Optimierung. Vorlesung 04
|
|
|
- Lorenz Böhm
- vor 7 Jahren
- Abrufe
Transkript
1 Optimierung Vorlesung 04
2 Übungsbetrieb Mangels Teilnehmer keine Dienstagsübung mehr. Prüfung laut Paul: Di, 10. Feb :01-23:59 2
3 Was bisher geschah LP: Maximiere c T x unter Ax = b, x 0. Basis: A B x B + A N x N = b Umformung zu Âx = b mit E m x B + Â N x N = b Basislösung: Setze x N = 0 und dann ist x B = b Simplexalgorithmus: 1. Starte mit einer Basis B und dem entsprechenden Gleichungssystem Âx = b. 2. Wenn Basislösung nicht optimal, wähle eine neue (nicht- Basis) Spalte aus und ersetze eine Basisspalte. Bestimme das neue Gleichungssystem Âx = b bezüglich der neuen Basis. 3. Wir transformieren das Gleichungssystem Âx = b durch Zeilenoperationen in ein äquivalentes Gleichungssystem mit den gewünschten Eigenschaften. (auch im Tableau), 4
4 Was noch zu tun ist. Wir haben gezeigt, das Simplexverfahren findet eine optimale Lösung. Voraussetzung: LP nicht degeneriert (entartet) Offene Fragen für heute: Wie lange braucht ein Pivotschritt? Wie finden wir eine initiale Basislösung? Was machen wir mit degenerierten LPs? Wie viele Schritte braucht der Simplex? 7
5 Komplexität eines einzelnen Pivotschrittes Anzahl der mathematischen Operationen Bestimmung der Eingangs und Ausgansspalte und Transformation des Gleichungssystem in O nm Rechenoperationen auf rationalen Zahlen. Komplexität einzelner Operationen Annahme: Koeffizienten der Zielfunktion und Nebenbedingungen sind ganzzahlig. Es entstehen nicht ganzzahlige rationale Zahlen deren Zähler und Nenner groß werden können. (Multiplikation bei der Matrixtransformation) Repräsentation rationaler Zahlen durch Brüche. Also zwei binär kodierte Zahlen. Wir gehen davon aus das Zähler und Nenner minimal sind, also nicht weiter gekürzt werden können. 8
6 Größe der Zahlen Lemma 2.2 Sei α der größten absolute Wert über alle (ganzzahligen) Eingabezahlen eines LPs in Gleichungsform. a) Sei β der größte absolute Wert über alle (gekürzten) Zähler und Nenner der Zahlen in den Matrizen  = A B 1 A, A = A 1 B und dem Vektor b = A B 1 b. Es gilt β αm m. b) Sei γ der größte absolute Wert über die (gekürzten) Zähler und Nenner der Zielfunktionswerte c T x über alle Basislösungen x. Es gilt γ αm m+1. 9
7 Beweis von Lemma 2.2 Cramersche Regel: Für ein Gleichungssystem Mx = b (wobei M eine invertierbare k k Matrix ist) gilt für jedes i x i = det (M 1,, M i 1, b, M i+1,, M k ) det (M) M i bezeichnet die i-te Spalte von M. 10
8 Beweis von Lemma 2.2 Die Determinante einer k k Matrix ist definiert als Summe von k! Produkten von jeweils k Matrixeinträgen. Matrixeinträge sind Zahlen mit Absolutwert maximal α Determinanten sind also Zahlen mit Absolutwert maximal k! α k αk k 11
9 Komplexität eines einzelnen Pivotschrittes Satz 2.3 Die Laufzeit jedes einzelnen Pivotschrittes ist polynomiell beschränkt in der Eingabelänge des LPs. Warum? 13
10 Initiale Basislösung Wie finden wir eine initiale Basislösung? Wir nutzen ein HilfsLP: Aus einer i-ten Nebenbedingungen der Form (obda: b i 0 1 i m, sonst die Zeile mit 1 multiplizieren) m machen wir j=1 m a ij x j = b i mit der Zielfunktion j=1 a ij x j + h i = b i Minimiere h 1 + h h m Dieses HilfsLP lösen wir mit der initialen Basislösung x = 0 und h = b. 14
11 Initiale Basislösung Lösung des HilfsLP. Zwei mögliche Fälle: 1. Die optimale Lösung hat einen positiven Zielfunktionswert. Dann gibt es keine Lösung mit h 1 = h 2 = = h m = 0. Also hat das ursprüngliche LP keine zulässige Lösung. 2. Der berechnete Zielfunktionswert des HilfsLP ist 0. In der berechneten Basislösung des HilfsLP gilt somit h 1 = h 2 = = h m = 0. Damit ist diese Basislösung auch zulässig für das ursprüngliche LP. 15
12 Degenerierte LPs Bei degenerierten LP kann es vorkommen, dass in einem Pivotschritt eine oder mehrere Basisvariablen den Wert 0 haben. Durch Austausch einer Basisspalte, die zu einer solchen Variable gehört, erhöht sich der Zielfunktionswert nicht. Wenn man die falschen Spalten austauscht so terminiert der Simplexalgorithmus nicht. 16
13 Blands Pivotregel Zyklisches Verhalten des Simplexalgorithmus kann durch die folgende Pivotregel von Bland verhindert werden: Wähle die Eingangsspalte A j und die Ausgangsspalte AB(i), mit möglichst kleinem Index, also so, dass zunächst der Index j und dann der Index B(i) minimal unter den in vorher beschriebenen Bedingungen gewählt wird. 17
14 Nachteil Nachteil: Die Auswahl der Eingangspivotspalte ist somit festlegt. Bisher konnte jede Nichtbasisspalte mit positiven reduzierten Kosten als Eingangsspalte gewählt werden. Einige Heuristiken versuchen diese Freiheit zu nutzen, indem sie beispielsweise die Spalte mit den größten reduzierten Kosten als Eingangsspalte wählen. Deshalb werden wir später eine alternative Möglichkeit kennenlernen. (Pertubierung) 18
15 Laufzeit der Simplexmethode Einen einzelnen Pivotschritt können wir also effizient durchführen. Die Anzahl der Schritte ist jedoch problematisch: Satz 2.6 Für jedes n, gibt es ein LP in kanonischer Form mit n Variablen und 2n ganzzahligen Koeffizienten mit Absolutwert hächstens 4, so dass der Simplex-Algorithmus 2 n -1 Pivotschritte benötigt. 20
16 Idee des Beweises Klee und Minty (1972) Wir brauchen ein LP mit exponentiell vielen Basislösungen. Es muss immer eine benachbarte Basislösung mit besserem Zielfunktionswert geben. Beweis in 2 Schritten: 1. Ein LP mit 2 n Basislösungen. Es gibt einen Pfad über 2 n benachbarte Basislösungen. Der Zielfunktionswert verschlechtert sich nicht. 2. Wie 1. aber nun verbessert sich der Zielfunktionswert von Schritt zu Schritt. 21
17 Ein LP mit 2 n Basislösungen Betrachte folgendes LP: Maximiere x 1 unter den Nebenbedingungen: x i 1 x i 0 Das Lösungspolyhedron entspricht dem n dimensionalen Hypercube. Es gibt 2 n Basislösungen die den 2 n Knoten des Hypercubes entsprechen. Also Punkte aus 0,1 n 22
18 Pfad über 2 n benachbarte Basislösungen Behauptung 2.7 Es gibt einen Hamiltonpfad auf den 2 n Knoten des Hypercubes, auf dem sich der Zielfunktionswert nicht verschlechtert. Wir besuchen erst alle Knoten mit x 1 = 0 und anschließend alle Knoten mit x 1 = 1. Wie können wir jeweils einen Pfad finden, der jeden Knoten exakt einmal besucht? (Hamiltonpfad) Antwort: Gray Code. 23
19 Gray Code Ist eine stetige Codierung der Binärzahlen. So dass aufeinderfolgende Zahlen Hammingabstand 1 haben. Durchlaufe also in dieser Reihenfolge zunächst die Knoten 0 n bis 01 n 1 mit Zielfunktionswert 0. Anschließend die Knoten 1 n bis 10 n 1 mit Zielfunktionswert
20 Verbessernder Zielfunktionswert Klee-Minty-Cube: Für ein ε > 0 sind die Nebenbedingungen: x 1 1 x 1 ε x j 1 ε x j 1 x j ε x j 1 25
21 Klee-Minty-Cube Auf diesem Polyhedron hat der oben beschriebene Hamiltopfad ansteigende Zielfunktionswerte. Funktioniert für alle ε 1 4. Durch Multiplikation der Nebenbedingungen mit 4, erhalten wir ein ganzzahlige LP wie in Satz 2.6 gefordert. 26
22 Einige Bemerkungen Das Beispiel setzt voraus, das man ungünstige Pivotentscheidungen trifft. Es gibt solche Beispiele aber für die meisten Pivotregeln. Offene Frage: Gibt es eine Pivotregel mit polynomieller Laufzeit? Gibt es überhaupt immer einen Pfad polynomieller Länge zum Optimum? 28
23 Die Vermutung von Hirsch (Hirsch Conjecture) Vermutung von 1957: Der Durchmesser eines n-dimensionalen Polytops mit m Facetten ist beschränkt durch m n. Widerlegt durch ein Beispiel eines 43- dimensionalen Polytops mit 86 Facetten und einem Durchmesser größer als 43. Gezeigt 2010 von Francisco Santos. Beste obere Schranke: m log 2 n+2 29
24 Simplex in der Praxis Viele in der Praxis auftretenden LPs lassen sich tatsächlich effizient mit dieser Methode lösen. zufällig erzeugte Eingabeinstanzen wie z.b. Borgwardt (1977) geglätteten Analyse (Smoothed Analysis) Spielman und Teng (2001) 30
Einführung in die Lineare Programmierung. Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen
Einführung in die Lineare Programmierung Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen 30. Juli 2008 Inhaltsverzeichnis 1 Lineare Programme 3 1.1 Die kanonische Form..........................
Probabilistische Analyse von Algorithmen
Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen 27. Mai 2005 Übersicht Einführung 1 Einführung 2 Exkurs: Wahrscheinlichkeitstheorie Borgwardts 3 Idee 4 Formale Beschreibung des s Motivation
Optimierung. Zusammenfassung
Optimierung Zusammenfassung Inhalte 1. Lineare Programmierung 2. Simplexalgorithmus 3. Ellipsoidmethode 4. Dualität 5. Ganzzahligkeit 6. Facility Location 7. Randomisiertes Runden 8. Branch and Bound &
1 Lineare Optimierung, Simplex-Verfahren
1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und
Bestimmung einer ersten
Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
Lineare Programmierung Teil I
Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was
Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298
Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester
OPERATIONS-RESEARCH (OR)
OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:
Lineare Programmierung
Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen
3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange
2. Optimierungsprobleme 6
6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern
Technische Universität München Zentrum Mathematik. Übungsblatt 7
Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion
Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206
Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter
2 Die Dimension eines Vektorraums
2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1
Schranken für zulässige Lösungen
Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung
( ) Lineare Gleichungssysteme
102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv
3.4 Der Gaußsche Algorithmus
94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,
Matrizen, Determinanten, lineare Gleichungssysteme
Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Lineare Gleichungssysteme
Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare
3. Schnittebenenverfahren
3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research
Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung.
Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil : Lineare Algebra und Optimierung Wintersemester Matrizenrechnung Aufgabe ( 3 0 Gegeben sind die Matrizen A = 2 5 2 4 D =
4.13. Permutationen. Definition. Eine Permutation der Elementen {1,..., n} ist eine bijektive Abbildung
43 Permutationen Definition Eine Permutation der Elementen {,, n} ist eine bijektive Abbildung σ : {,,n} {,,n} Es ist leicht zu sehen, dass die Hintereinanderführung zweier Permutationen ergibt wieder
3. Grundlagen der Linearen Programmierung
3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations
Mathematische Optimierung
Mathematische Optimierung Geschrieben von Jan Pöschko auf Grundlage der Vorlesung von Bettina Klinz TU Graz Sommersemester 2007 Stand: 27. Oktober 2009 Inhaltsverzeichnis I Lineare Optimierung 7 1 Grundlegende
Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis
Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit
Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?
Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum
KAPITEL 6 GANZZAHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULARE MATRIZEN
KPITEL 6 GNZZHLIGE OPTIMIERUNG UND VOLLSTÄNDIG UNIMODULRE MTRIZEN F. VLLENTIN,. GUNDERT. Ganzzahlige lineare Programme Viele Optimierungsprobleme des Operations Research lassen sich als ganzzahlige lineare
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Teil 3 Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Inhaltsverzeichnis Teil 1 Teil
Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen
Datenstrukturen & Algorithmen Einführung Standard- und Schlupfformen Simplex Algorithmus Matthias Zwicker Universität Bern Frühling 2009 2 Beispiel: Wahlkampf Ziel: mit möglichst wenig Werbung eine gewisse
Lineare Algebra I Zusammenfassung
Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition
Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:
Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Lineare Optimierungsmodelle
Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung
Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015
und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html
Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).
8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame
Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2
Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der
Quadratische Matrizen
Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch
6 Hauptachsentransformation
6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten
Euklidische und unitäre Vektorräume
Kapitel 7 Euklidische und unitäre Vektorräume In diesem Abschnitt ist der Körper K stets R oder C. 7.1 Definitionen, Orthonormalbasen Definition 7.1.1 Sei K = R oder C, und sei V ein K-Vektorraum. Ein
Eigenwerte und Diagonalisierung
Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende
Lineares Programmieren Algorithmentechnik WS 09/10 Dorothea Wagner 7. Januar 2010
Lineares Programmieren Algorithmentechnik WS 09/10 Dorothea Wagner 7. Januar 2010 FAKULTÄT FÜR I NFORMATIK, I NSTITUT FÜR T HEORETISCHE I NFORMATIK KIT Universität des Landes Baden-Württemberg und nationales
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
Optimieren unter Nebenbedingungen
Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Inhaltsverzeichnis. 4 Praxisbeispiel 7
Inhaltsverzeichnis Geschichte und Entwicklung. Grundidee................................2 George B. Dantzig...........................3 Diäten-Problem von G.J. Stigler.................. 2.4 John von Neumann
Optimierung I. Dr. Ulf Lorenz F2.413
Optimierung I Dr. Ulf Lorenz F2.413 [email protected] Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: [email protected] WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:
Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering
Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme
Kapitel 17. Determinanten
Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n
55 Lokale Extrema unter Nebenbedingungen
55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :
(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung)
Lineare Optimierung Unterbestimmte LGS und Optimierung Bei lösbaren unterbestimmten linearen Gleichungssystemen haben wir die Qual der Wahl in Abhängigkeit von den freien Parametern (Anzahl = Anzahl Unbekannte
7 Die Determinante einer Matrix
7 Die Determinante einer Matrix ( ) a11 a Die Determinante einer 2 2 Matrix A = 12 ist erklärt als a 21 a 22 det A := a 11 a 22 a 12 a 21 Es ist S 2 = { id, τ}, τ = (1, 2) und sign (id) = 1, sign (τ) =
Lineare Gleichungssysteme (Teschl/Teschl 11.1)
Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...
C orthogonal und haben die Länge 1). Dann ist die Länge von w = x u + y v gegeben durch w 2 Def. = w,w =
1 v Die Länge Def. Sei (V,, ) ein Euklidscher Vektorraum. Für jeden Vektor v V heißt die Zahl v,v die Länge von v und wird v bezeichnet. Bemerkung. Die Länge des Vektors ist wohldefiniert, da nach Definition
1 Singulärwertzerlegung und Pseudoinverse
Singulärwertzerlegung und Pseudoinverse Singulärwertzerlegung A sei eine Matrix mit n Spalten und m Zeilen. Zunächst sei n m. Bilde B = A A. Dies ist eine n n-matrix. Berechne die Eigenwerte von B. Diese
Lösungen zum 3. Aufgabenblatt
SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.
Lineare Gleichungssysteme - Grundlagen
Lineare Gleichungssysteme - Grundlagen Betrachtet wird ein System linearer Gleichungen (im deutschen Sprachraum: lineares Gleichungssystem mit m Gleichungen für n Unbekannte, m, n N. Gegeben sind m n Elemente
Lineare Algebra I Klausur. Klausur - Musterlösung
Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.
Effiziente Algorithmen I
H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug
Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011)
M. Sc. Frank Gimbel Beginn der Vorlesung zur Numerik I (Wintersemester 2010/2011) 1 Motivation Ziel ist es, ein gegebenes lineares Gleichungssystem der Form Ax = b (1) mit x, b R n und A R n n zu lösen.
Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler
Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:
Proseminar Lineare Algebra II, SS 11. Blatt
Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2
Besteht eine Matrix nur aus einer Spalte (Zeile), so spricht man auch von einem Spaltenvektor (Zeilenvektor)
Matrizenrechnung. Matrizen Matrizen sind bereits im Kapitel Lineare Gleichungssysteme aufgetreten. Unter einer (m n) -Matrix A verstehen wir ein rechteckiges Zahlenschema mit m Zeilen und n Spalten. Der.
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Vektor und Matrixnormen Vorlesung vom
Vektor und Matrixnormen Vorlesung vom 18.12.15 Grundlagen: Matrix Vektor und Matrixprodukt. Lineare Räume. Beispiele. Problem: Berechne die Lösung x von Ax = b zu gegebenem A R n,n und b R n. Ziele: Konditionsanalyse
Lineares Programmieren
Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2011 Nachtrag Art Gallery Problem Lässt sich der Triangulierungs-Algorithmus
KLAUSUR zu Einführung in die Optimierung. Studiengang: Bachelor Master Diplom (bitte ankreuzen)
Mathematisches Institut WS 2012/13 der Heinrich-Heine-Universität 7.02.2013 Düsseldorf Prof. Dr. Achim Schädle KLAUSUR zu Einführung in die Optimierung Bitte folgende Angaben ergänzen und DEUTLICH LESBAR
1 0 1, V 3 = M, und λ A = λa
Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a
Lösungen - Serie 2 zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie
Lösungen - Serie zu den Übungsaufgaben zur Vorlesung Algebraische Zahlentheorie Aufgabe : Berechnen Sie für die folgenden Elemente x in einer Körpererweiterung L K die Norm Nm L K (x) und die Spur T r
1.5 Duales Gitter und Diskriminantengruppe
Gitter und Codes c Rudolf Scharlau 24. April 2009 27 1.5 Duales Gitter und Diskriminantengruppe Dieser Abschnitt ist im wesentlichen algebraischer Natur: Es spielt keine Rolle, dass unsere Gitter in einem
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass
Der Simplexalgorithmus und Innere-Punkt-Methoden zur Lösung linearer Optimierungsprobleme
Der Simplexalgorithmus und Innere-Punkt-Methoden zur Lösung linearer Optimierungsprobleme Birgül Tunç Diplomarbeit Bochum, im Dezember 28 Fakultät für Mathematik Ruhr-Universität Bochum Inhaltsverzeichnis
Vorkurs: Mathematik für Informatiker
Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe
Die Verbindung von Linearer Programmierung und Graphentheorie
Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der
4 Vorlesung: 21.11. 2005 Matrix und Determinante
4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer
Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung
Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter
1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.
Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar
Blockmatrizen. Arthur Wettschereck. 11. April 2012, Bonn
Komplexe und transponierte 11. April 2012, Bonn Komplexe und transponierte 1 Definition Blockmatrix Doppelpunkt Notation 2 Addition Zeilen und Spaltenweise Multiplikation Blockmatrixmultiplikation 3 Herkömliche
Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya
Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
8 Lineare Optimierung
8. LINEARE OPTIMIERUNG 18 8 Lineare Optimierung 8.1 Lineare Optimierung in der Dimension Zum Einüben in die Problematik behandeln wir explizit zunächst ein Optimierungsproblem in der Dimension. 8.1.1 Ein
Lineare Algebra und analytische Geometrie I
Prof Dr H Brenner Osnabrück WS 205/206 Lineare Algebra und analytische Geometrie I Vorlesung 9 Basiswechsel Wir wissen bereits, dass in einem endlichdimensionalen Vektorraum je zwei Basen die gleiche Länge
Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen
Kapitel 4 Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen 1 Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren
Theoretische Informatik 1
Theoretische Informatik 1 Registermaschine David Kappel Institut für Grundlagen der Informationsverarbeitung TU Graz SS 2012 Übersicht Registermaschinen Algorithmusbegriff konkretisiert formale Beschreibung
3 Optimierung mehrdimensionaler Funktionen f : R n R
3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)
Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn
Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum
(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge
ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,
Rang und Inverses einer Matrix
Rang und Inverses einer Matrix [email protected] 29. April 2014 In dieser Notiz werden Methoden und Beispiele zur Berechnung des Rangs einer Matrix sowie der Inversen einer invertierbaren Matrix
Mathematik für Informatiker II Übungsblatt 7
Mathematik für Informatiker II Übungsblatt 7 Vincent Blaskowitz Übungsblatt 7 vom 03.06.20 Aufgabe Aufgabenstellung Berechnen Sie die folgenden Logarithmen ohne Taschenrechner: i log 0,008 ii log 2 Lösung
Kapitel 2: Lineare Optimierung
Kapitel 2: Lineare Optimierung Aufgabe 2.1: Lösen Sie zeichnerisch die folgenden LP-Modelle: a) Max. F(x,y) = 4x + 3y b) Max. F(x,y) = x + y c) Max. F(x,y) = x y x + 3y 9 5x + y 1 2x y x + 2y 2 x + 2y
Erweiterte Koordinaten
Erweiterte Koordinaten Sei K n ein n dimensionaler affiner Raum Die erweiterten Koordinaten des Punktes x x n K n sind x x n Kn+ (Das ist für alle K sinnvoll, weil in jedem Körper K wohldefiniert ist In
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden
Lineare Gleichungssysteme
Poelchau-Oberschule Berlin A. Mentzendorff September 2007 Lineare Gleichungssysteme Inhaltsverzeichnis 1 Grundlagen 2 2 Das Lösungsverfahren von Gauß 4 3 Kurzschreibweise und Zeilensummenkontrolle 6 4
