Inhalt der Vorlesung. 1 Einführung 2 Konvexe Mengen 3 Konvexe Funktionen 4 Konvexe Optimierung 5 Lösungsverfahren (6 Anwendungen)

Größe: px
Ab Seite anzeigen:

Download "Inhalt der Vorlesung. 1 Einführung 2 Konvexe Mengen 3 Konvexe Funktionen 4 Konvexe Optimierung 5 Lösungsverfahren (6 Anwendungen)"

Transkript

1 Inhalt der Vorlesung 1 Einführung 2 Konvexe Mengen 3 Konvexe Funktionen 4 Konvexe Optimierung 5 Lösungsverfahren (6 Anwendungen) 1 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

2 Beispiel 1.1 Mozartproblem (Lineare Optimierung) Eine Firma stellt Mozartkugeln und -taler her und braucht dafür die drei Zutaten Marzipan, Nougat und Bitterschokolade. Ihr Umsatz soll maximiert werden. Marzipan Nougat Bitterschokolade Preis Menge Kugeln (x 1 ) Menge Taler (x 2 ) Gesamtmenge Die entsprechende Optimierungsaufgabe lautet (P 1 ) max {9x 1 + 8x 2 }. x 1 +x 2 6, 2x 1 +x 2 11, x 1 +2x 2 9, x 1,x S-M. Grad - Optimierung II / Universität Leipzig, SS2018

3 Beispiel 1.2 Maximaler Flächeninhalt Welche Maße hat ein Rechteck, dessen Flächeninhalt maximal bei konstantem Umfang ist? Sind x und y die Seitenlängen und u der konstante Umfang, so ist der Flächeninhalt A = xy und die Gleichung zwischen den Variablen u = 2x + 2y. Die entsprechende Optimierungsaufgabe lautet (P 1 ) max xy, x,y>0, 2x+2y=u äquivalent darstellbar auch als (P 1 ) max x>0 x ( u 2 x). 3 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

4 Beispiel 1.3 Kugel in Gleichgewicht (Cournot, 1827) Optimalitätsbedingung: Die Schwerkraft ist die positive Summe der Gradienten aktiver Restriktionen. 4 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

5 Beispiel 1.4 Bildverarbeitung (Bitterlich, 2017) 5 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

6 Beispiel 1.4 Bildverarbeitung (Bitterlich, 2017) Die entsprechende Optimierungsaufgabe lautet { 1 inf x R n 2 Ax b 2 + λtv (x)}, wobei A R n n (Unschärfe Operator), b R n (unscharfes und verrauschtes Bild), λ > 0 (Regularisierungsparameter) und TV : R n R (diskrete Totale-Variation-Funktion) 6 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

7 Beispiel 1.4 Bildverarbeitung (Bitterlich, 2017) 7 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

8 Beispiel 1.5 Maschinelles Lernen (Boţ & Hendrich, 2015) 8 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

9 Beispiel 1.5 Maschinelles Lernen (Boţ & Hendrich, 2015) 9 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

10 Beispiel 1.5 Maschinelles Lernen (Boţ & Hendrich, 2015) 10 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

11 Beispiel 1.5 Maschinelles Lernen (Boţ & Hendrich, 2015) Die entsprechende Optimierungsaufgabe lautet inf {f (Kx) + g(x)}, x Rn wobei f : R m R (Loss-Funktion), g : R n R (Glättungsfunktion), K : R n R m ist linear und stetig 11 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

12 U, V R n Indikatorfunktion von U: δ U : R n R = R {± }, { 0, x U δ U (x) = +, x / U ri U = int aff U U (relatives Innere von U) Projektion auf U: Pr U : R n U, Pr U (x) = arg min y x y U Trennung von U und V : s R n s.d. sup s u inf u U v V s v Normalkegel von U: N U (x) = {z R n : z (y x) 0 y U} falls x U und N U (x) = wenn x / U 12 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

13 f : R n R f ist unterhalbstetig: lim inf y x f (y) = sup δ>0 inf y B(x,δ) f (y) f (x) x R n f ist unterhalbstetig epi f ist abgeschloßen Konjugierte Funktion von f : f : R n R, f (z) = sup {z x f (x)} x R n Beispiel: ( x (ln x 1), x > 0 e ) (x ) = 0, x = 0 +, x < 0 Young-Fenchel Ungleichung: f (z) + f (x) z x x, z R n Subdifferential von f : f (x) = wenn f (x) / R, sonst f (x) = {z R n : f (y) f (x) z (y x) y R n } f - eigentlich, konvex und differenzierbar f (x) = { f (x)} Beispiele: δ{ U = N U U R n {z R (x) = n : z 1}, x = 0 {z R n : z = 1, x = z x}, x 0 13 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

14 für F : R n R betrachte das Optimierungsproblem (P) inf F (x) x R n Störungsfunktion: Φ : R n R m R s.d. Φ(, 0) = F ( ) (P) inf Φ(x, 0) x Rn (konjugierte) Dualaufgabe zu (P): (D) sup Φ (0, z) z R m schwache Dualität: v(d) v(p) 14 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

15 starke Dualität: v(d) = v(p) und (D) hat eine Optimallösung Optimalitätsbedingung: x R n Optimallösung von (P) und starke Dualität Φ( x, 0) + Φ (0, z) = 0, d.h. (0, z) Φ( x, 0) Sattelpunkt von Φ: ( x, ȳ) R n R m s.d. Alternativsätze sup Φ( x, y) Φ( x, ȳ) inf Φ(x, ȳ) y R m x Rn 15 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

16 für f : R n R, g : R m R, A : R n R m linear, betrachte (UP) inf x Rn{f (x) + g(ax)} mit Φ(x, y) = f (x) + g(ax + y) ist (UP) Spezialfall von (P) (D) wird zu (UD) sup y Y { f (A y ) g ( y )} (Fenchel Dualaufgabe von (UP)) für f : R n R, g : R n R m, C R m konvexer Kegel, S R n, betrachte (RP) inf f (x) x S g(x) C mit ΦL (x, z) = f (x) + δ S (x) + δ z C (g(x)) ist (RP) Spezialfall von (P) (Lagrange Störung) 16 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

17 Subgradientenverfahren Proximalpunktverfahren Splitting-Verfahren 17 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

18 Finanzmathematik Spieltheorie Standortoptimierung 18 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

19 Bezeichnungen 2.1 Seien U R n, A R m n, x, y R n, t R +, r R, m, n N. Euklidische Norm von x = (x 1,..., x n ) : x Innere von U: int U Abschluß von U: cl U Rand von U: bd U affine Hülle von U: aff U konvexe Hülle von U: co U konische Hülle von U: cone U Dimension von U: dim U Projektion auf die konvexe und abgeschloßene Menge U: Pr U : R n U, Pr U (x) = arg min y U y x Projektion auf R p, wobei p n: P R p : R n R p, P R p(u) = {x R p : y R n p : (x, y) U} offene Kugel um x mit Radius t: B(x, t) abgeschloßene Kugel um x mit Radius t: B(x, t) Strecke von x nach y: [x, y] = {rx + (1 r)y : 0 r 1}; auch ]x, y], [x, y[, ]x, y[ 19 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

20 Rang der Matrix A = (a ij ) j=1,...,n i=1,...,m : Rg A Spur der quadratischen Matrix A R n n : Tr A = n i=1 a ii Einheitsvektoren: e i = (0,..., 0, 1, 0,..., 0), i=1,...,n, n-simplex: n = {x R n : x = n i=1 t i e i, t i 0, i = 1,..., n, n i=1 t i = 1} Hyperebene: H y,r = {x R n : y x = r} abgeschlosener Halbraum: H / y,r = {x R n : y x / r} offener Halbraum: H </> y,r = {x R n : y x < / > r} Dualkegel zum Kegel K R n : K = {y R n : y x 0 x K} Orthogonales Komplement des linearen Unterraums U: U 20 S-M. Grad - Optimierung II / Universität Leipzig, SS2018

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

4 Differenzierbarkeit einer konjugierten Funktion

4 Differenzierbarkeit einer konjugierten Funktion 4 Differenzierbarkeit einer konjugierten Funktion (Eingereicht von Corinna Vits) 4.1 Differenzierbarkeit 1.Ordnung Theorem 4.1.1: Sei f ConvR n strikt konvex. Dann ist int dom und f ist stetig differenzierbar

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

1.3 Differenzierbarkeit

1.3 Differenzierbarkeit 1 1.3 Differenzierbarkeit Definition Sei B R n offen, a B, f : B R eine Funktion und v 0 ein beliebiger Vektor im R n. Wenn der Grenzwert D v f(a) := lim t 0 f(a + tv) f(a) t existiert, so bezeichnet man

Mehr

Extremalprobleme mit Nebenbedingungen

Extremalprobleme mit Nebenbedingungen Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des

Mehr

1. Grundlagen der konvexen Analysis Version

1. Grundlagen der konvexen Analysis Version 1. Grundlagen der konvexen Analysis Version 18.02.10 1.1 Konvexe Mengen Definitionen. Eine Menge M R n heisst konvex, wenn aus x, y M folgt, dass auch alle Punkte z = λx + (1 λ)y mit 0 < λ < 1 (Strecke

Mehr

Lagrange-Multiplikatoren

Lagrange-Multiplikatoren Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i

Mehr

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.

Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h. Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,

Mehr

4.4 Quadratische Optimierungsprobleme

4.4 Quadratische Optimierungsprobleme 4.4 Quadratische Optimierungsprobleme 1. Quadratische Programme (QP) 1 2 xt P x + q T x + r s.t. Gx h (4.34) wobei P S n +, G R (m n) und A R (p n) Zielfunktion (ZF) ist (konvex) quadratisch Nebenbedingungen

Mehr

KAPITEL 3. Konvexe Funktionen

KAPITEL 3. Konvexe Funktionen KAPITEL 3 Konvexe Funktionen Sei F R n ein Definitionsbereich und f : F R eine Funktion. Unter dem Epigraphen von f versteht man die Menge epif = {(x, z) R n+1 x F, z R, z f(x)}. Man nennt f konvex, wenn

Mehr

Vorbereitung für die Prüfung Mathematik II für Informatiker

Vorbereitung für die Prüfung Mathematik II für Informatiker Technische Universität Ilmenau SS 2010 Institut für Mathematik Inf Prof. Dr. Michael Stiebitz Vorbereitung für die Prüfung Mathematik II für Informatiker 1 Lineare Algebra Aufgabe 1 Schauen Sie sich die

Mehr

Konvexe Mengen und Funktionen

Konvexe Mengen und Funktionen Konvexe Mengen und Funktionen von Corinna Alber Seminararbeit Leiter: Prof. Jarre im Rahmen des Seminars Optimierung III am Lehrstuhl für Mathematische Optimierung an der Heinrich-Heine-Universität Düsseldorf

Mehr

zul. Kurve g 1 C zul dθ (0) y = dϕ dθ (0) =

zul. Kurve g 1 C zul dθ (0) y = dϕ dθ (0) = 2. Grundlagen der nicht-linearen konvexen Optimierung 2.1. Die Karush-Kuhn-Tucker Bedingungen. Unser Basisproblem (NLO) sei geben durch min f(x) NLO g i (x) 0, i I = {1,..., m} x R n f, g i stetig differenzierbar.

Mehr

12. Trennungssätze für konvexe Mengen 83

12. Trennungssätze für konvexe Mengen 83 12. Trennungssätze für konvexe Mengen 83 C_1 C_2 a Abbildung 12.4. Trennung konvexer Mengen durch eine Hyperebene mit Normalenvektor a Dann ist int(c) nicht leer (warum?) und [als Minkowski-Summe von C

Mehr

Mathematik II für Inf und WInf

Mathematik II für Inf und WInf Gruppenübung Mathematik II für Inf und WInf 8. Übung Lösungsvorschlag G 28 (Partiell aber nicht total differenzierbar) Gegeben sei die Funktion f : R 2 R mit f(x, ) := x. Zeige: f ist stetig und partiell

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das

Mehr

Die Lagrange-duale Funktion

Die Lagrange-duale Funktion Die Lagrange-duale Funktion Gregor Leimcke 21. April 2010 1 Die Lagrangefunktion Wir betrachten das allgemeine Optimierungsproblem wobei minimiere f 0 über D sodass f i 0, i = 1,..., m 1.1 D = h i = 0,

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

Teil 6. Differentialrechnung mehrerer Veränderlicher

Teil 6. Differentialrechnung mehrerer Veränderlicher Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält

Mehr

Holomorphe Funktionen

Holomorphe Funktionen 1 Kapitel 1 Holomorphe Funktionen 1 Komplexe Differenzierbarkeit Ist z = (z 1,..., z n ) ein Element des C n und z ν = x ν + i y ν, so können wir auch schreiben: z = x + i y, mit x = (x 1,..., x n ) und

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

Konvexe Analysis. Inhaltsverzeichnis. Martin Brokate. 1 Affine Mengen 2. 2 Konvexe Mengen 6. 3 Algebraische Trennung 9

Konvexe Analysis. Inhaltsverzeichnis. Martin Brokate. 1 Affine Mengen 2. 2 Konvexe Mengen 6. 3 Algebraische Trennung 9 Konvexe Analysis Martin Brokate Inhaltsverzeichnis 1 Affine Mengen 2 2 Konvexe Mengen 6 3 Algebraische Trennung 9 4 Lokalkonvexe Räume, Trennungssatz 13 5 Konvexe Funktionen 16 6 Konjugierte Funktionen

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider

Technische Universität Berlin Fakultät II Institut für Mathematik WS 11/12 Böse, Penn-Karras, Schneider Technische Universität Berlin Fakultät II Institut für Mathematik WS / Böse, Penn-Karras, Schneider 5.4. Rechenteil April Klausur Analysis II für Ingenieure Musterlösung. Aufgabe 3 Punkte Wir haben g(x,

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Bildverarbeitung: Kontinuierliche Energieminimierung. D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9

Bildverarbeitung: Kontinuierliche Energieminimierung. D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9 Bildverarbeitung: Kontinuierliche Energieminimierung D. Schlesinger BV: () Kontinuierliche Energieminimierung 1 / 9 Idee Statt zu sagen, wie die Lösung geändert werden muss (explizite Algorithmus, Diffusion),

Mehr

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule 1 / 31 8. Konvexe Tobias Boelter TopMath Frühlingsschule Mittwoch, 5. März 2014 2 / 31 Es können auch nicht konvexe untersucht werden, wir beschränken uns hier aber auf konvexe. Mit einem Polytop ist hier

Mehr

5 Lagrangeformalismus

5 Lagrangeformalismus 63 5 Lagrangeformalismus 5.1 Lagrange und Sattelfunktionen Eine typische Aufgabe ist, daß eine Funktion zweier Veränderlicher L(x, y) gegeben ist und diese Funktion bezüglich einer Variabler (hier x) maximiert

Mehr

Mathematik II: Übungsblatt 03 : Lösungen

Mathematik II: Übungsblatt 03 : Lösungen N.Mahnke Mathematik II: Übungsblatt 03 : Lösungen Verständnisfragen 1. Was bestimmt die erste Ableitung einer Funktion f : D R R im Punkt x 0 D? Die erste Ableitung einer Funktion bestimmt deren Steigung

Mehr

Probeklausur zur Analysis 2, SoSe 2017

Probeklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 21717 Fakultät 4 - Mathematik und Naturwissenschaften Prof N V Shcherbina Dr T P Pawlaschyk wwwkanauni-wuppertalde Probeklausur zur Analysis 2, SoSe 217 Hinweis Die Lösungen

Mehr

Höhere Funktionalanalysis WS2016/17 Übungsblatt

Höhere Funktionalanalysis WS2016/17 Übungsblatt Höhere Funktionalanalysis WS2016/17 Übungsblatt 1 11.10.2016 Aufgabe 1. Berechne die Normen der Operatoren (a) f L [0, 1], M f : L 2 [0, 1] L 2 [0, 1], (M f g)(x) = f(x)g(x). (b) g C[0, 1], T g : C[0,

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE

MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer

Mehr

Konvexe Analysis. Inhaltsverzeichnis. Martin Brokate. 1 Affine Mengen 1. 2 Konvexe Mengen 5. 3 Algebraische Trennung 9

Konvexe Analysis. Inhaltsverzeichnis. Martin Brokate. 1 Affine Mengen 1. 2 Konvexe Mengen 5. 3 Algebraische Trennung 9 Konvexe Analysis Martin Brokate Inhaltsverzeichnis 1 Affine Mengen 1 2 Konvexe Mengen 5 3 Algebraische Trennung 9 4 Lokalkonvexe Räume, Trennungssatz 13 5 Konvexe Funktionen 16 6 Konjugierte Funktionen

Mehr

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex.

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex. Konvexe Mengen 2 Wie am Ende des vorigen Kapitels bereits erwähnt, ist die notwendige Gradientenbedingung aus Satz 1.4.6 für konvexe Zielfunktionen auch hinreichend. Diese Tatsache mag als erste Motivation

Mehr

7. Übungsblatt zur Mathematik II für Inf, WInf

7. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 2010 27.-31.05.10 7. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G24 (Grundlegende Definitionen) Betrachten

Mehr

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7 1. Eine Teilmenge K eines topologischen Raumes heißt folgenkompakt, wenn jede Folge in K eine Teilfolge enthält, die in K konvergiert. Die Menge K heißt abzählbar kompakt, wenn jede unendliche Teilmenge

Mehr

Optimierungstheorie Scheinklausur Sommersemester Juli 2007

Optimierungstheorie Scheinklausur Sommersemester Juli 2007 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Prof. Dr. Christian Wieners, Dipl.-Math. techn. Martin Sauter Institut für Angewandte und Numerische Mathematik Optimierungstheorie Scheinklausur

Mehr

Übung 5, Analytische Optimierung

Übung 5, Analytische Optimierung Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =

Mehr

Konvexität und Dualität (Proseminar WS 2014/15)

Konvexität und Dualität (Proseminar WS 2014/15) Konvexität und Dualität (Proseminar WS 2014/15) Hermann Dinges Frankfurt, 17. Juli 2014 Handreichung Die in der Ankündigung genannten Themengebiete müssen noch genauer umrissen werden, wenn klar ist, welche

Mehr

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang

Grundlagen Kondition Demo. Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

Mehr

Operations Research. Polyeder und Polytope. Polyeder und Polytope. Polyeder. Rainer Schrader. 11. Mai Gliederung. sei P R n

Operations Research. Polyeder und Polytope. Polyeder und Polytope. Polyeder. Rainer Schrader. 11. Mai Gliederung. sei P R n Operations Research Rainer Schrader Polyeder und Zentrum für Angewandte Informatik Köln. Mai 27 / 83 2 / 83 Gliederung Polyeder Optimierung linearer Funktionen Rezessionskegel und polyedrische Kegel rationale

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

5. Übungsblatt zur Analysis II

5. Übungsblatt zur Analysis II Facbereic Matematik Prof. Dr. R. Farwig C. Komo J. Prasiswa R. Sculz SS 009 8.05.009 5. Übungsblatt zur Analysis II Gruppenübung Aufgabe G (Differenzierbarkeit Gegeben sei die Funktion f : R R mit f(x,

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 5: Differentialrechnung im R n Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 17. Juni 2009 1 / 31 5.1 Erinnerung Kapitel

Mehr

3.1. Existenzsatz und Struktur der Lösungsmenge

3.1. Existenzsatz und Struktur der Lösungsmenge 3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Lineare Algebra II (SS 13)

Lineare Algebra II (SS 13) Lineare Algebra II (SS 13) Bernhard Hanke Universität Augsburg 03.07.2013 Bernhard Hanke 1 / 16 Selbstadjungierte Endomorphismen und der Spektralsatz Definition Es sei (V,, ) ein euklidischer oder unitärer

Mehr

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke Konvexe Mengen Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke xy = {x + t xy 0 t 1} = {(1 t)x + ty 0 t 1} enthält. konvex nicht konvex Lemma

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Extrema multivariater Funktionen

Extrema multivariater Funktionen Extrema multivariater Funktionen Ist f (x ) ein Minimum (Maximum) einer stetig differenzierbaren skalaren Funktion f auf einer Umgebung U von x, so gilt grad f (x ) = (0,..., 0) t. Extrema multivariater

Mehr

Der n-dimensionale Raum

Der n-dimensionale Raum Der n-dimensionale Raum Mittels R kann nur eine Größe beschrieben werden. Um den Ort eines Teilchens im Raum festzulegen, werden schon drei Größen benötigt. Interessiert man sich für den Bewegungszustand

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Wirtschaftsmathematik II

Wirtschaftsmathematik II WMS: Wirtschaftsmathematik 2 :: WS 2009/10 Wirtschaftsmathematik II Reinhard Ullrich http://homepage.univie.ac.at/reinhard.ullrich Basierend auf Folien von Dr. Ivana Ljubic October 11, 2009 1 Funktionen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 3 (Analysis 2) MA923 http://wwwm5matumde/allgemeines/ma923_26s Sommersem 26 Probeklausur (4726) Krümmung

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen Relaxation Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen

Mehr

Nachklausur zur Analysis 2, SoSe 2017

Nachklausur zur Analysis 2, SoSe 2017 BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe

Mehr

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009)

Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) 1 Vorlesung Mathematik für Ingenieure 2 (Sommersemester 2009) Kapitel 10: Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 27. März 2009) Differenzialrechnung

Mehr

Optimaler Transport. Marzena Franek. Skiseminar Februar Institut für Numerische und Angewandte Mathematik

Optimaler Transport. Marzena Franek. Skiseminar Februar Institut für Numerische und Angewandte Mathematik Institut für Numerische und Angewandte Mathematik Skiseminar Februar 2009 1 Das Problem von Monge 1 Das Problem von Monge 2 1 Das Problem von Monge 2 3 1 Das Problem von Monge 2 3 4 1 Das Problem von Monge

Mehr

Folgerungen aus dem Auflösungsatz

Folgerungen aus dem Auflösungsatz Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Proseminar Lineare Algebra II, SS 11. Blatt

Proseminar Lineare Algebra II, SS 11. Blatt Blatt 1 1. Berechnen Sie die Determinante der Matrix 0 0 4 1 2 5 1 7 1 2 0 3 1 3 0 α. 2. Stellen Sie folgende Matrix als Produkt von Elementarmatrizen dar: 1 3 1 4 2 5 1 3 0 4 3 1. 3 1 5 2 3. Seien n 2

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

2 Funktionen in mehreren Variablen: Differentiation

2 Funktionen in mehreren Variablen: Differentiation Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v

Mehr

Seminar Optimierung und optimale Steuerung

Seminar Optimierung und optimale Steuerung Seminar Optimierung und optimale Steuerung am 28.06.2008 Thema: Nicht-kooperative n-personen-spiele Martin Schymalla 27. Juni 2008 Gliederung 1 1 Cournot-Duopol 2 2 n-personen-spiele 3 3 Mengenwertige

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 2: Konvexe Mengen und Kegel Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. April 2010) Gliederung 2 Konvexe Mengen

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

Dualität bei konvexer Optimierung

Dualität bei konvexer Optimierung Dualität bei konvexer Optimierung Seminar zur Numerik I im SS 2016 Laslo Hunhold 10. Mai 2016 Ausarbeitung zum Seminarvortrag vom 2. Mai 2016 Mathematisches Institut Mathematisch-Naturwissenschaftliche

Mehr

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1)

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Anna Raaz 21.12.2007 Einführung Die Relaxierung von Lagrange wird in der stochastischen Optimierung meistens

Mehr

Organisatorisches. Operations Research. Organisatorisches. Organisatorisches. Rainer Schrader. 20. April 2007

Organisatorisches. Operations Research. Organisatorisches. Organisatorisches. Rainer Schrader. 20. April 2007 Organisatorisches Operations Research Rainer Schrader Zentrum für Angewandte Informatik Köln 20. April 2007 Dozent: Prof. Dr. Rainer Schrader Weyertal 80 Tel.: 470-6030 email: schrader@zpr.uni-koeln.de

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Kapitel II. Vektorräume

Kapitel II. Vektorräume Inhalt der Vorlesung LAAG I Prof. Dr. Arno Fehm TU Dresden WS2017/18 Kapitel II. Vektorräume In diesem ganzen Kapitel sei K ein Körper. 1 Definition und Beispiele 1.1 Beispiel. Ist K = R, so haben wir

Mehr

102 KAPITEL 14. FLÄCHEN

102 KAPITEL 14. FLÄCHEN 102 KAPITEL 14. FLÄCHEN Definition 14.3.1 (Kurve) Es sei M eine k-dimensionale Untermannigfaltigkeit des R n. Eine C 1 - Kurve γ : ( a, a) R n mit γ(( a, a)) M heißt Kurve auf M durch x 0 = γ(0). Definition

Mehr

Quadratische Gleichungen. Üben. Lösung. Quadratische Gleichungen. Klasse. Schwierigkeit. Art. math. Thema. Nr. Löse mit der Lösungsformel:

Quadratische Gleichungen. Üben. Lösung. Quadratische Gleichungen. Klasse. Schwierigkeit. Art. math. Thema. Nr. Löse mit der Lösungsformel: 1a Löse mit der sformel: a) x 2 + 6x + 5 = 0 b) y 2 + 6y + 7 = 0 c) z 2 13z 48 = 0 1a a) a = 1, b = 6, c = 5 2 6 ± 6 4 1 5 x 1/ 2 = ; x1 5 ; x2 = 1 2 1 b) x 1 = 3 2 ; x 2 = 3+ 2 c) x1 = - 3 ; x2 = 16 1b

Mehr

Begleitmaterial zur Vorlesung Numerik II

Begleitmaterial zur Vorlesung Numerik II Begleitmaterial zur Vorlesung Numerik II Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik II 1 / 35 Inhalte der Numerik

Mehr

3 Das n-dimensionale Integral

3 Das n-dimensionale Integral 3 Das n-dimensionale Integral Ziel: Wir wollen die Integrationstheorie für f : D R n R entwickeln. Wir wollen den Inhalt (beziehungsweise das Maß ) M einer Punktmenge des R n definieren für eine möglichst

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

Kapitel 3. Matrix Spiele. 3.1 Matrix-Spiele

Kapitel 3. Matrix Spiele. 3.1 Matrix-Spiele Kapitel 3 Matrix Spiele Seminar Spieltheorie, SS 006 3. Matrix-Spiele Vorgegeben sei ein Nullsummenspiel Γ = (S, T, φ, φ mit endlichen Strategiemengen S und T, etwa S = (s,..., s m und T = (t,..., t n.

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen 222 Diskrete Geometrie (Version 3) 12. Januar 2012 c Rudolf Scharlau 3.4 Kombinatorische Äquivalenz und Dualität von Polytopen Dieser Abschnitt baut auf den beiden vorigen auf, indem er weiterhin den Seitenverband

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008)

Vorlesung Mathematik für Ingenieure II (Sommersemester 2008) Vorlesung Mathematik für Ingenieure II (Sommersemester 8) Kapitel : Differenzialrechnung R n R m Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 8. Mai 8) Differenzialrechnung R R 4

Mehr

12 Gewöhnliche Differentialgleichungen

12 Gewöhnliche Differentialgleichungen 2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert

Mehr

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A =

Stroppel Musterlösung , 180min. Aufgabe 1 (5 Punkte) Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit. . Weiter sei b = A = Stroppel Musterlösung 4. 9., 8min Aufgabe 5 Punkte Gegeben sei eine lineare Abbildung α: R 4 R 3 : x Ax mit 4 A =. Weiter sei b = 3 gegeben. Entscheiden Sie jeweils, ob die durch gekennzeichneten freien

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Übungsaufgaben zu den mathematischen Grundlagen von KM

Übungsaufgaben zu den mathematischen Grundlagen von KM TUM, Institut für Informatik WS 2003/2004 Prof Dr Thomas Huckle Andreas Krahnke, MSc Dipl-Inf Markus Pögl Übungsaufgaben zu den mathematischen Grundlagen von KM 1 Bestimmen Sie die Darstellung von 1 4

Mehr

3 Funktionen in mehreren Variablen

3 Funktionen in mehreren Variablen 3 Funktionen in mehreren Variablen Funktionen in mehreren Variablen Wir betrachten nun Abbildungen / Funktionen in mehreren Variablen. Dies sind Funktionen von einer Teilmenge des R d nach R. f : D f R,

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Prof. Dr. E. W. Farkas ETH Zürich, August 015 D BIOL, D CHAB Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle 1 3 4 5 6 Total Vollständigkeit

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr