6 Korrektheit des Simplexalgorithmus

Größe: px
Ab Seite anzeigen:

Download "6 Korrektheit des Simplexalgorithmus"

Transkript

1 6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt b) Falls es eine positive Komponente in a r gibt, dann ist A B (r) derart, dass c B(r) x B(r) > c B x B. a) x B = A B b (A B a r ), x r =, x j = 0 für alle j N \ {r} ist zulässig für alle > 0 mit c BT x B + c r x r = c BT A B b + c r >0 b) c B (r) x B (r) = c BT (A B b) + c r c BT (A B b) = c B x B. >0 >0 80

2 6 Korrektheit des Simplexalgorithmus Laufzeit: in der bisherigen Version können Endlosschleifen auftreten. Anti-Cycling-Regel: 1) Schreibe alle Variablen in eine Liste L := (l 1,..,l m+n ) = (x 1,..,x n,t 1,..,t m ) 2) Auswahl des Pivotelements: 2a) Auswahl der Spalte r Wähle r {1,...,n} mit c r > 0. Gibt es mehr als eine Möglichkeit für r, wähle r so, dass die zur Spalte r gehörende NBV möglichst weit vorn in L liegt. 2b) Auswahl der Zeile s: Wähle s {1,...,m} mit = min {b i /a ir a ir > 0} =: b s /a sr 1 i m Gibt es mahr als eine Möglichkeit für s, wähle s so, dass die zur Zeile s gehörige BV möglichst weit vorn in L steht. damit: keine Endlosschleifen mehr im schlimmsten Fall O(2 m ) Pivotschritte (kostruierte Eingaben) in Praxis: polynomielles Verhalten 81

3 6 Korrektheit des Simplexalgorithmus Laufzeit: in der Praxis ist der Simplex mit Anti-Cycling oft spürbar langsamer als ohne. deshalb: um Kreisen z uverhindern muss man die Anticycling-Regel nicht in jedem Schritt anwenden. Stattdessen nur, wenn man eine vorgegebene Anzahl Pivotschritte durchgeführt hat, ohne die Ecke zu verlassen. Alternative Anti-Cycling-Regel: Wähle von möglichen Zeilen/Spalten-Kandidaten einen zufälligen aus. Dann wird Ecke mit Wahrscheinlichkeit 1 verlassen. -> hat keine Fans 82

4 7 Das duale Problem Def 5.1. Es sei (L): Ax x max ein LP in kanonischer Form. L heißt primales Problem Das LP (D): b T u min A T u c, u u T A = (A T u) T heißt das zu L duale LP (D = dual(l)). b 1 b 2 c 1 c 2 u 1 u 2 u 3 min c 1 c 2 max 83

5 7 Das duale Problem Lemma 5.1. Es sei (L): Ax max ein LP. Dann ist dual(dual(l)) = L Beweis: dual(l): A T u c, b T u min äquivalent zu D : (-A) T u -c (-b) T u max Dann ist dual(d ): ((-A) T ) T y -b Ay b (-c) T y min c T y max = (L) 84

6 7 Das duale Problem Satz 7.1. Schwache Dualität : Es sei (L): Ax max ein LP. D := dual(l). Seien z L und z D die optimalen Zielfunktionswerte für L und D. Ist beliebiges x zulässig für L und beliebiges u zulässig für D, dann ist Bew: c T x z L z D b T u (a) Wegen x 0 und u T A c T ist c T x u T Ax (b) Wegen u 0 und Ax b ist u T Ax u T b = b T u, weil u,b. Erinnerung: L: Ax max D: A T u c, b T u min Es ist also c T x b T u für alle x und u (jeweils zulässig) Insbesondere ist damit auch z L b T u für alle zulässigen u und damit auch z L z D 85

7 7 Das duale Problem Folgerungen: (a) Wenn x primal zulässige Lösung ist, und y dual zulässige Lösung, und c T x = b T u dann sind x und u optimale Lösungen. (kleiner kann b T u wegen Satz 7.1 nicht werden, und c T x auch nicht größer.) (b) Es sei (L) ein LP, D = dual(l). Ist L unbeschränkt, so hat D keine Lösung. (Wegen Satz 7.1 ist z D α für alle α 86

8 7 Das duale Problem Erinnerung: L: Ax max D: A T u c, b T u min Satz 7.2. Starke Dualität : Wenn das primale oder das duale Problem eine optimale Lösung mit endlichem Wert besitzt, dann besitzt auch das Gegenstück eine optimale Lösung und max c T x = min b T u. Bew: Gezeigt wird: Wenn das primale Problem eine optimale Lösung x besitzt, dann gibt es eine dual zulässige Lösung u, so dass c T x = b T u. Sei x eine optimale primal zulässige Basislösung, generiert vom Simplexalgorithmus. Also: Ax = (A B,A N ) b mit x B = A B b, x N =0. Sei u := (A B ) T c B. x B x N Reduzierte Kosten: c NT c B T c B c N A T B A T N Dann: c A T u = - (A B ) T c B. = 0 c N A NT (A B ) T c B = c N (c B T und c T x = c BT (A B b) = (c BT A B ) T b = u T b 87

9 7 Das duale Problem dual endliches unbegrenzt keine Optimum Lösung primal endliches Optimum unbegrenzt keine Lösung 88

10 7 Das duale Problem Beispiel für: primales und duales Problem haben beide keine Lösung: Maximiere 3x 1 + 2x 2 u.d.n.: 2x 1 2x 2-2x 1 + 2x 2-4 x 1, x 2 0 Minimiere w 1-4w 2 u.d.n. 2w 1 2w 2 3-2w 1 + 2w 2 2 w 1, w

11 7 Das duale Problem, dualer Simplex-Algorithmus Vorbereitung: geg. L: Ax max, mit Schlupfvariablen t 1,...,t m, t i MAX x 1... x n L: Ax b Ax - b = -t x 0 bzw. x 0, t 0 c T x max c T x max primal zulässig, wenn b 0 a a 1n b 1 = -t a m1... a mn b m = -t m c 1... c n z D: A T u c A T u c = s u 0 bzw. u 0, s 0 b T u min -b T u max dual zulässig, wenn c 0 Überschussvariablen MAX x 1... x n u 1... u m a a 1n b 1 = -t a m1... a mn b m = -t m c 1... c n z =...= s 1... s n 90

12 7 Das duale Problem, dualer Simplex-Algorithmus Dualer Simplex-Algorithmus für dual zulässige Tableaus: Ein Tableau heißt dual zulässig, wenn c

13 7 Das duale Problem, Beispiel L: Max -4x 1 2x 2 udn. -x 1 2x 2-2 -x 1 + x 2 MAX x 1 x 2 x 3 x = -x = -x D: Min -2u 1 u 2 Max 2u 1 + u 2 udn. u 1 + u 2 4 2u 1 - u 2 2 MAX u 1 u 2 u 3 u = -u = -u MAX x 1 x 2 x 3 x 4 1/2 1 /2 0 1 = -x 2-3/2 0 1/2 1-2 = -x MAX u 1 u 2 u 3 u 4 0 3/2 1 /2 3 = -u 3 1 /2 0 1/2 1 = -u MAX x 1 x 2 x 3 x /3 /3 1/3 = -x /3-2/3 4/3 = -x MAX u 1 u 2 u 3 u /3 /3 2 = -u /3 1/3 2 = -u /3 /3-6 92

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung

Mehr

H. Meyerhenke: Kombinatorische Optimierung. Paralleles Rechnen, Institut für Theoretische Informatik, Fakultät für Informatik

H. Meyerhenke: Kombinatorische Optimierung. Paralleles Rechnen, Institut für Theoretische Informatik, Fakultät für Informatik VORLESUNG 13 Smoothed Analysis des Simplex-Algorithmus Nach Heiko Röglin, Universität Bonn, Vorlesungsskript Introduction to Smoothed Analysis vom 9. Januar 2012 78 Wiederholung Simplex-Algorithmus! Korrektheit:!

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Optimierung. Vorlesung 08

Optimierung. Vorlesung 08 Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T

Mehr

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)

Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m) Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

Optimierung. Vorlesung 04

Optimierung. Vorlesung 04 Optimierung Vorlesung 04 Übungsbetrieb Mangels Teilnehmer keine Dienstagsübung mehr. Prüfung laut Paul: Di, 10. Feb. 2015 00:01-23:59 2 Was bisher geschah LP: Maximiere c T x unter Ax = b, x 0. Basis:

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn

Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,

Mehr

Optimierung. Vorlesung 02

Optimierung. Vorlesung 02 Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j

Mehr

Lineare Optimierung: Simplexverfahren Phase Ⅰ

Lineare Optimierung: Simplexverfahren Phase Ⅰ Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren

Mehr

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung

Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen 10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen Bisher haben wir immer vorausgesetzt, dass alle Variablen eines LOP der Bedingung x i 0 liegen. Im Folgenden wollen wir auch sogenannte freie

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Aufgabe 3.1: LP-Problem mit allen Bedingungstypen

Aufgabe 3.1: LP-Problem mit allen Bedingungstypen Johann Wolfgang Goethe-Universität Frankfurt am Main Lehrst.f.BWL, insb. Quant. Methoden Prof. Dr. Dietrich Ohse Interpretation, zulässige Lösung, Dualität 18. Mai 2004 Aufgabe 3.1: LP-Problem mit allen

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Lineare Programmierung (2)

Lineare Programmierung (2) Inhalt Rückblick Motivation - linearen Programmierung Flussprobleme Multiple Warenflüsse Fortsetzung Simplex Algorithmus Initialisierung Fundamentalsatz der linearen Programmierung schwache Dualität Dualität

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2007/2008 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester

Mehr

Dr. Anita Kripfganz SS 2014

Dr. Anita Kripfganz SS 2014 Dr. Anita Kripfganz SS 2014 4. Lösungsverfahren 4.1. Schnittebenenmethode Im Jahre 1958 hat R. Gomory ein allgemeines Schnittebenenverfahren zur Lösung ganzzahliger linearer Optimierungsprobleme vorgeschlagen.

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

Inhaltsverzeichnis Grundlagen der Linearen Optimierung

Inhaltsverzeichnis Grundlagen der Linearen Optimierung Inhaltsverzeichnis 4 Grundlagen der Linearen Optimierung 1 4.1 Grundbegriffe............................. 1 4.1.1 Lineare Optimierung..................... 1 4.1.2 Das Grundmodell eines linearen Optimierungsproblems

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

6. Einführung 43. gilt. Dann soll also A B x B = b eindeutig lösbar sein, also A B vollen Rang haben, d. h. invertierbar (regulär) sein.

6. Einführung 43. gilt. Dann soll also A B x B = b eindeutig lösbar sein, also A B vollen Rang haben, d. h. invertierbar (regulär) sein. 6. Einführung 43 und aus der linearen Unabhängigkeit der (a i ) i I(x) folgt y i = z i auch für i I(x). Insgesamt gilt also y = z, d. h., nach Definition 6.9 ist x eine Ecke von P. Beachte: Der Koordinatenvektor

Mehr

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität Effiziente Algorithmen Lineares Programmieren 216 Schwache Dualität Sei wieder z = max{ c T x Ax b, x 0 } (P ) und w = min{ b T u A T u c, u 0 }. (D) x ist primal zulässig, wenn x { x Ax b, x 0 }. u ist

Mehr

Aufgabe 5.3 Duale Simplexverfahren

Aufgabe 5.3 Duale Simplexverfahren Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation

Mehr

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form 2... 22 4.2 Die Bedingungen vom komplementären Schlupf... 23 4.3 Das Kürzeste-Wege-Problem und zugehörige duale Problem... 24 4.4 Das Farkas Lemma... 25 4.5 Duale Information im Tableau... 26 4.6 Der duale

Mehr

Kurseinheit 2»Dualität und weiterführende Methoden«

Kurseinheit 2»Dualität und weiterführende Methoden« Inhaltsübersicht 1 Gliederung Kurseinheit 1»Simpleverfahren«1. Einleitung 1.1. Einordnung und Übersicht des Stoffes 1.2. Einführendes Beispiel und Grundlagen 2. Lineare Gleichungssysteme 2.1. Die allgemeine

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

3. Der Simplexalgorithmus Der Simplexalgorithmus 3.1 Formen des Linearen Optimierungsproblem. (3.1) Allgemeine Form !"#! " # # R $ %!

3. Der Simplexalgorithmus Der Simplexalgorithmus 3.1 Formen des Linearen Optimierungsproblem. (3.1) Allgemeine Form !#!  # # R $ %! 11 3.1 Formen des Linearen Optimierungsproblem... 12 3.2 Zulässige Basislösungen... 13 3.3 Die Geometrie von Linearen Programmen... 14 3.4 Lokale Suche unter den zulässigen Basislösungen... 15 3.5 Organisation

Mehr

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006

Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 2005/2006 Universität Hannover Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Einführung in das Operations Research im Wintersemester 005/006

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Simplex-Verfahren. Kapitel 3. Simplex-Verfahren. Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/ / 372

Simplex-Verfahren. Kapitel 3. Simplex-Verfahren. Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/ / 372 Kapitel 3 Simplex-Verfahren Peter Becker (H-BRS) Lineare und kombinatorische Optimierung Wintersemester 2017/18 104 / 372 Inhalt Inhalt 3 Simplex-Verfahren Primaler Simplexalgorithmus Unbeschränktheit

Mehr

Einführung in die Lineare Programmierung

Einführung in die Lineare Programmierung Einführung in die Lineare Programmierung Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 RWTH Aachen 28. Mai 2008 Elementares Beispiel Die kanonische Form Die algebraische Gleichungsform Gegeben seien

Mehr

Die duale Simplexmethode

Die duale Simplexmethode Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen

Mehr

Kap. 4.2: Simplex- Algorithmus

Kap. 4.2: Simplex- Algorithmus Kap. 4.2: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14.-17. VO A&D WS 08/09 2.12.-16.12.2008 Petra Mutzel Alg. & Dat.

Mehr

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende) . Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)

Mehr

Hauptsatz und Optimalitätskriterium der Simplexmethode

Hauptsatz und Optimalitätskriterium der Simplexmethode Kapitel 4 Hauptsatz und Optimalitätskriterium der Simplexmethode In diesem Abschnitt wird das wichtigste Verfahren zur Lösung linearer Optimierungsprobleme eingeführt die Simplexmethode Es existiere für

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht A t t Τ = α Y t Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Matrizen als Modellierungswerkzeug Speyer, Juni 24 - Beispiele mathematischer Medellierung Seite Matrizen als

Mehr

CARL HANSER VERLAG. Peter Stingl. Operations Research Linearoptimierung

CARL HANSER VERLAG. Peter Stingl. Operations Research Linearoptimierung ARL HANSER VERLAG Peter Stingl Operations Research Linearoptimierung -446-228-6 wwwhanserde 2 Lineare Optimierungsprobleme x 2 6 P P sentartete Ecke ( 4) x +x 2 5 PPPPPPPPPPPPPPP X x + x 2 7 2x +x 2 8

Mehr

Optimierungstheorie Scheinklausur Sommersemester Juli 2007

Optimierungstheorie Scheinklausur Sommersemester Juli 2007 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Prof. Dr. Christian Wieners, Dipl.-Math. techn. Martin Sauter Institut für Angewandte und Numerische Mathematik Optimierungstheorie Scheinklausur

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung.

Operations Research. Flüsse in Netzwerken. Flüsse in Netzwerken. Unimodularität. Rainer Schrader. 2. Juli Gliederung. Operations Research Rainer Schrader Flüsse in Netzwerken Zentrum für Angewandte Informatik Köln 2. Juli 2007 1 / 53 2 / 53 Flüsse in Netzwerken Unimodularität Gliederung Netzwerke und Flüsse bipartite

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Kap. 4.2: Simplex- Algorithmus

Kap. 4.2: Simplex- Algorithmus Kap. 4.: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO V. Chvatal: Linear Programming D. ertsimas:

Mehr

Übung 3, Simplex-Algorithmus

Übung 3, Simplex-Algorithmus Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung

Mehr

3.1. Existenzsatz und Struktur der Lösungsmenge

3.1. Existenzsatz und Struktur der Lösungsmenge 3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall

Mehr

Klausur zur Vorlesung Operations Research im Sommersemester 2009

Klausur zur Vorlesung Operations Research im Sommersemester 2009 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Operations Research im Sommersemester 2009 Hinweise:

Mehr

5. Das klassische Transportproblem

5. Das klassische Transportproblem 5 Das klassische Transportproblem Ein homogenes Gut soll von verschiedenen Lagerplätzen abtransportiert und so auf die Zielorte verteilt werden, dass dort der Bedarf der Kunden gedeckt wird Die Vorrats-

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Lösung Übung 1a) - Medikamentenmischung

Lösung Übung 1a) - Medikamentenmischung Lösung Übung 1a) - Medikamentenmischung x j Anteil der Komponente j an der Mischung, j=1,...,4 Min 39x + 21x + 82x + 55x 1 2 3 4 u.d.n 54 2x + 50x + 6x + 74x 60 1 2 3 4 39 x + 75x + 13x + 96x 80 1 2 3

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

1 Einführung in Lineare Programme und Dualität

1 Einführung in Lineare Programme und Dualität Gliederung Inhaltsverzeichnis 1 Einführung in Lineare Programme und Dualität 1 1.1 Lineare Programme......................... 1 1.2 Dualität............................... 2 2 Grundlegende Sätze und Definitionen

Mehr

1. Transport- und Zuordnungsprobleme

1. Transport- und Zuordnungsprobleme 1. Transport- und Zuordnungsprobleme Themen 1. Transport- und Zuordnungsprobleme Themen: Analyse der Problemstruktur Spezielle Varianten des Simplexalgorithmus für Transport- und Zuordnungsprobleme Bezug

Mehr

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 7 Lineare Programmierung II. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 7 Lineare Programmierung II 1 Lineare Programme Lineares Programm: Lineare Zielfunktion Lineare Nebenbedingungen (Gleichungen oder Ungleichungen) Spezialfall der konvexen Optimierung

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2009)

Vorlesung Lineare Optimierung (Sommersemester 2009) 1 Vorlesung Lineare Optimierung (Sommersemester 2009) Kapitel 7: Der Simplex-Algorithmus Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 18. Juni 2009) Gliederung 2 Ecken, Kanten, Extremalstrahlen

Mehr

Mitschrift der Vorlesung: Kombinatorische Optimierung

Mitschrift der Vorlesung: Kombinatorische Optimierung Mitschrift der Vorlesung: Kombinatorische Optimierung bei Prof. Socher-Ambrosius Niels-Peter de Witt 26. April 2002 Inhaltsverzeichnis 1 Einführung 2 1.1 Beispiel: Profil zersägen.......................

Mehr

Einführung in Operations Research Vorlesung 9:

Einführung in Operations Research Vorlesung 9: Einführung in Operations Research Vorlesung 9: 11.1.2018 Prof. Dr. Thomas Slawig AG Algorithmische Optimale Steuerung basierend auf einer LV, Folien und Beispielen von Prof. Dr. Klaus Jansen Institut für

Mehr

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines

Mehr

Hochschule RheinMain SS 2018 Prof. Dr. D. Lehmann. Lösungen 11. Übungsblatt Lineare Optimierung

Hochschule RheinMain SS 2018 Prof. Dr. D. Lehmann. Lösungen 11. Übungsblatt Lineare Optimierung Hochschule RheinMain SS 2018 Prof. Dr. D. Lehmann Lösungen 11. Übungsblatt Lineare Optimierung 1.Aufgabe: a) Phase-I-Methode: Wir betrachten das Hilfs-LOP unter den Nebenbedingungen HF (v 1, v 2 ) = HF

Mehr

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }.

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }. alteklausuraufgaben 1 LinOpt Klausur Sommersemester 05 Aufgabe 1 a) Definieren Sie den Begriff der konischen Hülle. b) Sei S R n. Zeigen Sie: Cone S = Lin S x S : x Cone (S \ {x}). Aufgabe 2 a) Definieren

Mehr

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Diplomprüfung / Sommersemester 24 Quantitative Methoden der BWL Musterlösung der Prüfungsklausur vom. Juli

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel 3 - Lineare Optimierung

Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel - Lineare Optimierung Sascha Kurz Jörg Rambau 8. August Lösung Aufgabe.. Da es sich um ein homogenes

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Methoden des Operations Research von W. Hauenschild

Methoden des Operations Research von W. Hauenschild Skript zur Vorlesung Methoden des Operations Research von W. Hauenschild Wintersemester / Sommersemester L A TEX-Satz von G. Schmidt. Juli Warnung Dieses Skript ist nur die elektronische Fassung einer

Mehr

KAPITEL 10 DIE INNERE-PUNKTE-METHODE

KAPITEL 10 DIE INNERE-PUNKTE-METHODE KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach

Mehr

λ i x i λ i 0, x i X, nur endlich viele λ i 0}.

λ i x i λ i 0, x i X, nur endlich viele λ i 0}. jobname LinOpt Sommer Aufgabe a) Sei X R n. Dann ist b) Cone X = { x i X λ i x i λ i, x i X, nur endlich viele λ i }. x Cone S = Lin S x Lin S = Cone S. Also gibt es nicht-negative Koeffizienten µ i von

Mehr

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist

z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,

Mehr

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching

Überblick. Kap. 1.4: Minimum Weight Perfect Matching. 1.3 Blüten-Schrumpf Algorithmus für Maximum Matching Kap. 1.4: Minimum Weight Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 4. VO 6. November 2006 Überblick kurze Wiederholung: 1.2 Blüten-Schrumpf-Algorithmus für Perfektes Matching

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

Algorithmen II Vorlesung am

Algorithmen II Vorlesung am Algorithmen II Vorlesung am 17.01.013 Parametrisierte Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

Algorithmen. Spieltheorie. Nash-Gleichgewichte in endlichen Nullsummenspielen. Kodierung als Lineares Programm. Nash-Gleichgewichts-Berechnung

Algorithmen. Spieltheorie. Nash-Gleichgewichte in endlichen Nullsummenspielen. Kodierung als Lineares Programm. Nash-Gleichgewichts-Berechnung Spieltheorie Albert-Ludwigs-Universität Freiburg Bernhard Nebel und Robert Mattmüller Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Mai 2012 14. Mai 2012 B. Nebel, R. Mattmüller Spieltheorie

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 2-4 und nv jokar@mathtu-berlinde Kapitel 4 Der

Mehr

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14.

Spieltheorie. Nash-Gleichgewichts-Berechnung. Bernhard Nebel und Robert Mattmüller. Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Spieltheorie Nash-Gleichgewichts-Berechnung Albert-Ludwigs-Universität Freiburg Bernhard Nebel und Robert Mattmüller Arbeitsgruppe Grundlagen der Künstlichen Intelligenz 14. Mai 2012 14. Mai 2012 B. Nebel,

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Angewandte Mathematik für die Informatik

Angewandte Mathematik für die Informatik Angewandte Mathematik für die Informatik PD Dr. Louchka Popova-Zeugmann PD Dr. Wolfgang Kössler 17. Mai 2017 1 Lineare Optimierung Allgemeine LOA Ganzzahlige Optimierung Differentialgleichungen Differentialgleichungen

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Dualität Anwendung: Spieltheorie Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? Inhaltsübersicht für heute: Dualität

Mehr

4 Lineare Optimierung

4 Lineare Optimierung 4 Lineare Optimierung In diesem Kapitel werden wir uns mit effizienten Verfahren im Bereich der linearen Optimierung beschäftigen. 4.1 Einführung Als Einführung betrachten wir das Beispiel einer Erdölraffinerie.

Mehr