineares Gleichungssystem (über K) in den Unbestimmten X 1,, X n mit einfacher Koezientenmatrix a 11 a 1n (a ij ) := a m1 a mn und erweiterter Koezientenmatrix Das System ( ) (a ij b i ) := heiÿt das zugehörige homogene System a 11 a 1n b 1 a m1 a mn b m a 11 X a 1n X n = a m1 X a mn X n = Sei A = (a ij ) die einfache Matrix von (+) A (i) bezeichne die i-te Zeile von A und X = (X 1,, X n ) dann besagt (+) gerade: A 1 X = b 1,, A m X = b m Lemma Bezeichne M den Lösungsraum von ( ) Sei x eine spezielle Lösung von (+) Dann ist der Lösungsraum von (+) gerade der ane Raum x + M x K n löst (+) A 1 x = b 1,, A m x = b m A 1 x = A 1 x,, A m x = A m x A 1 (x x ) =,, A m (x x ) = x x M x x + M Bezeichne (A (i), b i ) die i-te Zeile der erweiterten Matrix (a ij b i ) und (X, X n+1 ) = (X 1,, X n, X n+1 ) Betrachte das homogene System (++) (A 1, b 1 ) (X, X n+1 ) =,, (A m, b m ) (X, X n+1 ) = Dann gilt: x = (x 1,, x n ) löst (+) (x, 1) löst (++) a i1 x a in x n = b i a i1 x a in x n + b i ( 1) =

7 Wir betrachten die erweiterte Matrix (a ij b i ) Durch elementare Zeilenumformungen erhalten wir 1 b 1 1 b r =: (a ij b i) b r+1 b m j 1 j r (+) ist genau dann lösbar, wenn b r+1 =,, b m = Eine spezielle Lösung ist dann x = (,,, b 1,,,, b r,,, ) : Seien b r+1,, b m = Dann löst x := (x, 1) das homogene System (++), denn? + +? + b 11 +? + +? + b 2 +? + + +? + b r +? + +? b 1 =? + +? + b 1 +? + +? + b 21 +? + + +? + b r +? + +? b 2 =? + +? + b 1 +? + +? + b 2 +? + + +? + b r1 +? + +? b 3 = Also löst x das System (+) und damit auch (+) : Sei etwa b r+1 Wir multiplizieren die (r + 1)-te Zeile mit (b r+1) 1 und erreichen: 1 b 1 1 b r 1 b m Also fordert die (r + 1)-te Zeile des zugehörigen inhomogenen Gleichungssystems: Widerspruch = X 1 + X X n = 1, Das inhomogene lineare Gleichungssystem (+) ist genau dann lösbar, wenn der Zeilenrang von (a ij ) mit dem Zeilenrang von (a ij b i ) übereinstimmt Wir zeigen: b r+1 =,, b m = Zeilenrang(a ij ) = Zeilenrang(a ij b i ) : Klar : Sei (etwa) b r+1 Zeilenrang(a ij b i ) = r + 1 > r = Zeilenrang(a ij )

8 Definition (+) heiÿt universell lösbar, falls (+) bei jeder Wahl der b i lösbar ist (+) heiÿt eindeutig lösbar, falls (+) zu jeder Wahl der b i höchstens eine Lösung hat Beachte also: Ein System, das für gar keine Wahl der b i lösbar ist, wird auch eindeutig lösbar genannt (+) ist genau dann eindeutig lösbar, wenn der Spaltenrang von (a ij ) gleich der Spaltenzahl n ist (+) ist genau dann universell lösbar, wenn der Zeilenrang von (a ij ) gleich der Zeilenzahl m ist Eindeutiger Fall: Für b 1,, b m K beliebig gilt: Spaltenrang(a ij ) = n ( ) ist nur trivial lösbar Also ist die Lösungsmenge von (+) entweder x + {} = x oder Universeller Fall: : Zeilenrang(a ij ) = r = Zeilenzahl = m Zeilenrang(a ij b i ) = r = Zeilenrang(a ij ) : Sei der Zeilenrang r von (a ij ) kleiner als die Zeilenzahl m Wir bezeichnen die r linear unabhängigen Zeilen von (a ij ) mit A (i1),, A (ir) 1, i=i Wähle i {1,, m}\{i 1,, i r } und setze b i := {, i i Dann (A (i), 1) / span((a (i1), ),, (A ir, )), dh der Zeilenrang(a ij b i ) > r = Zeilenrang(a ij ), also ist (+) nicht lösbar

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

Lineare Gleichungssysteme - Grundlagen

Lineare Gleichungssysteme - Grundlagen Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Skript zur Vorlesung. Lineare Algebra I. Private Mitschrift. Vektorraumtheorie. gelesen von. Prof. Dr. Alexander Prestel.

Skript zur Vorlesung. Lineare Algebra I. Private Mitschrift. Vektorraumtheorie. gelesen von. Prof. Dr. Alexander Prestel. Skript zur Vorlesung Lineare Algebra I Private Mitschrift Vektorraumtheorie gelesen von Prof Dr Alexander Prestel Martin Gubisch Konstanz, Wintersemester 2005/2006 Inhaltsverzeichnis 1 Vektorräume 3 11

Mehr

2.2 Lineare Gleichungssysteme

2.2 Lineare Gleichungssysteme Lineare Algebra I WS 2015/16 c Rudolf Scharlau 55 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

IV.3. RANG VON MATRIZEN 81

IV.3. RANG VON MATRIZEN 81 IV3 RANG VON MATRIZEN 8 Ist b,,b n eine Basis des reellen Vektorraums V, dann bildet b,,b n auch eine Basis des komplexen Vektorraums V C Mit V ist daher auch V C endlichdimensional und es gilt dim C V

Mehr

Klausurähnliche Aufgaben

Klausurähnliche Aufgaben Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eine Familie von Gleichungen der Form a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2............ a m1 x 1 + a m2 x 2 +... + a mn x n = b m

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

2.2 Lineare Gleichungssysteme

2.2 Lineare Gleichungssysteme Lineare Algebra 2016/17 c Rudolf Scharlau 67 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

4 Der Gauß Algorithmus

4 Der Gauß Algorithmus 4 Der Gauß Algorithmus Rechenverfahren zur Lösung homogener linearer Gleichungssysteme Wir betrachten ein GLS (1) a 11 x 1 + a 1 x + + a 1n x n = a 1 x 1 + a x + + a n x n = a m1 x 1 + a m x + + a mn x

Mehr

17. Das Gauß-Verfahren

17. Das Gauß-Verfahren 7 Das Gauß-Verfahren 95 7 Das Gauß-Verfahren Nachdem wir jetzt viele Probleme der linearen Algebra (z B Basen von Vektorräumen zu konstruieren, Morphismen durch lineare Abbildungen darzustellen oder den

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

Kapitel III. Matrizen und lineare Gleichungssysteme. Inhalt: 10. Matrizen 11. Lineare Gleichungssysteme 12. Der Gauß-Algorithmus

Kapitel III. Matrizen und lineare Gleichungssysteme. Inhalt: 10. Matrizen 11. Lineare Gleichungssysteme 12. Der Gauß-Algorithmus Kapitel III Matrizen und lineare Gleichungssysteme Inhalt: 10 Matrizen 11 Lineare Gleichungssysteme 12 Der Gauß-Algorithmus Wichtige Methoden beim Umgang mit Vektorräumen basieren auf der Matrizenrechnung

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Der Rangsatz für lineare Abbildungen

Der Rangsatz für lineare Abbildungen Der Rangsatz für lineare Abbildungen Satz Sei f : V W eine lineare Abbildung Dann gilt dim V = dim Kern(f) + dim Bild(f), also gleichbedeutend dim Kern(f) = dim V rg(f) Da uns in der Regel bei gegebenem

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 2 Lineare Gleichungssysteme 21 Lineare Gleichungssysteme und Matrizen Lernziele 2 Lineare Gleichungssysteme definieren Matrizen, Matrizen definieren lineare Abbildungen, Lösen von linearen Gleichungssystemen

Mehr

0, v 6 = , v 4 = 1

0, v 6 = , v 4 = 1 Aufgabe 6. Linearkombinationen von Vektoren Gegeben sei folgende Menge M von 6 Vektoren v, v,..., v 6 R 4 : M = v =, v =, v 3 =, v 4 =, v 5 =, v 6 =. Zeigen Sie, dass sich jeder Vektor v i M, i =,,...,

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

5 Die Allgemeine Lineare Gruppe

5 Die Allgemeine Lineare Gruppe 5 Die Allgemeine Lineare Gruppe Gegeben sei eine nicht leere Menge G und eine Abbildung (Verknüpfung) : G G G, (a, b) a b( a mal b ) Das Bild a b von (a, b) heißt Produkt von a und b. Andere gebräuchliche

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch.

i) ii) iii) iv) i) ii) iii) iv) v) gilt (Cauchy-Schwarz-Ungleichung): Winkel zwischen zwei Vektoren : - Für schreibt man auch. Abbildungen Rechnen Matrizen Rechnen Vektoren Äquivalenzrelation Addition: Skalarmultiplikation: Skalarprodukt: Länge eines Vektors: Vektorprodukt (im ): i ii i ii v) gilt (Cauchy-Schwarz-Ungleichung):

Mehr

2.4 Matrizen und Lineare Abbildungen

2.4 Matrizen und Lineare Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 73 2.4 Matrizen und Lineare Abbildungen Zum Schluss von Abschnitt 2.2 hatten wir Matrizen eingeführt, und zwar im Zusammenhang mit der abgekürzten Schreibweise

Mehr

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation;

Kapitel 1. Matrizen und lineare Gleichungssysteme. 1.1 Matrizenkalkül (Vektorraum M(n,m); Matrixmultiplikation; Kapitel 1 Matrizen und lineare Gleichungssysteme 11 Matrizenkalkül (Vektorraum M(n,m; Matrixmultiplikation; Transposition; Spalten- und Zeilenvektoren Matrizen sind im Prinzip schon bei der schematischen

Mehr

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form

Es wurde in der Vorlesung gezeigt, daß man die Matrixgleichung Ax=b auch in der Form Gaußscher Algorithmus zur Lösung linearer Gleichungssysteme Wir gehen aus vom Gleichungssystem A=b. Dabei ist A M m n K, b K m. Gesucht werden ein oder alle Elemente K n, so daß obige Gleichung erfüllt

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A

Beispiele 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix (A 133 e 1. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 2. Gegeben sei das lineare Gleichungssystem mit erweiterter Matrix 1 3 2 1 1 2 3 0. 1 3 2 1 Schritte des

Mehr

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 213/214 Markus Schweighofer Lineare Algebra I 6.2 Basen Definition 6.2.1. Seien V ein K-Vektorraum, n N und v 1,..., v n V. (a)

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich

Lineare Algebra. I. Vektorräume. U. Stammbach. Professor an der ETH-Zürich Lineare Algebra U Stammbach Professor an der ETH-Zürich I Vektorräume Kapitel I Vektorräume 1 I1 Lineare Gleichungssysteme 1 I2 Beispiele von Vektorräumen 7 I3 Definition eines Vektorraumes 8 I4 Linearkombinationen,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

2 Matrizenrechnung und Lineare Gleichungssysteme

2 Matrizenrechnung und Lineare Gleichungssysteme Technische Universität München Florian Ettlinger Ferienkurs Lineare Algebra Vorlesung Dienstag WS 2011/12 2 Matrizenrechnung und Lineare Gleichungssysteme 2.1 Matrizenrechnung 2.1.1 Einführung Vor der

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof. Dr. H. Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 5 Verwandle große Schwierigkeiten in kleine und kleine in gar keine Chinesische Weisheit Das Lösen von

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Lineare Gleichungssysteme: eine Ergänzung

Lineare Gleichungssysteme: eine Ergänzung Lineare Gleichungssysteme: eine Ergänzung Ein lineares Gleichungssystem, bei dem alle Einträge auf der rechten Seite gleich sind heiÿt homogenes lineares Gleichungssystem: a x + a 2 x 2 +... + a n x n

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen.

Gegeben sei eine Menge V sowie die Verknüpfung der Addition und die skalare Multiplikation der Elemente von V mit reellen Zahlen. 1. Der Vektorraumbegriff...1 2. Unterräume...2. Lineare Abhängigkeit/ Unabhängigkeit... 4. Erzeugendensystem... 5. Dimension...4 6. Austauschlemma...5 7. Linearität von Abbildungen...6 8. Kern und Bild

Mehr

2.3 Lineare Abbildungen und Matrizen

2.3 Lineare Abbildungen und Matrizen 2.3. LINEARE ABBILDUNGEN UND MATRIZEN 89 Bemerkung Wir sehen, dass die Matrix à eindeutig ist, wenn x 1,...,x r eine Basis ist. Allgemeiner kann man zeigen, dass sich jede Matrix mittels elementarer Zeilenumformungen

Mehr

Lineare Abbildungen und Gleichungssysteme

Lineare Abbildungen und Gleichungssysteme Lineare Abbildungen und Gleichungssysteme Klaus-R Loeffler Lineare Abbildungen Definition: Lineare Abbildung Es wird vorausgesetzt, dass V und W Vektorräume sind Eine Abbildung f von V in W heißt dann

Mehr

Lösung Test 1 (Nachprüfung)

Lösung Test 1 (Nachprüfung) MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Test (Nachprüfung Aufgabe : a Gemäss den Algorithmen im Kap.. der Vorlesung bringen wir die

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 2 Lineare Gleichungssysteme 2 Lineare Gleichungssysteme und Matrizen Lernziele 2 Lineare Gleichungssysteme definieren Matrizen, Matrizen definieren lineare Abbildungen, Lösen von linearen Gleichungssystemen

Mehr

Lösungen zur Mathematik für Informatiker I

Lösungen zur Mathematik für Informatiker I Lösungen zur Mathematik für Informatiker I Wintersemester 00/03 Prof Dr H Lenzing Blatt 7 Sei M Ihre Matrikelnummer mit den Ziffern m, m, m 3, m 4, m 5, m 6, m 7 Aufgabe 6 ( Bonuspunkt): Wir betrachten

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr

Die Lineare Algebra-Methode. Mahir Kilic

Die Lineare Algebra-Methode. Mahir Kilic Die Lineare Algebra-Methode Mahir Kilic 23. Juni 2004 1 Einführung 1.1 Überblick Im Allgemein benutzt man die Lineare Algebra-Methode in der Kombinatorik wie folgt: Für die Bestimmung einer Obergrenze

Mehr

Lineare Algebra Weihnachtszettel

Lineare Algebra Weihnachtszettel Lineare Algebra Weihnachtszettel 4..008 Die Aufgaben auf diesem Zettel sind zum Üben während der Weihnachtspause gedacht, sie dienen der freiwilligen Selbstkontrolle. Die Aufgaben müssen nicht bearbeitet

Mehr

Lineare Algebra I. Lösung 9.2:

Lineare Algebra I. Lösung 9.2: Universität Konstanz Wintersemester 2009/2010 Fachbereich Mathematik und Statistik Lösungsblatt 9 Prof. Dr. Markus Schweighofer 20.01.2010 Aaron Kunert / Sven Wagner Lineare Algebra I Lösung 9.1: Voraussetzung:

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht

Definitionen. Merkblatt lineare Algebra. affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht Seite 1 Definitionen affiner Teilraum Menge, die durch Addition eines Vektors v 0 zu allen Vektoren eines Vektorraumes V entsteht ähnliche Matrizen Matrizen, die das gleiche charakteristische Polynom haben

Mehr

Lösung Semesterendprüfung (Nachprüfung)

Lösung Semesterendprüfung (Nachprüfung) MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Semesterendprüfung (Nachprüfung Aufgabe : Aufgabe : a Gemäss Def. der Vorlesung müssen wir

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Homogene und inhomogene Koordinaten und das Hyperboloid

Homogene und inhomogene Koordinaten und das Hyperboloid Seminararbeit zum Seminar aus Reiner Mathematik Homogene und inhomogene Koordinaten und das Hyperboloid Gernot Holler 1010674 WS 2012/13 28.November 2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Homogene

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 7 11. Mai 2010 Kapitel 8. Vektoren Definition 76. Betrachten wir eine beliebige endliche Anzahl von Vektoren v 1, v 2,..., v m des R n, so können

Mehr

Erneut: Matrizen und lineare Abbildungen

Erneut: Matrizen und lineare Abbildungen Erneut: Matrizen und lineare Abbildungen Mit Hilfe der Matrixmultiplikation lässt sich die Korrespondenz zwischen linearen Abbildungen und Matrizen elegant ausdrücken: Satz. e 1, e 2,..., e n sei die Standardbasis

Mehr

Ergänzung zum HM Tutorium

Ergänzung zum HM Tutorium Ergänzung zum HM Tutorium Patrik Hlobil Niko Kainaris Dieses Dokument erhebt keinen Anspruch auf Vollständigkeit oder Korrektheit. Es stellt keine Vorlesungszusammenfassung dar, sondern soll euch lediglich

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Lineare Algebra II, Lösungshinweise Blatt 9

Lineare Algebra II, Lösungshinweise Blatt 9 Prof Dr Katrin Wendland Priv Doz Dr Katrin Leschke Christoph Tinkl SS 27 Lineare Algebra II, Lösungshinweise Blatt 9 Aufgabe (4 Punkte) Sei 2 3 4 A = 5 6 Berechnen Sie A k für alle k N und verifizieren

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

Kapitel II. Lineare Algebra. 1 Vektorräume und Lineare Abbildungen

Kapitel II. Lineare Algebra. 1 Vektorräume und Lineare Abbildungen Kapitel II Lineare Algebra Vektorräume und Lineare Abbildungen Es sei K ein Körper Meistens interessieren uns nur die Fälle K = R und K = C Definition Ein Vektorraum über K ) ist eine Menge V mit einem

Mehr