Vorlesung Lineare Optimierung (Sommersemester 2010)

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Lineare Optimierung (Sommersemester 2010)"

Transkript

1 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das Dekompositionstheorem für Polyeder Affine Hüllen und Dimension von Polyedern Seiten von Polyedern Irredundante Darstellungen von Polyedern

2 Homogenisierung von Polyedern 3 Theoreme von Weyl/Minkowski 4 Satz 6.1 (Dekompositionssatz für Polyeder) Eine Menge P R n ist genau dann ein Polyeder, wenn man sie als P = conv V + ccone U mit endlichen Mengen V, U R n darstellen kann; ein Polyeder P R n ist genau dann rational (d.h. durch ein lineares Ungleichungssystem mit rationalen Koeffizienten definierbar), wenn man U und V in der Darstellung als Mengen U, V Q n rationaler Vektoren wählen kann. Bezeichnungen P = {x R n Ax b}: Äußere Darstellung P = conv V + ccone U: Innere Darstellung

3 5 Kodierungslängen Bemerkung 6.2 Sind A und b rational, so kann man rationale U und V so wählen, dass die Kodierungslänge jeder Komponente eines Vektors in V U polynomial in der maximalen Kodierungslänge eines Eintrags in (A, b) beschränkt ist ( V U lässt sich aber i.a. nicht polynomial in der Kodierungslänge von (A, b) beschränken). Bemerkung 6.3 Sind V und U rational, so kann man rationale A und b so wählen, dass die Kodierungslänge jeden Eintrags in (A, b) polynomial in der maximalen Kodierungslänge einer Komponente eines Vektors aus V U beschränkt ist (die Anzahl der Ungleichungen in Ax b lässt sich aber i.a. nicht polynomial in der Kodierungslänge von V U beschränken). 6 Lineare Optimierung und innere Darstellungen Bemerkung 6.4 Sind V, U R n endliche Mengen und c R n, so ist das Optimierungsproblem max{ c, x x P} mit P = conv V + ccone U (1) genau dann unzulässig, wenn V = ist. Andernfalls ist (1) genau dann unbeschränkt, wenn c, u > 0 für ein u U ist, und falls kein solches u existiert, ist jedes v V aus der endlichen Menge V mit c, v = max{ c, v v V } eine Optimallösung von (1).

4 7 Konsequenzen Polynomiale Zertifikate Ist ein lineares Optimierungsproblem mit rationalen Daten weder unzulässig noch unbeschränkt, so hat es eine (rationale) Optimallösung, deren Kodierungslänge polynomial in der Kodierungslänge der Problems beschränkt ist. Außerdem kann man (via starker Dualität) die Optimalität einer solchen Optimallösung in polynomialer Zeit beweisen. Das Entscheidungsproblem Ist Ax b lösbar (für rationale A, b) ist in NP conp (gute Charakterisierung). 8 Charakteristischer Kegel / Rezessionskegel Definition 6.5 Der charakteristische Kegel (Rezessionskegel) eines Polyeders P R n ist char(p) = {y R n x + y P für alle x P}. Satz 6.6 Für jedes nicht-leere Polyeder P = P (A, b) = Q + K (mit A R m n, b R m, einem Polytop Q R n und einem polyedrischen Kegel K R n ) gelten: 1. char(p) = K 2. char(p) = P (A, O m ) 3. char(p) = {y R n x + ccone{y} P} für alle x P

5 9 Beispiel 10 Polytope Definition 6.7 Ein Polyeder, das beschränkt (also kompakt) ist, heißt Polytop. Bemerkung 6.8 Für nicht leere Polyeder P R n sind folgende Aussagen paarweise äquivalent: 1. P ist ein Polytop. 2. char(p) = {O n } 3. P = conv V für eine endliche Menge V R n Bemerkung 6.9 Polyeder sind also genau die Minkowski-Summen eines Polytops und eines polyedrischen Kegels.

6 Der Linealitätsraum Definition Der Linealitätsraum eines konvexen Kegels K R n ist 11 lineal(k) = {y K y K} = K ( K), der größte in K enthaltene lineare Unterraum von R n. 2. Der Linealitätsraum eines Polyeders P R n ist lineal(p) = lineal(char(p)). 3. Ein Polyeder P R n ist spitz, wenn sein Linealitätsraum lineal(p) = {O n } trivial ist. (Spitze Polyeder sind nicht leer (n 1).) Satz 6.11 Für Polyeder P = P (A, b) (mit A R m n, b R m ) gelten: 1. lineal(p) = ker A 2. lineal(p) = {y R n x + lin{y} P} für alle x P Beispiele 12

7 13 Beispiele 14 Affine Hülle und Dimension Satz 6.12 Für jedes nicht leere Polyeder P = P (A, b) (mit A R m n, b R m ) ist aff P = {x R n A Eq(P), x = b Eq(P) }. Insbesondere ist die Dimension von P dim P = dim aff P = n rang(a Eq(P), ). Dabei ist... Eq(P) = Eq Ax b (P) = {i [m] A i,, x = b i für alle x P}

8 15 Beispiele 16 Seiten Definition 6.13 Eine Seite des Polyeders P R n ist eine Teilmenge F P mit F = P H = (a, β) für einen P enthaltenden Halbraum H (a, β) P (mit a R n, β R). Die Ungleichung a, x β definiert die Seite F. Bemerkung und P sind die trivialen Seiten von P. 2. Seiten von Polyedern sind Polyeder. 3. Die Menge der Optimallösungen eines (weder unzulässigen noch unbeschränkten) linearen Optimierungsproblems γ = max{ c, x Ax b, x R n } ist genau die durch c, x γ definierte Seite von P (A, b).

9 17 Implizierte Ungleichungen Satz 6.15 Eine Ungleichung a, x β (mit a R n, β R) ist genau dann gültig für ein nicht-leeres Polyeder P (A, b) mit A R m n, b R m (Ax b impliziert a, x β), wenn es y R m + gibt mit y T A = a und y, b β. 18 Äußere Darstellung von Seiten Satz 6.16 Sei P = P (A, b) mit A R m n, b R m. 1. Die Seiten von P sind genau die Mengen {x P A I, x = b I } für alle I [m] und die leere Seite. 2. Für jede nicht-leere Seite F von P gilt F = {x P A Eq(F ), x = b Eq(F ) }. Die Dimension von F ist dim F = n rang(a Eq(F ), ). 3. Der Schnitt zweier Seiten von P ist eine Seite von P. 4. Seiten von Seiten von P sind Seiten von P. 5. Die nicht-leeren Seiten von P haben Dimensionen zwischen dim lineal(p) und dim P (einschließlich). Dabei ist... Eq(F ) = Eq Ax b (F ) = {i [m] A i,, x = b i für alle x F }

10 Innere Darstellung von Seiten 19 Satz 6.17 Seien P = conv V + ccone U mit endlichen Mengen V, U R n und F eine von a, x β definierte Seite von P. 1. F = conv {v V a, v = β} + ccone {u U a, u = 0} 2. Falls F : char(f ) = char(p) H = (a, 0) (die von a, x 0 definierte Seite von char(p)) lineal(f ) = lineal(p) Bemerkung 6.18 Jedes Polyeder hat endlich viele Seiten. Irredundante äußere Darstellungen 20 Definition 6.19 Eine irredundante äußere Darstellung eines Polyeders P R n ist ein System A (1) x = b (1), A (2) x b (2) (mit A (1) R m 1 n, b (1) R m 1, A (2) R m 2 n, b (2) R m 2 ) mit P = {x R n A (1) x = b (1), A (2) x b (2) }, so dass jedes echte Untersystem von A (1) x = b (1), A (2) x b (2) ein größeres Polyeder als P definiert und für kein i [m 2 ] die Gleichung A (2) i,, x = b i gültig für P ist.

11 Facetten 21 Definition 6.20 Die inklusionsmaximalen unter den nicht-trivialen Seiten eines Polyeders sind seine Facetten. Satz 6.21 Eine nicht-triviale Seite F eines Polyeders P ist genau dann eine Facette von P, wenn dim F = dim P 1 ist. Charakterisierung irredundanter äußerer Darstellungen 22 Satz 6.22 Ist P ein nicht-leeres Polyeder, so ist ein System A (1) x = b (1), A (2) x b (2) genau dann eine irredundante äußere Darstellung von P, wenn 1. aff P = {x R n A (1) x = b (1) } ist, 2. die Matrix A (1) vollen Zeilenrang hat, 3. jede Ungleichung in A (2) x b (2) eine Facette von P definiert 4. und jede Facette von P von genau einer Ungleichung aus A (2) x b (2) definiert wird.

12 Irredundante innere Darstellungen 23 Definition 6.23 Eine irredundante innere Darstellung eines Polyeders P R n besteht aus endlichen Mengen V, U R n mit P = conv V + ccone U + lineal(p), so dass für alle echten Teilmengen Ṽ V und Ũ U P conv Ṽ + ccone U + lineal(p) und P conv V + ccone Ũ + lineal(p) ist. Minimale Seiten von Polyedern 24 Definition 6.24 Die inklusionsminimalen unter den nicht-leeren Seiten eines Polyeders sind seine minimalen Seiten. Satz 6.25 Für eine nicht-leere Seite F eines Polyeders P = P (A, b) (mit A R m n, b R m ) sind folgende Aussagen paarweise äquivalent (mit Eq(F ) = Eq Ax b (F )): 1. F ist eine minimale Seite von P. 2. F = {x R n A Eq(F ), x = b Eq(F ) } 3. F = {x } + lineal(p) für alle x F 4. dim F = dim lineal(p)

13 Beispiele 25 Echte minimale Seiten von polyederischen Kegeln 26 Definition 6.26 Die inklusionsminimalen unter den vom Linealitätsraum verschiedenen Seiten eines polyederischen Kegels sind seine echten minimalen Seiten. Satz 6.27 Für eine nicht-leere Seite G eines polyedrischen Kegels K = P (A, O m ) (mit A R m n ) sind folgende Aussagen paarweise äquivalent (mit Eq(G) = Eq Ax Om (G)): 1. G ist eine echte minimale Seite von K. 2. G = {x R n A Eq(G), x = O Eq(G), A i,, x 0} für alle i [m] \ Eq(G) 3. G = ccone{x } + lineal(k) für alle x G \ lineal(k) 4. dim G = dim lineal(k) + 1

14 27 Ecken und Extremalstrahlen Definition Die (0-dimensionalen) minimalen Seiten {v} (oder auch v selbst) eines (spitzen) Polyeders sind seine Ecken. 2. Die (1-dimensionalen) echten minimalen Seiten eines (spitzen) polyederischen Kegels sind seine Extremalstrahlen. Die von O verschiedenen Vektoren in einem Extremalstrahl sind seine Erzeuger. Bemerkung 6.29 Ein Punkt v P in einem Polyeder P ist genau dann eine Ecke von P, wenn v conv (P \ {v}) ist, d.h., wenn v ein Extremalpunkt von P ist. 28 Charakterisierung irredundanter innerer Darstellungen Satz 6.30 Für ein nicht-leeres Polyeder P und zwei endliche Mengen V P und U char(p) ist P = conv V + ccone U + lineal(p) genau dann eine irredundante innere Darstellung von P, wenn 1. V aus jeder minimalen Seite von P genau einen Punkt und 2. U aus jeder echten minimalen Seite von char(p) genau einen nicht in lineal(p) liegenden Vektor enthalten.

15 Folgerungen für spitze Polyeder 29 Korollar 6.31 Für spitze Polyeder P und endliche Mengen V P und U char(p) ist also genau dann P = conv V + ccone U, wenn V alle Ecken und U Erzeuger aller Extremalstrahlen von char(p) enthält. Korollar 6.32 Ein lineares Optimierungsproblem über einem spitzen Polyeder ist unbeschränkt oder nimmt sein Optimum in einer Ecke des Polyeders an. Korollar 6.33 Eine spitzes Polyeder ist genau dann rational, wenn es nur rationale Ecken hat und sein charakteristischer Kegel nur rationale Extremalstrahlen besitzt.

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 2: Konvexe Mengen und Kegel Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. April 2010) Gliederung 2 Konvexe Mengen

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2009)

Vorlesung Lineare Optimierung (Sommersemester 2009) 1 Vorlesung Lineare Optimierung (Sommersemester 2009) Kapitel 7: Der Simplex-Algorithmus Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 18. Juni 2009) Gliederung 2 Ecken, Kanten, Extremalstrahlen

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2007)

Vorlesung Lineare Optimierung (Sommersemester 2007) 1 Vorlesung Lineare Optimierung (Sommersemester 007) Kapitel 9: Ganzzahlige Polyeder und Kombinatorische Dualität Volker Kaibel Otto-von-Guericke Universität Magdeburg Montag, 9. Juli 007 Gliederung Ganzzahlige

Mehr

Operations Research. Polyeder und Polytope. Polyeder und Polytope. Polyeder. Rainer Schrader. 11. Mai Gliederung. sei P R n

Operations Research. Polyeder und Polytope. Polyeder und Polytope. Polyeder. Rainer Schrader. 11. Mai Gliederung. sei P R n Operations Research Rainer Schrader Polyeder und Zentrum für Angewandte Informatik Köln. Mai 27 / 83 2 / 83 Gliederung Polyeder Optimierung linearer Funktionen Rezessionskegel und polyedrische Kegel rationale

Mehr

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule 1 / 31 8. Konvexe Tobias Boelter TopMath Frühlingsschule Mittwoch, 5. März 2014 2 / 31 Es können auch nicht konvexe untersucht werden, wir beschränken uns hier aber auf konvexe. Mit einem Polytop ist hier

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

Triangulierungen von Punktmengen und Polyedern

Triangulierungen von Punktmengen und Polyedern Triangulierungen von Punktmengen und Polyedern Vorlesung im Sommersemester 2000 Technische Universität Berlin Jörg Rambau 17.05.2000 Sekundärpolytop und 6 bistellare Operationen In diesem Kapitel werden

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende)

1. Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme. f(x) min, x G (1.1) (Legende) . Lineare Optimierungsaufgaben (LOA) als Teilklasse konvexer Optimierungsprobleme X Banachraum, wobei X = R n G zulässige Menge des Optimierungsproblems f: G R Zielfunktion f(x) min, x G (.) (Legende)

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 1: Facetten des Knapsack-Polytops Diskutieren Sie folgende Fragen

Mehr

mit. Wir definieren (Skalarprodukt = Winkel).

mit. Wir definieren (Skalarprodukt = Winkel). 1 Grundidee des Simplexverfahrens (von George Dantzig): Man bestimmt eine beliebige Ecke (Extremalpunkt) einer Lösungsmenge eines Ungleichungssystems. Nun geht man an den Kanten vom Punkt entlang und kontrolliert

Mehr

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin:

Lineare Algebra I. - 9.Vorlesung - Prof. Dr. Daniel Roggenkamp & Falko Gauß. Korrektur: 2. Klausurtermin: Lineare Algebra I - 9.Vorlesung - rof. Dr. Daniel Roggenkamp & Falko Gauß Korrektur: 2. Klausurtermin: 09.02.2017 Linearkombination von Vektoren lineare Hülle Erzeugendensystem S lineare Unabhängigkeit

Mehr

Ganzzahlige lineare Programme

Ganzzahlige lineare Programme KAPITEL 5 Ganzzahlige lineare Programme Wir betrachten nun Optimierungsprobleme vom Typ (42) min c T x s.d. Ax = b, x 0, x ganzzahlig, wobei die Matrix A R m n und die Vektoren c R n, b R m gegeben seien.

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

A = A A

A = A A Musterlösung - Aufgabenblatt 8 Aufgabe 1 Gegeben ist das Polytop P = conv {±e i ± e j : 1 i, j 3, i j} = conv {e 1 + e 2, e 1 e 2, e 1 + e 2, e 1 e 2, e 1 + e 3, e 1 e 3, e 1 + e 3, e 1 e 3, e 2 + e 3,

Mehr

3 Polytope. 3.1 Polyeder

3 Polytope. 3.1 Polyeder 28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch

Mehr

GEOMETRIE DER POLYEDER

GEOMETRIE DER POLYEDER GEOMETRIE DER POLYEDER Das Polyeder P sei gegeben durch P = x R n Ax b. Definition. (i) Die Hyperebene H = x R n c T x = d,c, heißt Stützhyperebene von P, falls die Ungleichungc T x d redundant ist bzgl.

Mehr

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex.

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex. Konvexe Mengen 2 Wie am Ende des vorigen Kapitels bereits erwähnt, ist die notwendige Gradientenbedingung aus Satz 1.4.6 für konvexe Zielfunktionen auch hinreichend. Diese Tatsache mag als erste Motivation

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 29.11.2013 Alexander Lytchak 1 / 13 Wiederholung Der Rang einer linearen Abbildung ist gleich dem Spaltenrang der darstellenden

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

Diskrete Optimierung

Diskrete Optimierung Diskrete Optimierung (Algorithmische Diskrete Mathematik II, kurz ADM II) Skriptum zur Vorlesung im SS 2013 Prof. Dr. Martin Grötschel Institut für Mathematik Technische Universität Berlin Version vom

Mehr

Optimierung I. Einführung in die Optimierung. Skript zur Vorlesung von Prof. Dr. Mirjam Dür Prof. Dr. Alexander Martin

Optimierung I. Einführung in die Optimierung. Skript zur Vorlesung von Prof. Dr. Mirjam Dür Prof. Dr. Alexander Martin Optimierung I Einführung in die Optimierung Skript zur Vorlesung von Prof. Dr. Mirjam Dür Prof. Dr. Alexander Martin Wintersemester 2005/2006 TU Darmstadt Überarbeitete Version vom 21. Oktober 2005 2 3

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 3: Das Matching-Polytop Diskutieren Sie folgende Fragen in der

Mehr

Lineare Algebra II Lösungen der Aufgaben 42 und 43

Lineare Algebra II Lösungen der Aufgaben 42 und 43 D Blottière SS 7 P Schützdeller Universität Paderborn Lineare Algebra II Lösungen der Aufgaben 4 und 43 Aufgabe 4 : Bemerkungen : Es sei V ein n-dimensionaler Vektorraum über einem Körper K und β : V V

Mehr

Diskrete Optimierung

Diskrete Optimierung Diskrete Optimierung (Algorithmische Diskrete Mathematik II, kurz ADM II) Skriptum zur Vorlesung im SS 2013 Prof. Dr. Martin Grötschel Institut für Mathematik Technische Universität Berlin Version vom

Mehr

Übersicht Kapitel 9. Vektorräume

Übersicht Kapitel 9. Vektorräume Vektorräume Definition und Geometrie von Vektoren Übersicht Kapitel 9 Vektorräume 9.1 Definition und Geometrie von Vektoren 9.2 Teilräume 9.3 Linearkombinationen und Erzeugendensysteme 9.4 Lineare Abhängigkeiten

Mehr

Optimierung. Vorlesung 02

Optimierung. Vorlesung 02 Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j

Mehr

5 Schnitt, Verbindung und Erzeugung affiner Unterräume: Fortsetzung

5 Schnitt, Verbindung und Erzeugung affiner Unterräume: Fortsetzung Kapitel II Lineare Algebra und analytische Geometrie 5 Schnitt, Verbindung und Erzeugung affiner Unterräume: Fortsetzung Wann liegt ein Punkt auf einem affinen Unterraum? Wann haben zwei affine Unterräume

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 3: Das Matching-Polytop Diskutieren Sie folgende Fragen in der

Mehr

Numerische Lineare Algebra

Numerische Lineare Algebra Numerische Lineare Algebra Vorlesung 7 Prof. Dr. Klaus Höllig Institut für Mathematischen Methoden in den Ingenieurwissenschaften, Numerik und Geometrische Modellierung SS 200 Prof. Dr. Klaus Höllig (IMNG)

Mehr

Schnittebenenverfahren und Heuristiken

Schnittebenenverfahren und Heuristiken KAPITEL 6 Schnittebenenverfahren und Heuristiken Wir betrachten nun Optimierungsprobleme vom Typ (68) minc T x s.d. Ax b,x 0,x ganzzahlig, wobei die Matrix A R m n und die Vektoren c R n,b R m gegeben

Mehr

Lineare Optimierung. Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg

Lineare Optimierung. Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg Lineare Optimierung Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg VL 1: Einführung 10. April 2007 Überblick Optimierung unter Nebenbedingungen

Mehr

Diskrete Optimierung

Diskrete Optimierung Diskrete Optimierung (Algorithmische Diskrete Mathematik II, kurz ADM II) Skriptum zur Vorlesung im SS 2015 Prof. Dr. Martin Grötschel Institut für Mathematik Technische Universität Berlin finale Version

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung

Mehr

3.1. Existenzsatz und Struktur der Lösungsmenge

3.1. Existenzsatz und Struktur der Lösungsmenge 3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall

Mehr

Lineare Optimierung und Simplex-Algorithmus

Lineare Optimierung und Simplex-Algorithmus Lineare Optimierung und Simplex-Algorithmus Problemstellung Beispiel : Unser Unternehmen verfügt über drei Maschinen A, B, C, mit denen zwei verschiedene Produkte P, P2 hergestellt werden. Die Maschinen

Mehr

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i )

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i ) Prof. Dr. U. Faigle J. Voss SS 2011 12. Übung zur Einführung in die Mathematik des Operations Research Dieses Übungsblatt wird nicht mehr gewertet. Aufgabe 1: Sei G = (V, E) ein gerichteter Graph und x

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }.

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }. alteklausuraufgaben 1 LinOpt Klausur Sommersemester 05 Aufgabe 1 a) Definieren Sie den Begriff der konischen Hülle. b) Sei S R n. Zeigen Sie: Cone S = Lin S x S : x Cone (S \ {x}). Aufgabe 2 a) Definieren

Mehr

Musterlösung - Aufgabenblatt 7. Aufgabe 1

Musterlösung - Aufgabenblatt 7. Aufgabe 1 Musterlösung - Aufgabenblatt 7 Aufgabe Sei C R n eine nicht-leere abgeschlossene und konvexe Menge. Wir wollen zeigen, dass C als der Durchschnitt ihrer stützenden Halbräume dargestellt werden kann, d.h.

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Hüllen und Kombinationen

Hüllen und Kombinationen Hüllen und Kombinationen 2 Die zulässigen Bereiche in der Linearen Optimierung sind Lösungen von linearen Ungleichungssystemen. Deswegen müssen wir die Werkzeuge der linearen Algebra um Elemente erweitern,

Mehr

6. Einführung 43. gilt. Dann soll also A B x B = b eindeutig lösbar sein, also A B vollen Rang haben, d. h. invertierbar (regulär) sein.

6. Einführung 43. gilt. Dann soll also A B x B = b eindeutig lösbar sein, also A B vollen Rang haben, d. h. invertierbar (regulär) sein. 6. Einführung 43 und aus der linearen Unabhängigkeit der (a i ) i I(x) folgt y i = z i auch für i I(x). Insgesamt gilt also y = z, d. h., nach Definition 6.9 ist x eine Ecke von P. Beachte: Der Koordinatenvektor

Mehr

Übungen zur Vorlesung Lineare Algebra

Übungen zur Vorlesung Lineare Algebra Übungen zur Vorlesung Lineare Algebra Institut für Reine Mathematik WS 2009/10 & SS 2010 Kapitel 1. Vektorräume Was ist ein Vektorraum? Sei X und K ein Körper. Wie macht man Abb (X, K) zu einem K -Vektorraum?

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Vektorräume. Kapitel Definition und Beispiele

Vektorräume. Kapitel Definition und Beispiele Kapitel 3 Vektorräume 3.1 Definition und Beispiele Sei (V,,0) eine abelsche Gruppe, und sei (K, +,, 0, 1) ein Körper. Beachten Sie, dass V und K zunächst nichts miteinander zu tun haben, deshalb sollte

Mehr

Projektionen auf abgeschlossene konvexe Mengen

Projektionen auf abgeschlossene konvexe Mengen Projektionen auf abgeschlossene konvexe Mengen Seminarvortrag von Veronika Pick Seminar Optimierung bei Herrn Prof. Dr. F. Jarre Heinrich-Heine-Universität Düsseldorf SS 2006 1 Vorbemerkung Das Seminarthema

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.37 2018/04/26 14:09:00 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.4 Anordnungseigenschaften Am Ende der letzten Sitzung hatten wir begonnen uns mit den konvexen Teilmengen des

Mehr

Lineare Gleichungssysteme mit Dünnheitsrestriktionen

Lineare Gleichungssysteme mit Dünnheitsrestriktionen Lineare Gleichungssysteme mit Dünnheitsrestriktionen Institut für Mathematik Johannes Gutenberg-Universität Mainz Studienorientierung BISS Mainz, 7. November 2011 Motivierendes Beispiel: Decodierung Betrachten

Mehr

Diskrete Optimierung

Diskrete Optimierung Diskrete Optimierung (Algorithmische Diskrete Mathematik II, kurz ADM II) Skriptum zur Vorlesung im SS 2013 Prof. Dr. Martin Grötschel Institut für Mathematik Technische Universität Berlin Version vom

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering Kap. 3: Exakte Lösungsverfahren für NPschwierige kombinatorische Optimierungsprobleme VO Algorithm Engineering 3.1 Einführung Professor Dr. Petra Mutzel 3.2 Komb. vs. Ganzzahlige Opt. Lehrstuhl für Algorithm

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension 23 Basis und Dimension Erinnerung Gegeben ein K-Vektorraum V, ein Vektorensystem x,, x n in V Eine Linearkombination in den x i ist ein Vektor der Form λ x + + λ n x n mit λ i K Die λ i heißen Koeffizienten

Mehr

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v.

Teil I. Lineare Algebra I Vorlesung Sommersemester Olga Holtz. MA 378 Sprechstunde Fr und n.v. Teil I Lineare Algebra I Vorlesung Sommersemester 2 Olga Holtz MA 378 Sprechstunde Fr 4-6 und nv holtz@mathtu-berlinde Sadegh Jokar MA 373 Sprechstunde, Do 2-4 und nv jokar@mathtu-berlinde Kapitel 4 Der

Mehr

Lineare Algebra I Lösungsvorschlag

Lineare Algebra I Lösungsvorschlag Aufgabe Lineare Algebra I Lösungsvorschlag Wir bezeichnen mit a, a 2, a 3 Q 4 die Spalten der Matrix A. Es ist 7 a + 2a 2 = 7 4 = 7a 3, und wir sehen im l A = a, a 2, a 3 = a, a 2. Da die Vektoren a und

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer

Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie. Sommersemester Franz Pauer Unterlagen zur Vorlesung Algebra und Geometrie in der Schule: Grundwissen über Affine Geometrie Sommersemester 2009 Franz Pauer INSTITUT FÜR MATHEMATIK, UNIVERSITÄT INNSBRUCK, TECHNIKERSTRASSE 13, 6020

Mehr

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen

1 Zum Aufwärmen. 1.1 Notationen. 1.2 Lineare Abbildungen und Matrizen. 1.3 Darstellungsmatrizen 1 Zum Aufwärmen 1.1 Notationen In diesem Teil der Vorlesung bezeichnen wir Körper mit K, Matrizen mit Buchstaben A,B,..., Vektoren mit u,v,w,... und Skalare mit λ,µ,... Die Menge der m n Matrizen bezeichnen

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Diskrete Optimierung. Vorlesungsskript SS 2010, TU München. Prof. Dr. Raymond Hemmecke

Diskrete Optimierung. Vorlesungsskript SS 2010, TU München. Prof. Dr. Raymond Hemmecke Diskrete Optimierung Vorlesungsskript SS 2010, TU München Prof. Dr. Raymond Hemmecke Version vom 11. Juli 2010 Inhaltsverzeichnis 1 Komplexitätstheorie 1 1.1 Was ist ein Problem?...................................

Mehr

Proseminar Konvexe Mengen: Der Satz von Carathéodory

Proseminar Konvexe Mengen: Der Satz von Carathéodory Proseminar Konvexe Mengen: Der Satz von Carathéodory Gerrit Grenzebach 26. Otober 2004 In diesem Referat werden der Begriff der onvexen Hülle einer Menge eingeführt und einige Eigenschaften der onvexen

Mehr

Die duale Simplexmethode

Die duale Simplexmethode Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen

Mehr

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen 222 Diskrete Geometrie (Version 3) 12. Januar 2012 c Rudolf Scharlau 3.4 Kombinatorische Äquivalenz und Dualität von Polytopen Dieser Abschnitt baut auf den beiden vorigen auf, indem er weiterhin den Seitenverband

Mehr

3.3 Der Seitenverband

3.3 Der Seitenverband Diskrete Geometrie (Version 3) 10. Januar 2012 c Rudolf Scharlau 217 3.3 Der Seitenverband Wir setzen die Untersuchung der Relation ist Seite von auf der Menge aller konvexen Polytope in einem gegebenen

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr

3.3 Austauschsatz, Basisergänzungssatz und Dimension

3.3 Austauschsatz, Basisergänzungssatz und Dimension 66 Kapitel III: Vektorräume und Lineare Abbildungen 3.3 Austauschsatz, Basisergänzungssatz und Dimension Montag, 15. Dezember 2003 Es sei V ein Vektorraum. Jedes Teilsystem eines linear unabhängigen Systems

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) 1 Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 14: Vektorräume und lineare Abbildungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 6. Oktober 2009) Vektorräume

Mehr

Einführung in die Mathematik des Operations Research

Einführung in die Mathematik des Operations Research Universität zu Köln Mathematisches Institut Prof. Dr. F. Vallentin Einführung in die Mathematik des Operations Research Sommersemester 3 en zur Klausur (7. Oktober 3) Aufgabe ( + 3 + 5 = Punkte). Es sei

Mehr

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie

Kapitel 14. Geometrie Eine kurze Einführung in die affine Geometrie Kapitel 14 Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften vonr 3 interessieren, so stört manchmal dieausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.

Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent. Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen

Mehr

Definitionen und Sätze der diskreten Optimierung. Dr. F. Göring

Definitionen und Sätze der diskreten Optimierung. Dr. F. Göring Definitionen und Sätze der diskreten Optimierung Dr. F. Göring 24. September 2009 Zusammenfassung Die wesentlichen Definitionen und Sätze zusammengestellt. Definition 0.1 Eine durch endlich viele lineare

Mehr

λ i x i λ i 0, x i X, nur endlich viele λ i 0}.

λ i x i λ i 0, x i X, nur endlich viele λ i 0}. jobname LinOpt Sommer Aufgabe a) Sei X R n. Dann ist b) Cone X = { x i X λ i x i λ i, x i X, nur endlich viele λ i }. x Cone S = Lin S x Lin S = Cone S. Also gibt es nicht-negative Koeffizienten µ i von

Mehr

Inhalt der Vorlesung. 1 Einführung 2 Konvexe Mengen 3 Konvexe Funktionen 4 Konvexe Optimierung 5 Lösungsverfahren (6 Anwendungen)

Inhalt der Vorlesung. 1 Einführung 2 Konvexe Mengen 3 Konvexe Funktionen 4 Konvexe Optimierung 5 Lösungsverfahren (6 Anwendungen) Inhalt der Vorlesung 1 Einführung 2 Konvexe Mengen 3 Konvexe Funktionen 4 Konvexe Optimierung 5 Lösungsverfahren (6 Anwendungen) 1 S-M. Grad - Optimierung II / Universität Leipzig, SS2018 Beispiel 1.1

Mehr

Lineare Algebra I: Eine Landkarte

Lineare Algebra I: Eine Landkarte Bild F Algebra I: Eine Landkarte Faser Versuch einer Übersicht der Themen und Zusammenhänge der n Algebra 1. 1 Algebra I: Bild F Faser Sei B Basis von V. Jedes v V läßt sich eindeutig aus den Basisvektoren

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Der Eulersche Polyedersatz

Der Eulersche Polyedersatz Der Eulersche Polyedersatz Def Die Anzahl der k Seiten eines konvexen Polytops P bezeichnen wir mit f k (P) oder kurz mit f k. Das n Tupel (f 0,f 1,...,f n 1 ) Z n heißt dann der f Vektor des (n dimensionalen)

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)

Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit

Mehr

3.1 Sukzessive Minima und reduzierte Basen: Resultate

3.1 Sukzessive Minima und reduzierte Basen: Resultate Gitter und Codes c Rudolf Scharlau 4. Juni 2009 202 3.1 Sukzessive Minima und reduzierte Basen: Resultate In diesem Abschnitt behandeln wir die Existenz von kurzen Basen, das sind Basen eines Gitters,

Mehr

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt

Die lineare Hülle. heißt der Vektor. Linearkombination der Vektoren v i mit Koeffizienten α i. Direkt aus (12.6) folgt Eine Menge v +U mit einem Untervektorraum U nennt man auch eine Nebenklasse des Untervektorraumes U. Sie entsteht, wenn man die Translation τ v auf die Menge U anwendet. Ausdrücke der Form αu + βv, auch

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen Relaxation Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen

Mehr

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2

ein vom Nullvektor verschiedener Vektor, dann ist jeder dazu parallele (kollinear) Veka tor d ein Vielfaches von a. + λ 2 a 2 II. Basis und Dimension ================================================================= 2.1 Linearkombination und Basis -----------------------------------------------------------------------------------------------------------------

Mehr