3 Das n-dimensionale Integral
|
|
|
- Helmuth Scholz
- vor 9 Jahren
- Abrufe
Transkript
1 3 Das n-dimensionale Integral Ziel: Wir wollen die Integrationstheorie für f : D R n R entwickeln. Wir wollen den Inhalt (beziehungsweise das Maß ) M einer Punktmenge des R n definieren für eine möglichst große Klasse von Teilmengen M R n. Dabei sollten die folgenden Eigenschaften vorliegen: (1) Positivität: M 0. (2) Bewegungsinvarianz: M = M, wenn M und M kongruent sind (das heißt durch eine abstandserhaltende Transformation wie Verschiebung, Drehung und Spiegelung des R n ineinander überführt werden können). (3) Normierung: W 1 = 1 wobei W 1 = [0, 1] n der Einheitswürfel ist. (4) Additivität: M N = M N = M + N. Kann man jeder Menge M R n einen Inhalt M mit diesen Eigenschaften (1) (4) zuweisen? Diese Frage wurde zu Beginn des 20. Jahrhunderts beantwortet: Nur im R 1 und R 2 gibt es eine Inhaltsfunktion für alle Teilmengen (Banach 1923), hingegen ist dies im R n für n > 2 nicht möglich (Hausdorff 1914). 3.1 Inhaltsmessung von Mengen in R n Wir beginnen mit der Definition von n-dimensionalen (abgeschlossenen) Intervallen (Rechtecke in R 2, Quader in R 3 ). Ein Intervall in R n ist gegeben als I := I 1 I n wobei I i = [a i, b i ] für i = 1,..., n mit a i, b i R, a i b i. Für den Inhalt solcher Intervalle gilt: I := n (b i a i ). i=1 Zerlegungen solcher Intervalle erhält man durch Zerlegung der eindimensionalen Intervalle. I i = I i,1, I i,mi in Teilintervalle I i,j und Bildung des kartesischen Produktes aus entsprechenden Teilintervallen. Die n-dimensionalen Teilintervalle von I haben also die Form I 1,k1 I 2,k2 I n,kn, mit 1 k j m j, 1 j n. Die endliche Vereinigung solcher Intervalle wird Intervallsumme genannt: S = k=1,...,m S ist nicht überlappend, wenn die beteiligten Intervalle paarweise disjunktes Inneres haben, d.h. Ik 0 I0 j = für k j. I k ( )( ) keine Überlappung (eindimensional) Definition 3.1 (Inhalt der Intervallsumme) Die Menge aller Intervallsummen wird mit S bezeichnet. Für Intervallsummen S S mit einer nicht überlappenden Darstellung S = k=1,...,m I k ist der Inhalt gegeben durch S := m I k k=1 1
2 Die Definition des Inhaltes einer Intervallsumme ist unabhängig von der Darstellung. S S S S S S S + S ; S S = S + S, falls S und S sich nicht überlappen. Definition 3.2 (Jordan-Inhalt und Nullmengen) (1) Für beschränkte (nichtleere) Mengen M R n sind der innere Inhalt M i und der äußere Inhalt M a definiert durch M i := M a := sup S S S,S M inf S S S,M S Für die leere Menge ist i = a = 0. Im Fall M i = M a =: M heißt die Menge messbar (oder quadrierbar) im Jordanschen Sinne mit dem sogenannten Jordan-Inhalt M. (2) Mengen M R n mit M a = 0 werden Nullmengen (Jordan-Nullmengen) genannt. Man sagt, eine Funktion f habe eine Eigenschaft (z. B. Stetigkeit) fast überall, wenn die Eigenschaft in allen Punkten bis auf die aus einer Nullmenge erfüllt ist. Eine beschränkte Menge ist gemäß dieser Definition genau dann quadrierbar, wenn für alle ɛ > 0 Intervallsummen S ɛ, S ɛ S existieren mit S ɛ M S ɛ, S ɛ S ɛ < ɛ Definition 3.3 Die Würfel in R n mit Eckpunkten p2 k (für p Z n ), Kantenlänge 2 k und Inhalt 2 nk bilden die Menge W k der Würfel k-ter Stufe. Die Würfel 0-ter Stufe sind gerade die Einheitswürfel mit Eckpunkten p Z n. Die Vereinigung solcher Würfel heißt Würfelsumme. Für beschränkte Mengen M R n setzen wir M k := {W W k : W M}, M k := {W W k : W M }. Wir bekommen M k M k+1 M M k+1 M k k N Lemma 3.4 Für beschränkte Mengen gilt Ein- und umbeschriebene Würfelsumme (in R 2 ) M i = lim M k, k M a = lim M k. k 2
3 Bezeichnungen: M : Inneres der Menge M M : Abschluss der Menge M M : Rand der Menge M M ɛ := {x R n dist(x, M) < ɛ} : (offene) ɛ-umgebung von M. Lemma 3.5 Für beschränkte Mengen M, N R n gilt (1) M N M a N a M i N i (2) M a = M a M i = M i (3) M N a M a + N a (4) M N = M N i M i + N i (5) lim ɛ 0 M ɛ a = M a Beispiel: Eine nicht quadrierbare Menge ist beispielsweise gegeben durch Wegen folgt Daher ist diese Menge nicht quadrierbar. M := {x Q := [0, 1] 2 R 2 : x i Q, i = 1, 2} M a = M a = [0, 1] 2 = 1, M i = M i = i = 0 M a M i. Lemma 3.6 (Nullmengen) Für Jordan-Nullmengen gilt: (1) Jede Teilmenge einer Nullmenge ist Nullmenge. (2) Jede endliche Vereinigung von Nullmengen ist eine Nullmenge. (3) Jede in einem echten Untervektorraum von R n enthaltene beschränkte Menge M R n ist Nullmenge. (4) Ist M R n kompakt und f : M R eine stetige Funktion, so ist ihr Graph G(f) := {(x, f(x)) R n+1, x M} eine (n + 1)-dimensionale Nullmenge. Endliche Mengen in R n sind Jordan-Nullmengen. Was kann man über abzählbare Mengen sagen? Zum Beispiel: Sei M = {x k, k N}, wobei (x k ) k N eine konvergente Folge ist, dann ist M eine Nullmenge. Ist hingegen M = Q n [0, a] n, a > 0 (diese Menge ist auch abzählbar), gilt M a = a n > 0, das heißt M ist keine Nullmenge. Wenn man bei der Inhaltsdefinition auch abzählbar unendliche Vereinigungen von Intervallen zulässt, dann ist für jede abzählbare Menge M = {x i, i N} ihr äußerer Inhalt M a = 0: Für alle ɛ > 0 ist jeder Punkt x k in einem Würfel I k mit I k = ɛ2 nk M a k=1 I k = k=1 ɛ2 nk = ɛ 1 2 n M a = 0. Wir haben damit eine Schwäche des Jordan-Inhalts identifiziert. Diese wird durch den allgemeineren Lebesgue-Inhalt überwunden (vgl dazu auch Abschnitt 1.6). 3
4 Satz 3.7 Eine beschränkte Menge M R n ist genau dann quadrierbar, wenn ihr Rand M eine Nullmenge ist. Wir zeigen, dass M i + M a = M a. Ein Würfel W M kann keinen Punkt von M enthalten. Jede Würfelsumme M k kann zerlegt werden in (M ) k und ( M) k, sodass gilt: Also ist und für k bekommen wir M k = (M ) k ( M) k und (M ) k ( M) k =. (M ) k + ( M) k = M k, M i + M a = M a M a = 0. Korollar 3.8 Für quadrierbare Mengen M, N R n gilt: 1. M N M N (Monotonie) 2. M N M + N (Subadditivität) 3. M N = M N = M + N (Additivität) 4. M N N \ M = N M Abbildungen von Mengen: Wir betrachten im Folgenden Abbildungen von quadrierbaren Mengen und fragen uns, wann deren Bilder auch quadrierbar sind. φ D φ(d) Lemma 3.9 Sei D R n (nichtleer) beschränkt und φ : D R n eine Lipschitz-stetige Abbildung mit Lipschitz-Konstante L. Dann gilt für die Bildmenge φ(d) φ(d) a α D a α := (L n) n (i) Für einen Würfel W (x) mit Kantenlänge 2µ > 0 und Mittelpunkt x D gilt: φ(x) φ(y) 2 L x y 2 Lµ n y W (x) D Also ist φ(d W (x)) in einem achsenparallelen Würfel W mit Mittelpunkt φ(x), Kantenlänge 2µL n und Inhalt W = α W (x) enthalten. (ii) Ist nun S = W i D irgendeine Würfelsumme mit dem Inhalt S. Dann ist φ(d) in der Vereinigung von Würfeln W j mit einem Inhalt W j α W j 4
5 enthalten. Also ist φ(d) a W j j W j α j W j = α S α = const > 0 Dies impliziert φ(d) a α inf S = α D a S S,D S Satz 3.10 Sei D R n nichtleer, offen und quadrierbar. Die Abbildung φ : D R n sei Lipschitzstetig in D und regulär in D (das heißt stetig differenzierbar mit det(φ (x)) 0). Dann gilt: (i) Die Bildmenge φ(d) ist offen und quadrierbar, und φ(d) = φ(d) sowie φ(d) φ( D). (ii) Ist φ in D injektiv, so gilt φ(d) = φ( D), und für alle A D ist φ(a) auch quadrierbar. Lemma 3.11 Sei D R n nicht leer und φ : D R n eine Lipschitz-stetige Abbildung. Dann besitzt φ eine Lipschitz-stetige Fortsetzung. φ : D R n mit φ D = φ Satz 3.12 Es sei D R n eine quadrierbare Menge und A R n n, b R n. Dann ist die Bildmenge φ(d) R n mit φ(x) := Ax + b (affin-lineare Abbildung) quadrierbar und es gilt φ(d) = det A D. Korollar 3.13 Der Jordan-Inhalt ist bewegungsinvariant, das heißt jede affin-lineare Abbildung φ(x) = Qx + b mit einer orthogonalen Matrix Q R n n und b R n führt quadrierbare Mengen in quadrierbare Mengen über und lässt die Inhalte unverändert, weil det(q) = 1. Wegen Q T = Q 1 folgt det Q = det Q T = det Q 1 = det Q 1 > 0, und es gilt notwendig det Q = 1. Aus Satz 3.12 folgt φ(m) = M. 5
3 Das n-dimensionale Integral
3 as n-dimensionale ntegral Ziel: Wir wollen die ntegrationstheorie für f : R n R entwickeln. Wir wollen den nhalt (beziehungsweise das Maß M einer Punktmenge des R n definieren für eine möglichst große
Meßbare Funktionen. bilden die Grundlage der Integrationstheorie. Definition 24.1 :
24 Meßbare Funktionen bilden die Grundlage der Integrationstheorie. Definition 24. : Sei X eine beliebige Menge, Y ein topologischer Raum, λ ein Maß auf X. f : X Y heißt λ-messbar, falls f (Ω) λ-messbar
Das Lebesgue-Maß im R p
Das Lebesgue-Maß im R p Wir werden nun im R p ein metrisches äußeres Maß definieren, welches schließlich zum Lebesgue-Maß führen wird. Als erstes definieren wir das Volumen von Intervallen des R p. Seien
Meßbare Funktionen. Die angemessenen Abbildungen zwischen Meßräumen sind die meßbaren Funktionen.
Meßbare Funktionen Die angemessenen Abbildungen zwischen Meßräumen sind die meßbaren Funktionen. Definition. Seien (X, Ω 1 ) und (Y, Ω 2 ) Meßräume. Eine Abbildung f : X Y heißt Ω 1 -Ω 2 -meßbar oder kurz
(b) Man nennt die Menge M beschränkt, wenn sie nach oben und unten beschränkt ist.
8 Punktmengen Für die Menge M = { 1 n ; n N } ist 1 = max(m), denn 1 M und 1 n 1 für alle n N. Die Menge M besitzt aber kein Minimum, denn zu jeder Zahl x = 1 n M existiert ein y M mit y < x, etwa y =
Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i
3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und
Kapitel 19. Das Lebesgue Maß σ Algebren und Maße
Kapitel 19 Das Lebesgue Maß 19.1 σ Algebren und Maße 19.2 Das äußere Lebesgue Maß 19.3 Das Lebesgue Maß 19.4 Charakterisierungen des Lebesgue Maßes 19.5 Messbare Funktionen 19.1 σ Algebren und Maße Wir
Lebesgue-Integral und L p -Räume
Lebesgue-Integral und L p -Räume Seminar Integraltransformationen, WS 2012/13 1 Treppenfunktionen Grundlage jedes Integralbegriffs ist das geometrisch definierte Integral von Treppenfunktionen. Für A R
TECHNISCHE UNIVERSITÄT MÜNCHEN
Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 38. Einschränkung eines Maßes TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204
Zusammenfassung Analysis 2
Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge
Mathematik III. Vorlesung 74. Folgerungen aus dem Satz von Fubini. (( 1 3 x3 1 2 x2 y +2y 3 x) 1 2)dy. ( y +2y y +4y3 )dy
Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 74 Folgerungen aus dem Satz von Fubini Beispiel 74.1. Wir wollen das Integral der Funktion f :R 2 R, (x,y) x 2 xy +2y 3, über dem Rechteck
4 Differenzierbarkeit einer konjugierten Funktion
4 Differenzierbarkeit einer konjugierten Funktion (Eingereicht von Corinna Vits) 4.1 Differenzierbarkeit 1.Ordnung Theorem 4.1.1: Sei f ConvR n strikt konvex. Dann ist int dom und f ist stetig differenzierbar
4 Messbare Funktionen
4 Messbare Funktionen 4.1 Definitionen und Eigenschaften Definition 4.1. Seien X eine beliebige nichtleere Menge, M P(X) eine σ-algebra in X und µ ein Maß auf M. Das Paar (X, M) heißt messbarer Raum und
Zusammenfassung der Lebesgue-Integrationstheorie
Zusammenfassung der Lebesgue-Integrationstheorie Das Lebesguesche Integral verallgemeinert das Riemannsche Integral. Seine Vorteile liegen für unsere Anwendungen vor allem bei den wichtigen Konvergenzsätzen,
Musterlösung Analysis 3 - Maßtherorie
Musterlösung Analysis 3 - Maßtherorie 10. März 2011 Aufgabe 1: Zum Aufwärmen (i) Zeige, dass die Mengensysteme {, X} und P(X) σ-algebren sind. Es sind jeweils nur die Charakteristika nachzuweisen. (1)
Lösungen zu Übungsblatt 9
Analysis : Camillo de Lellis HS 007 Lösungen zu Übungsblatt 9 Lösung zu Aufgabe 1. Wir müssen einfach das Integral 16 (x + y d(x, y x +y 4 ausrechnen. Dies kann man einfach mittels Polarkoordinaten, da
Die Topologie von R, C und R n
Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).
10 Untermannigfaltigkeiten
10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und
Übungen zur Funktionalanalysis Lösungshinweise Blatt 4
Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Aufgabe 13 Wie üblich sei l 1 = {x : N K x n < } mit Norm x l 1 = x n und l = {x : N K sup n N x n < } mit x l = sup n N x n Für die Unterräume d
8 Beispiele von Koordinatentransformationen
8 Beispiele von Koordinatentransformationen Wir diskutieren nun diejenigen Koordinatentransformationen, die in der Praxis wirklich gebraucht werden (ebene und räumliche Polarkoordinaten sowie Zylinderkoordinaten).
01145 Maß- und Integrationstheorie
01145 Maß- und Integrationstheorie Eine Einführung Prof. Dr. Werner Kirsch Wissenschaftliche Mitarbeit: Dr. Tobias Mühlenbruch Lehrgebiet Stochastik FernUniversität in Hagen [email protected]
Wahrscheinlichkeitstheorie und Maßtheorie
KAPITEL 7 Wahrscheinlichkeitstheorie und Maßtheorie 7.1. Vorüberlegungen Die folgenden drei Beispiele sind Spezialfälle des Oberbegriffs Maß. Beispiel 7.1.1 (Verteilung der Ladung oder der Masse). Man
Ferienkurs in Maß- und Integrationstheorie
Zentrum Mathematik Technische Universität München Dipl. Math. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Maß- und Integrationstheorie Aufgabe. (σ-algebren Sei eine Menge und A eine σ-algebra in. Seien
FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7
1. Eine Teilmenge K eines topologischen Raumes heißt folgenkompakt, wenn jede Folge in K eine Teilfolge enthält, die in K konvergiert. Die Menge K heißt abzählbar kompakt, wenn jede unendliche Teilmenge
Das mehrdimensionale Riemann-Integral. 1. Volumenintegrale
Das mehrdimensionale Riemann-Integral. Volumenintegrale Es sei ein uader im R n gegeben durch := [a, b ] [a 2, b 2 ] [a n, b n ] = {(x,... x n ) a j x j b j } mit rellen Zahlen a j, b j, j =,... n. Offenbar
4 Fehlerabschätzungen und Konvergenz der FEM
4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und
Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie. Tobias Ried
Lösung zu den Übungsaufgaben zur Lebesgueschen Integrationstheorie Tobias Ried. März 2 2 Aufgabe (Messbarkeit der Komposition zweier Abbildungen). Seien (X, A), (Y, B) und (Z, C) Messräume und f : (X,
Maßtheorie. Wie interpretiert man Volumenmessung? Ziel :
23 Maßtheorie Ziel : Entwicklung allgemeiner Konzepte, die es gestatten, z.b. Volumina und Oberflächen von Körpern R 3 sinnvoll zu definieren und zu berechnen; sinnvoll soll heißen : für den Einheitswürfel
Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR
0 Inhaltsverzeichnis 1 Metrik 1 1.1 Definition einer Metrik............................. 1 1.2 Abstand eines Punktes von einer Menge................... 1 1.3 Einbettung eines metrischen Raumes in einen
12 Der Gaußsche Integralsatz
12. Der Gaußsche Integralsatz 1 12 Der Gaußsche Integralsatz Das Ziel dieses Abschnitts ist die folgende zentrale Aussage der mehrdimensionalen Analysis und der Theorie der partiellen Differentialgleichungen:
Technische Universität München. Aufgaben Mittwoch SS 2012
Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische
Analysis III Wintersemester 2003/2004. W. Ebeling
Analysis III Wintersemester 2003/2004 W. Ebeling 1 c Wolfgang Ebeling Institut für Algebraische Geometrie Leibniz Universität Hannover Postfach 6009 30060 Hannover E-mail: [email protected]
Reelle Analysis. Vorlesungsskript. Enno Lenzmann, Universität Basel. 11. Oktober 2013
Reelle Analysis Vorlesungsskript Enno Lenzmann, Universität Basel 11. Oktober 2013 3 Fortsetzung von Prämassen zu Massen Der Begriff des Prämasses ist nicht ausreichend, um eine geschmeidige Integrationstheorie
A. Maß- und Integrationstheorie
A. Maß- und Integrationstheorie Im folgenden sind einige Ergebnisse aus der Maß- und Integrationstheorie zusammengestellt, die wir im Laufe der Vorlesung brauchen werden. Für die Beweise der Sätze sei
Vollständiger Raum, Banachraum
Grundbegriffe beschränkte Menge Cauchyfolge Vollständiger Raum, Banachraum Kriterium für die Vollständigkeit Präkompakte Menge Kompakte Menge Entropiezahl Eigenschaften kompakter und präkompakter Mengen
Stochastik I. Vorlesungsmitschrift
Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................
Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit
Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das
Analysis 2. Vorlesungsausarbeitung zum SS von Prof. Dr. Klaus Fritzsche. Inhaltsverzeichnis
Bergische Universität Gesamthochschule Wuppertal Fachbereich Mathematik Analysis 2 Kapitel 3 Integrationstheorie Vorlesungsausarbeitung zum SS 2001 von Prof Dr Klaus Fritzsche Inhaltsverzeichnis 1 Maßtheorie
3 Messbare Funktionen
3. Messbare Funktionen 1 3 Messbare Funktionen Sei (, A, µ) ein beliebiger Maßraum. Definition. ine Funktion f : R = [, + ] heißt messbar (bezüglich A), falls die Menge {f < c} = {x : f(x) < c} = f 1 ([,
2 Allgemeine Integrationstheorie
2 Allgemeine Integrationstheorie In diesem Abschnitt ist (,S,µ) ein Maßraum, und wir betrachten R immer mit der σ Algebra B(R). Ziel ist es, messbare Funktionen f : R zu integrieren. Das Maß µ wird uns
Schwartz-Raum (Teil 1)
Schwartz-Raum (Teil 1) Federico Remonda, Robin Krom 10. Januar 2008 Zusammenfassung Der Schwartz-Raum ist ein Funktionenraum, der besondere Regularitätseigenschaften besitzt, die uns bei der Fouriertransformation
Analysis I. Guofang Wang Universität Freiburg
Universität Freiburg 30.11.2016 5. Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,..., x n ) : x i R} = } R. {{.. R }. n mal Für x R ist x der Abstand zum
Stetigkeit von Funktionen
9 Stetigkeit von Funktionen Definition 9.1 : Sei D R oder C und f : D R, C. f stetig in a D : ε > 0 δ > 0 mit f(z) f(a) < ε für alle z D, z a < δ. f stetig auf D : f stetig in jedem Punkt a D. f(a) ε a
Zufallsvariable, Verteilung, Verteilungsfunktion
Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.
Mengensysteme, Wahrscheinlichkeitsmaße
Kapitel 1 Mengensysteme, Wahrscheinlichkeitsmaße Der Großteil der folgenden fundamentalen Begriffe sind schon aus der Vorlesung Stochastische Modellbildung bekannt: Definition 1.1 Eine Familie A von Teilmengen
1 Eingebettete Untermannigfaltigkeiten des R d
$Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die
Gitterfreie Methoden. Florian Hewener. 29. Oktober 2013
Gitterfreie Methoden 1D 2D Florian Hewener 29. Oktober 2013 Gliederung 1 Interpolationsprobleme Problemstellung Haar-Räume 2 Mehrdimensionale Polynominterpolation 3 Splines Kubische Splines und natürliche
Bernd Dreseler. Integration im IR d. aus der Vorlesung Analysis III. Wintersemester 1990 / 91. Vorlesungsmitschrift von J.Breitenbach.
Bernd Dreseler Integration im IR d aus der Vorlesung Analysis III Wintersemester 1990 / 91 Vorlesungsmitschrift von JBreitenbach Siegen 2001 Inhaltsverzeichnis Vorbemerkung iv 1 Das Lebesgue Integral im
11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen
11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des
Thema 3 Folgen, Grenzwerte
Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N
Aufgaben zu Kapitel 0
Aufgaben zu Kapitel 0 0.1. Seien A und B zwei Mengen. Wie kann man paarweise disjunkte Mengen A 1, A 2 und A 3 so wählen, dass A 1 A 2 A 3 = A B gilt? 0.2. Seien E ein Menge und A eine Teilmengen von E.
Lösungen der Übungsaufgaben von Kapitel 3
Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen
Maße auf Produkträumen
Maße auf Produkträumen Es seien (, Ω 1 ) und (X 2, Ω 2 ) zwei Meßräume. Wir wollen uns zuerst überlegen, wie wir ausgehend davon eine geeignete σ-algebra auf X 2 definieren können. Wir betrachten die Menge
Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012
Darstellungssatz von Riesz in vollständig regulären Räumen Carina Pöll 0726726 Wintersemester 2012 Inhaltsverzeichnis 1 Einleitung 1 2 Definitionen und Resultate aus der Topologie 1 3 Der Darstellungssatz
17 Lineare Abbildungen
Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:
2.6 Der Satz von Fubini
1 2.6 Der Satz von Fubini Unser Ziel ist der Beweis des folgenden Ergebnisses. 6.1. Satz von Fubini Sei f : R n+m R integrierbar. Dann gibt es eine Nullmenge N R m, so dass gilt: 1. Für alle y R m \ N
4 Fehlerabschätzungen und Konvergenz der FEM
4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und
Maß- und Integrationstheorie
Maß- und Integrationstheorie Manuskript zur Vorlesung in SS26 Bálint Farkas [email protected] Inhaltsverzeichnis Einführung...................................................................
4 Funktionenfolgen und normierte Räume
$Id: norm.tex,v 1.9 2011/06/01 15:13:45 hk Exp $ $Id: jordan.tex,v 1.3 2011/06/01 15:30:12 hk Exp hk $ 4 Funktionenfolgen und normierte Räume 4.5 Normierte Räume In der letzten Sitzung hatten wir den Begriff
Seminar Gewöhnliche Differentialgleichungen
Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden
2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)
2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt
Kompaktheit in topologischen Räumen
Kompaktheit in topologischen Räumen Joel Gotsch 21. Januar 2011 Inhaltsverzeichnis 1 Notation und Allgemeines 2 2 Definitionen 2 2.1 Allgemeine Definitionen..................... 2 2.2 Globale Kompaktheitseigenschaften...............
Probeklausur zur Analysis II
Probeklausur zur Analysis II Prof. Dr. C. Löh/M. Blank 3. Februar 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen Sie, ob Sie alle Seiten erhalten
Merkblatt zur Funktionalanalysis
Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.
1 Definition und Grundeigenschaften
Christian Bönicke Vektorbündel I Im Folgenden sei immer F = R, C oder H. 1 Definition und Grundeigenschaften 1.1 Definition Ein k-dimensionales Vektorbündel ξ über F ist ein Bündel (E, p, B) mit folgenden
Grundlagen der Maßtheorie
Kapitel 4 Grundlagen der Maßtheorie 4.1 Das Maßproblem Das vielleicht ursprünglichste Problem der Geometrie ist das sogenannten Maßproblem. Dessen Behandlung steht im Zentrum dieses vierten Kapitels. Unsere
Wiederholung von Linearer Algebra und Differentialrechnung im R n
Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:
Serie 2 Lösungsvorschläge
D-Math Mass und Integral FS 214 Prof. Dr. D. A. Salamon Serie 2 Lösungsvorschläge 1. Seien folgende Mengen gegeben: und für a, b R R := [, ] := R {, }, (a, ] := (a, ) { }, [, b) := (, b) { }. Wir nennen
2. Integration. {x : f(x) <a+ 1 n }
9 2.1. Definition. 2. Integration in Maß ist eine nichtnegative, abzählbar additive Mengenfunktion. in Maßraum ist ein Tripel (X,,µ) bestehend aus einem messbaren Raum X mit der -lgebra und einem auf definierten
Analysis 3. Stand 12. April Alle Rechte beim Autor.
Analysis 3 Steffen Börm Stand 12. April 2011 Alle Rechte beim Autor. Inhaltsverzeichnis 1 Einleitung 5 2 Grundlagen der Maßtheorie 7 2.1 Motivation................................... 7 2.2 Systeme von
9. Übung zur Maß- und Integrationstheorie, Lösungsskizze Aufgaben
9. Übung zur aß- und Integrationstheorie, Lösungsskizze Aufgaben A 50 (Eine Flächenberechnung mit dem Cavalierischen Prinzip). Es seien a, b > 0 und : { (x, y) R 2 : (x/a) 2 + (y/b) 2 1 }. (a) Skizzieren
5 Die Transformationsformel
$Id: transform.tex,v 1.6 1/1/11 15:47:59 hk Exp hk $ 5 Die Transformationsformel In der letzten Sitzung haben wir die Transformationsformel als n-dimensionale Erweiterung der bekannten Substitutionsregel
Lösung zu Kapitel 5 und 6
Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig
1.3 Zufallsvariablen
1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P
Konvexe Optimierungsprobleme
von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel
22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion
KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von
Hausdorff-Maß und Hausdorff-Dimension. Jens Krüger
Hausdorff-Maß und Hausdorff-Dimension Jens Krüger Inhaltsverzeichnis 1 Einleitung 2 2 Grundlagen aus der Maßtheorie 3 3 Die Konstruktion des Hausdorff-Maßes 4 4 Eigenschaften des Hausdorff-Maßes und Hausdorff-Dimension
Maßtheorie. Skript zur Vorlesung von Prof. Dr. Michael Kohler. Sommersemester 2005 und Wintersemester 2005/2006
Maßtheorie Skript zur Vorlesung von Prof. Dr. Michael Kohler Sommersemester 2005 und Wintersemester 2005/2006 1 1 Grundbegriffe der Maßtheorie Ziel: Konstruktion von Maßzahlen (wie z. B. Länge / Fläche
4 Das Riemann-Integral im R n
$Id: nintegral.tex,v 1.7 2012/11/20 16:08:44 hk Exp hk $ 4 Das Riemann-Integral im R n 4.1 Das n-dimensionale Riemann-Integral In der letzten Sitzung hatten wir die Definition des n-dimensionalen Riemann-Integrals
12 Biholomorphe Abbildungen
12 Biholomorphe Abbildungen 2 Funktionenräume Wir erinnern zunächst an den Weierstraßschen Konvergenzsatz : 2.1 Satz. Sei G C ein Gebiet, (f n ) eine Folge holomorpher Funktionen auf G, die auf G kompakt
Lehrstuhl IV Stochastik & Analysis. Stochastik II. Wahrscheinlichkeitstheorie I. Skriptum nach einer Vorlesung von Hans-Peter Scheffler
Fachschaft Mathematik Uni Dortmund Lehrstuhl IV Stochastik & Analysis Stochastik II Wahrscheinlichkeitstheorie I Skriptum nach einer Vorlesung von Hans-Peter Scheffler Letzte Änderung: 26. November 2002
Skript zur Vorlesung. Mass und Integral. Urs Lang. Sommersemester 2005 ETH Zürich
Skript zur Vorlesung Mass und Integral Urs Lang Sommersemester 2005 ETH Zürich Version vom 12. September 2006 Literatur [Rudin] W. Rudin, Real and Complex Analysis, Third Edition. McGraw-Hill Book Co.,
2 Extrema unter Nebenbedingungen
$Id: lagrangetex,v 18 01/11/09 14:07:08 hk Exp $ $Id: untermfgtex,v 14 01/11/1 10:00:34 hk Exp hk $ Extrema unter Nebenbedingungen Lagrange-Multiplikatoren In der letzten Sitzung hatten wir begonnen die
34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen
34 Äquivalenz von Normen; Stetigkeit und Kompaktheit in endlich-dimensionalen R-Vektorräumen 34.1 Äquivalenz von Normen 34.3 Stetigkeit und Normen linearer Abbildungen 34.4 Äquivalente Normen sind gegeneinander
Mathematik III. Vorlesung 68. Das Verhalten von Maßen bei linearen Abbildungen
Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 68 Das Verhalten von Maßen bei linearen Abbildungen Lemma 68.1. Es sei V ein reeller Vektorraum und L :R n V eine bijektive lineare
Analysis I - Stetige Funktionen
Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt
Zusammenfassung der Vorlesung. Analysis 3. Stefan Müller Universität Bonn Wintersemester
Zusammenfassung der Vorlesung Analysis 3 Stefan Müller Universität Bonn Wintersemester 2016-2017 Dies ist eine gekürzte Zusammenfassung und kein vollständiges Skript der Vorlesung. Deshalb kann diese Zusammenfassung
12 Gewöhnliche Differentialgleichungen
2 2 Gewöhnliche Differentialgleichungen 2. Einleitung Sei f : D R wobei D R 2. Dann nennt man y = f(x, y) (5) eine (gewöhnliche) Differentialgleichung (DGL) erster Ordnung. Als Lösung von (5) akzeptiert
ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1
24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx
8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN
8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es
Topologische Begriffe
Kapitel 3 Topologische Begriffe 3.1 Inneres, Rand und Abschluss von Mengen Definition (innerer Punkt und Inneres). Sei (V, ) ein normierter Raum über K, und sei M V eine Menge. Ein Vektor v M heißt innerer
Transformation mehrdimensionaler Integrale
Transformation mehrdimensionaler Integrale Für eine bijektive, stetig differenzierbare Transformation g eines regulären Bereiches U R n mit det g (x), x U, gilt für stetige Funktionen f : f g det g du
Kapitel 17. Der Transformationssatz Inhaltsfunktionen
Kapitel 17 Der Transformationssatz 17.1 Inhaltsfunktionen 17.2 Der Transformationssatz mit einer Beweis Skizze 17.3 Beispiele zum Transformationssatz 17.4 Hilfsresultate 17.5 Ein eakter Beweis des Transformationssatzes
Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.
Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U
