Optimierung. Vorlesung 02
|
|
|
- Elmar Heinrich
- vor 6 Jahren
- Abrufe
Transkript
1 Optimierung Vorlesung 02
2 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j j=1 maximiert wird unter den Nebenbedingungen d j=1 a ij x j b i x j 0 für i = 1,, m für j = 1,, d 2
3 Kurzform Seinen die Vektoren x = (x j ), c = (c j ) und b = (b i ) sowie die Matrix A = (a ij ). Ein LP läßt sich dann schreiben als Maximiere c T x unter Ax b, x 0. 3
4 Geometrische Anschauung Lösungsraum R d Nebenbedingungen definieren Halbräume Gleichungen entsprechen Hyperebenen Lösungspolyhedron Konvex Globales=lokales Maximum 4
5 Beispiel Polyhedron definiert durch folgendes LP: x 1 + x 2 + x 3 4 x 1 2 x 3 3 3x 2 + x 3 6 x 1, x 2, x 3 0 5
6 Heute Optimum ist ein Knoten ( Eckpunkt ) Idee des SIMPLEX Algorithmus: Lokale Suche über die Knoten Wie findet man die Knoten? Wie beschreibt man sie (im Rechner)? 6
7 Facetten, Kanten, Knoten Sei P ein Polyhedron und H eine beliebige Hyperebene, so das P auf einer Seite von H liegt. Wir nennen f = H P eine Facette von P (falls f ). d 1 dimensionale Facette: Face Ein-dimensionale Facette: Kante (edge) Schnitt von d 1 Hyperebenen Dimension 0: Knoten (vertex) Schnitt von d Hyperebenen 7
8 Facetten, Kanten, Knoten Zwei Knoten sind benachbart, wenn sie durch eine Kante verbunden sind. Kanten können aber auch unbeschränkt sein (vgl. Übung 1) 8
9 Unterräume und ihre Bedeutung Eine Hyperebene im R d wird durch eine Gleichung wie α 1 x 1 + α 2 x α d x d = β beschrieben. d 1 Variablen können frei gewählt werden und bestimmen den Wert der verbleibenden Variable. Der durch die Hyperebene beschriebene (affine) Unterraum hat also die Dimension d 1. Der Schnitt von k linear unabhängigen Hyperebenen hat Dimension d k. 9
10 Spezialfälle (vgl. Übung 1.2) Ist das Lösungspolyhedron in Richtung c beschränkt ist, nenen wir beschränkt, anderfalls unbeschränkt. (vgl. Aufgabe 1.2b) Schneiden sich in einem Punkt mehr als d Nebenbedingungen so nennen wir das LP degeneriert. Ist der Lösunsraum nicht leer so bezeichnen wir das LP als zulässig andernfalls als unzulässig. ( vgl. Aufgabe 1.2c) 10
11 Optimum an Knoten Behauptung 1.3 Das Optimum eines zulässigen und beschränkten LPs wird an einem Knoten des Lösungpolyhedrons angenommen. Bemerkung: Es kann auch optimale Lösungen geben die keine Knoten sind. (vgl. Aufgabe 1.2d) 11
12 Das Simplexverfahren (anschaulich) 1. Bestimme einen beliebigen Knoten v von P. 2. Falls es keine verbessernde Kante inzident zu v gibt, dann ist v optimal, stopp. 3. Folge einer beliebigen verbessernden Kante e von v. Falls e unbeschränkt ist so ist das LP unbeschränkt, stopp. 4. Sei u der andere Endpunkt von e. Setze v = u. Gehe zu Schritt 2. 12
13 Das Simpexverfahren im Rechner Wie bestimmen wir Knoten? Wie bestimmen wir verbessernde Kanten? Oder wie führen wir einen sog. Pivotschritt durch? 1. Gleichungsform 2. Basis (Auswahl von Spalten und Variablen) 3. Basislösungen 4. Pivotschritt, reduzierte Kosten 13
14 algebraische Gleichungsform Maximiere c T x unter Ax = b, x 0. Von der kanonischen zur Gleichungsform: d j=1 a ij x j b i wird durch Hinzufügen einer Schlupfvariable zu d j=1 a ij x j + s i = b i und s i 0. 14
15 Transformation Aus einen LP in kanonischer Form mit m Nebenbedingungen und d Variablen wird ein LP in Gleichungsform mit m Nebenbedingungen und n m + d Variablen. rang(a) = m (NB sind linear unabh.) 15
16 Beispiel (Tafel) x 1 4 x 2 2 x 1 + x
17 Basen oder wie kommen wir an die Knoten? Nicht entartetes LP in Gleichungsform. Sei B eine geordnete Auswahl von k Spalten der m n Matrix A. A B die Teilmatrix von A mit diesen Spalten. x B und c B sind die entsprechenden Teilvektoren. B(i) der Index der iten Spalte in B. B = (A B 1, A B 2,, A B m ) Eine Auswahlt von genau m Spalten B ist eine Basis falls die Vektoren in B linear unabhängig sind. 17
18 Basislösungen Ist B eine Basis, dann ist A B invertierbar. Seien N die Spalten von A die nicht in B sind und A N die entsprechende Teilmatrix. Wir schreiben statt Ax = b nun A B x B + A N x N = b (1.1) Setzen wir nun x N = 0, hat das Gleichungssystem die eindeutige Lösung x B = A 1 B b. Wir nennen die Lösung x B, x N = (A 1 B b, 0) eine Basislösung zur Basis B. Der Zielfunktionswert ist c T B A 1 B b. 18
19 Basislösungen: Anschauung Basislösungen entsprechen Schnittpunkten von d Nebenbedingungen des entprechenden kanonischen LPs. Mindestens n m = d Variablen (die aus x N ) haben den Wert 0. Bei Schlupfvariablen ist die entprechende Nebenbedingung mit Gleichheit erfüllt. Bei (ursprünglichen) Variablen aus der kanonischen Form ist die Nichtnegativitätsbedingung mit Gleichheit erfüllt. Also d Nebenbedingungen mit Gleicheit erfüllt. Sind die m Basisvariablen auch nicht negativ, so ist die Basislösung auch zulässig. 19
20 Knoten sind Basislösungen Behauptung 1.4 Die Knoten des Lösungspolyhedrons zur kanonischen Form entsprechen den zulässigen Basislösungen in der Gleichungsform. Diese Basislösungen sind dadurch gekennzeichnet, dass alle Variablen nichtnegative Werte annehmen. Ist das LP nicht-degeneriert, so sind die Werte der Basisvariablen strikt positiv. 20
21 Pivotschritte Annahmen: LP in Gleichungsform Ax = b. Wir beginnen mit einer zulässigen Basis B sowie Matrizen A B und A B 1. Gleichungssytem von links mit A B 1 multiplizieren: A B 1 Ax = A B 1 b und erhalte Âx = b.... x B = b  N x N, Basisvariablen als Funktion der NBV, für x N = 0 ist dann x B = b. 21
22 Reduzierte Kosten c T x = = c B T b + c N T c B T Â N x N (2.2) Vektor der reduzierten Kosten: c N T c B T Â N Beschreibt die Veränderung der Kosten bei Änderung der Nichtbasisvariablen (NBV) 22
23 Optimalitätskriterium Satz 2.1 Falls der Vektor der reduzierten Kosten zu einer Basis B keinen positiven Eintrag enthält, so ist B optimal. Beweis :Tafel c T x = c T B b + c T N c T B Â N x N c T B b 23
Optimierung. Vorlesung 04
Optimierung Vorlesung 04 Übungsbetrieb Mangels Teilnehmer keine Dienstagsübung mehr. Prüfung laut Paul: Di, 10. Feb. 2015 00:01-23:59 2 Was bisher geschah LP: Maximiere c T x unter Ax = b, x 0. Basis:
Optimierung. Vorlesung 08
Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T
Einführung in die Lineare Programmierung
Einführung in die Lineare Programmierung Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 RWTH Aachen 28. Mai 2008 Elementares Beispiel Die kanonische Form Die algebraische Gleichungsform Gegeben seien
Kombinatorische Optimierung
Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales
Eigenschaften von LPs
2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört
VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind
Optimierung Optimization. Vorlesung 01
Optimierung Optimization Vorlesung 01 Organisatorisches [email protected] Büro: F1.209 (Sprechstunde nach Vereinbarung) Vorlesung: Freitags, 11:15 12:45, F0 053 Übungen: Dienstags, 13:15 14:00, F0 053
Kap. 4: Lineare Programmierung
Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.
Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen. Kapitel IV: Grundlagen der Linearen Optimierung
Vorlesung Wirtschaftsmathematik I WS 2007/2008, Wirtschaftingenieurwesen Kapitel IV: Grundlagen der Linearen Optimierung Inhaltsverzeichnis Abschnitt 3-5 3 Der Simplexalgorithmus 58 3.1 Grundlagen..............................
VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung
1 Der Simplex Algorithmus I
1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier
Optimierung für Nichtmathematiker
Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung
VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)
VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max
Teil I. Lineare Optimierung
Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,
Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b
Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung
Numerische Lineare Algebra
Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)
Dualitätssätze der linearen Optimierung
Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =
Optimale Steuerung 1 Prozessoptimierung 1
Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung
Hauptsatz und Optimalitätskriterium der Simplexmethode
Kapitel 4 Hauptsatz und Optimalitätskriterium der Simplexmethode In diesem Abschnitt wird das wichtigste Verfahren zur Lösung linearer Optimierungsprobleme eingeführt die Simplexmethode Es existiere für
Die duale Simplexmethode
Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen
Lineare Programmierung Teil I
Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was
10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen
10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen Bisher haben wir immer vorausgesetzt, dass alle Variablen eines LOP der Bedingung x i 0 liegen. Im Folgenden wollen wir auch sogenannte freie
Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme
Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter
Lösung allgemeiner linearer Programme
Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt
4.3.3 Simplexiteration
7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige
β 1 x :=., und b :=. K n β m
44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix
Übung 3, Simplex-Algorithmus
Übung 3, 21.6.2011 Simplex-Algorithmus Aufgabe 3.1 Lösen Sie das folgende Optimierungsproblem (von Aufgabe 2.3) graphisch. Substituieren Sie dazu z = 5 y um ein 2-dimensionales Problem zu erhalten. Rechnung
Minimumproblem. Definition 4.7. Ein LP der Form. unter den Nebenbedingungen. d ij x j b i (i =1,...,m)
Minimumproblem Definition 4.7 Ein LP der Form nx Minimiere Z = c j x j j=1 unter den Nebenbedingungen nx d ij x j b i (i =1,...,m) j=1 und den Vorzeichenbedingungen x j 0(j =1,...,n) heißt Minimumproblem.
Optimierung. Optimierung. Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus Fabian Kuhn
Optimierung Vorlesung 8 Lineare Programmierung III: Simplex Algorithmus 1 Resource Allocation Beispiel aus Vorlesung 6 Primales LP: Duales LP: max 3 4 2 2 4 2 8 3 6 0, 0, 0 min 4 8 6 2 3 3 4 2 2 0, 0,
Lineare Optimierung Teil 2
Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine
3. Der Simplexalgorithmus Der Simplexalgorithmus 3.1 Formen des Linearen Optimierungsproblem. (3.1) Allgemeine Form !"#! " # # R $ %!
11 3.1 Formen des Linearen Optimierungsproblem... 12 3.2 Zulässige Basislösungen... 13 3.3 Die Geometrie von Linearen Programmen... 14 3.4 Lokale Suche unter den zulässigen Basislösungen... 15 3.5 Organisation
Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:
Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten
Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck
Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach
Die lineare Programmierung. Die Standardform 1 / 56
Die lineare Programmierung Die Standardform 1 / 56 Die Standardform der linearen Programmierung - Für n reellwertige, nichtnegative Variablen x 1 0,..., x n 0 erfülle die m linearen Gleichungen n a ij
6 Korrektheit des Simplexalgorithmus
6 Korrektheit des Simplexalgorithmus Folgerung: Es sei L: Ax = b, c T x max LP und A B nicht-degenerierte PZB von L und es gebe c r := c r c B A B A r > 0 a) Falls a r := A B a r 0, dann L unbeschränkt
Kap. 4.2: Simplex- Algorithmus
Kap. 4.2: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 14.-17. VO A&D WS 08/09 2.12.-16.12.2008 Petra Mutzel Alg. & Dat.
1 Lineare Optimierung, Simplex-Verfahren
1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und
Lineare Optimierung und Simplex-Algorithmus
Lineare Optimierung und Simplex-Algorithmus Problemstellung Beispiel : Unser Unternehmen verfügt über drei Maschinen A, B, C, mit denen zwei verschiedene Produkte P, P2 hergestellt werden. Die Maschinen
Lineare Optimierung: Simplexverfahren Phase Ⅰ
Lineare Optimierung: Simplexverfahren Phase Ⅰ Zur Erinnerung: Die Lineare Optimierungsaufgabe in Standardform lautet z = c T x + c 0 min (.) bei Ax = b, x 0. Revidiertes Simplexverfahren Mit dem Simplexverfahren
Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298
Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)
1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen
1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen
Einführung in die Lineare Programmierung. Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen
Einführung in die Lineare Programmierung Berthold Vöcking Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen 30. Juli 2008 Inhaltsverzeichnis 1 Lineare Programme 3 1.1 Die kanonische Form..........................
Optimierung für Wirtschaftsinformatiker: Lineare Programme
Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen
Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung
Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze
z = c T x : Ax = b, x 0 }, - die Darstellung der Nichtbasisvektoren durch die Basis ist
Kapitel 5 Die Simplexmethode Es werden folgende Bezeichnungen verwendet: - das untersuchte Problem ist min x R n { z = c T x : Ax = b, x 0 }, - die erste zulässige Basislösung sei x = x 1, x 2,, x m, 0,,
Mitschrift der Vorlesung: Kombinatorische Optimierung
Mitschrift der Vorlesung: Kombinatorische Optimierung bei Prof. Socher-Ambrosius Niels-Peter de Witt 26. April 2002 Inhaltsverzeichnis 1 Einführung 2 1.1 Beispiel: Profil zersägen.......................
1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)
. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)
Lineare Optimierungsmodelle
Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung
Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005
Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung
Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2
6 Lineare Gleichungssysteme
6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α
Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.
Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme
3 Systeme linearer Gleichungen
3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +
Der Kern einer Matrix
Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis
Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1. Vortrag: Lineare Gleichungen. am 11. März von Maximilian Wahner
Proseminar Lineare Algebra WS 08/09 Prof. Dr. O. Bogopolski 1 Vortrag: Lineare Gleichungen am 11. März 2009 von Maximilian Wahner Technische Universität Dortmund Fakultät für Mathematik Proseminar Lineare
Über- und unterbestimmte
Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,
Zugeordneter bipartiter Graph
Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten
(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung)
Lineare Optimierung Unterbestimmte LGS und Optimierung Bei lösbaren unterbestimmten linearen Gleichungssystemen haben wir die Qual der Wahl in Abhängigkeit von den freien Parametern (Anzahl = Anzahl Unbekannte
Teil 5: Lineare Programmierung. (Blum, Kapitel 8)
Teil 5: Lineare Programmierung (Blum, Kapitel 8) Was sind Optimierungsprobleme? Eingabe: Menge F von zulässigen Lösungen. Zielfunktion z:f R. Aufgabe: Finde x F, so dass x F : z(x) z(x ). (für Minimierungsprobleme)
8. Lineare Optimierung
8. Lineare Optimierung 1 Einführung (1) Praktische Probleme sind oft Probleme mit Nebenbedingungen, z.b.: Ein Produktionsprozess hängt von Lieferterminen ab Die Menge der verstaubaren Güter ist durch die
Vektorräume. Kapitel Definition und Beispiele
Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte
Aufgaben zu Kapitel 23
Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform
Der Simplex-Algorithmus
5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis
Kap. 4.2: Simplex- Algorithmus
Kap. 4.: Simplex- Algorithmus Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund Literatur für diese VO V. Chvatal: Linear Programming D. ertsimas:
Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme
Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)
Musterlösung - Aufgabenblatt 7. Aufgabe 1
Musterlösung - Aufgabenblatt 7 Aufgabe Sei C R n eine nicht-leere abgeschlossene und konvexe Menge. Wir wollen zeigen, dass C als der Durchschnitt ihrer stützenden Halbräume dargestellt werden kann, d.h.
5.4 Basis, Lineare Abhängigkeit
die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)
Lineare Algebra 2. Lösung zu Aufgabe 7.2:
Technische Universität Dortmund Sommersemester 2017 Fakultät für Mathematik Übungsblatt 7 Prof. Dr. Detlev Hoffmann 15. Juni 2017 Marco Sobiech/ Nico Lorenz Lineare Algebra 2 Lösung zu Aufgabe 7.1: (a)
Lineare Algebra I (WS 13/14)
Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.
Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2
Ausgewählte Lösungen zu den Übungsblättern 4-5
Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit
Dr. Anita Kripfganz SS 2014
Dr. Anita Kripfganz SS 2014 4. Lösungsverfahren 4.1. Schnittebenenmethode Im Jahre 1958 hat R. Gomory ein allgemeines Schnittebenenverfahren zur Lösung ganzzahliger linearer Optimierungsprobleme vorgeschlagen.
Grundlagen der Optimierung. Übung 6
Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren
Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung
Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit
Vorlesung Lineare Optimierung (Sommersemester 2010)
1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das
37 Gauß-Algorithmus und lineare Gleichungssysteme
37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass
4 Affine Koordinatensysteme
4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner
OPERATIONS-RESEARCH (OR)
OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:
KAPITEL 10 DIE INNERE-PUNKTE-METHODE
KAPITEL DIE INNERE-PUNKTE-METHODE F. VALLENTIN, A. GUNDERT Vorteile: + Löst effizient lineare Programme (in Theorie und Praxis) + erweiterbar (zu einer größeren Klasse von Optimierungsproblemen) + einfach
Das inhomogene System. A x = b
Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist
Lineare Gleichungssysteme
Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......
2 Vektorräume und Gleichungssysteme
2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum 2 Vektorräume und Gleichungssysteme 21 Der n-dimensionale K-Vektorraum Definition 21 Seien K = (K, +, ) ein Körper, V eine Menge und
Prof. Dr. Roland Griesse. Höhere Mathematik für Bachelorstudiengänge I.2
Höhere Mathematik für Bachelorstudiengänge I.2 Wir nehmen an, dass die LOA bereits in Normalform vorliegt: Maximiere c x, wobei A x = b sowie x 0 mit A R m n, b R m und c R n. Neben b 0 nehmen wir noch
6 Lineare Optimierung
6 Lineare Optimierung Um die Aufgabenstellung deutlich zu machen, beginnen wir mit einem (natürlich sehr vereinfachten) Beispiel: Produtionsplan einer (zugegebenermaßen sehr leinen) Schuhfabri. Hergestellt
Kuhn-Tucker Bedingung
Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,
Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel 3 - Lineare Optimierung
Mathematische Grundlagen für Wirtschaftswissenschaftler Lösungshinweise zu den Übungsaufgaben aus Kapitel - Lineare Optimierung Sascha Kurz Jörg Rambau 8. August Lösung Aufgabe.. Da es sich um ein homogenes
Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops
Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 1: Facetten des Knapsack-Polytops Diskutieren Sie folgende Fragen
