Höhere Funktionalanalysis WS2016/17 Übungsblatt

Größe: px
Ab Seite anzeigen:

Download "Höhere Funktionalanalysis WS2016/17 Übungsblatt"

Transkript

1 Höhere Funktionalanalysis WS2016/17 Übungsblatt Aufgabe 1. Berechne die Normen der Operatoren (a) f L [0, 1], M f : L 2 [0, 1] L 2 [0, 1], (M f g)(x) = f(x)g(x). (b) g C[0, 1], T g : C[0, 1] C, T g x = 1 g(t)x(t) dt. 0 Aufgabe 2. Zeige, daß für die Faltung f g(x) = f(x y) g(y) dy zweier Funktionen f, g L 1 (R) gilt f g 1 f 1 g 1. Aufgabe 3. Zeige, daß jede beschränkte Folge in einem Hilbertraum eine schwach konvergente Teilfolge besitzt. Aufgabe 4. Ein linearer Operator T B(H) nimmt seine Norm an wenn es einen Einheitsvektor x H gibt sodaß T = T x. Finde Beispiele von beschränkten selbstadjungierten Operatoren (a) mit einer Orthonormalbasis aus Eigenvektoren. (b) ohne Eigenvektor. der seine Norm nicht annimmt. Aufgabe 5. Sei H ein Hilbertraum und K H eine konvexe Teilmenge. Ein Element x K heißt Extrempunkt wenn für alle x 0, x 1 K und für alle λ ]0, 1[ gilt (1 λ)x 0 + λx 1 = x = x 0 = x 1 = x (a) Zeige, daß jeder Einheitsvektor ein Extrempunkt der Einheitskugel B H (0, 1) ist. (b) Zeige, daß jeder isometrische lineare Operator V B(H) ein Extrempunkt der Einheitskugel B B(H) (0, 1) ist. Aufgabe 6. Sei H ein Hilbertraum mit Skalarprodukt.,. und A B(H) + ein positiv semidefiniter linearer Operator. Zeige: (a) x, y A = Ax, y definiert eine positiv semidefinite Sesquilinearform. (b) A = min{a R A ai} (c) Das innere Produkt.,. A ist positiv definit genau dann, wenn ker A = {0}. (d) Im letzteren Fall ist die induzierte Norm x A = Ax, x 1/2 äquivalent zur ursprünglichen Norm x = x, x 1/2 genau dann, wenn A eine beschränkte Inverse besitzt. (e) Sei A invertierbar und T B(H) ein weiterer Operator mit Adjungierter T. Finde eine Formel der Adjungierten von T bzgl. des Skalarprodukts.,. A. 1

2 Höhere Funktionalanalysis WS2016/17 Übungsblatt Aufgabe 7. Sei H ein Hilbertraum. (a) Zeige, daß der Bildraum eines kompakten Operators T K(H) separabel ist. (Zeige zunächst die Tatsache, daß jeder kompakte metrische Raum separabel ist). (b) Zeige, daß jeder kompakte Operator T K(H) durch Operatoren endlichen Rangs approximiert werden kann. Hinweis: Sei u n eine ONB von ran T und P n die Orthogonalprojektion auf die lineare Hülle L{u 1, u 2,..., u n }. Zeige, daß A P n A n 0. (c) Sei J B(H) ein nichttriviales abgeschlossenes Ideal, d.h., ein abgeschlossener Unterraum mit der Eigenschaft AXB J für X J und beliebige Operatoren A, B B(H). Zeige, daß J alle kompakten Operatoren enthält. Aufgabe 8. Seien X, Y Banachräume und T B(X, Y ). Zeige, daß für jede Folge (x n ) X gilt x n w x = T x n w T x. Wenn T zusätzlich kompakt ist, dann gilt auch ( ) x n w x = T x n T x. Aufgabe 9. Sei X ein separabler Banachraum. Zeige, daß es eine Metrik auf der abgeschlossenen Einheitskugel B X (0, 1) gibt, die die gleichen offenen Mengen erzeugt wie die w*-topologie σ(x, X). Hinweis: Setze d(x, y ) = n=1 2 n x y, x n für eine geeignete Folge x n. Folgere daraus, daß auch ( B X (0, 1), σ(x, X )) ein metrisierbar ist, wenn X separabel ist. Aufgabe 10. Sei X ein separabler reflexiver Banachraum. (a) Zeige, daß ( B X (0, 1), σ(x, X )) metrisierbar und daher ein kompakter metrischer Raum ist. (b) Sei Y ein weiterer Banachraum und T B(X, Y ) ein Operator mit der Eigenschaft ( ) aus Aufgabe 8. Zeige, daß T kompakt ist. Aufgabe 11. Sei H ein Hilbertraum, T B(H) selbstadjungiert. (a) Zeige, daß T = sup T x, x x 1 Sei weiters x H, sodaß T x = T x. (b) Zeige, daß x ein Eigenvektor für T 2 zum Eigenwert λ = T 2 ist.. (c) Zeige, daß auch T einen Eigenvektor zum Eigenwert λ = T oder λ = T besitzt.

3 Höhere Funktionalanalysis WS2016/17 Übungsblatt Aufgabe 12. Seien X und Y Banachräume, T B(X, Y ). (a) Zeige, daß die Abbildung ˆT : X/ ker T ran T [x] T x wohldefiniert, bijektiv und beschränkt ist mit ˆT = T. (b) Zeige, daß die folgenden Bedingungen äquivalent sind. (i) ran T ist abgeschlossen. (ii) ˆT hat eine beschränkte Inverse. (iii) Es existiert eine Konstante K > 0, sodaß für alle y ran T ein x X existiert mit x K y und T x = y. Aufgabe 13. Sei X ein Banachraum und T B(X). Für λ C \ σ(t ) sei δ(λ) = d(λ, σ(t )) = inf ξ σ(t ) λ ξ. Zeige, daß R T (λ) δ(λ) 1. Aufgabe 14. Sei H ein Hilbertraum. Ein Operator T B(H) heißt nach unten beschränkt wenn eine Konstante C > 0 existiert, sodaß für alle x H gilt Wir bezeichnen mit T x C x. σ ap (T ) = {λ C λi T ist nicht nach unten beschränkt} σ d (T ) = {λ C ran(λi T ) ist nicht dicht} Zeige: (a) σ ap (T ) = {λ (x n ) H mit x n = 1 und (λi T )x n n 0} (b) σ ap (T ) ist abgeschlossen. (c) σ(t ) = σ ap (T ) σ d (T ). (d) Der Rand von σ(t ) ist in σ ap (T ) enthalten. (e) σ p (T ) = σ d (T ). (f) Wenn T normal ist, dann gilt σ d (T ) \ σ ap (T ) =, d.h., σ(t ) = σ ap (T ). Aufgabe 15. Sei X ein Banachraum und S, T B(X). (a) Zeige, daß im Allgemeinen nicht gilt ( ) r(st ) r(s) r(t ) r(s + T ) r(s) + r(t ) (b) Zeige, daß beide Ungleichungen ( ) gelten, wenn S mit T kommutiert (d.h., ST = T S). Aufgabe 16. Sei X ein Banachraum und T n B(X) eine Folge von invertierbaren Operatoren. Wir nehmen an, die Folge hat einen Grenzwert T = lim T n, der mit allen T n kommutiert (T T n = T n T für alle n). (a) Zeige, daß T im Allgemeinen nicht invertierbar sein muß. (b) Zeige, daß T invertierbar ist, wenn man zusätzlich annimmt, daß sup n r(tn 1 ) <.

4 Höhere Funktionalanalysis WS2016/17 Übungsblatt Aufgabe 17. Zeige, daß für den Spektralradius eines Operators T B(H) auf einem Hilbertraum H gilt r(t ) = inf V T V 1 wobei das Infimum über alle invertierbaren Operatoren V : H H läuft. Hinweis: Es genügt, den Fall r(t ) < 1 zu betrachten. Definiere und untersuche zunächst das neue Skalarprodukt x, y 0 = T n x, T n y. n=0 Aufgabe 18. Für welche der drei Topologien (, SOT, WOT) ist die Abbildung B(H) B(H) T T stetig? Hinweis: Die Antwort ist ja für Norm und WOT, nein für SOT. Gegenbeispiel: Sei S : l 2 l 2 der (Links-)Shift, dann gilt S n SOT 0, aber (S ) n ist nicht konvergent bezüglich SOT. Aufgabe 19. Seien A n, B n B(H) Folgen von Operatoren. Zeige SOT SOT (a) A n A, B n B = A n B n W OT W OT (b) A n A, B n B SOT AB. W OT = A n B n AB. Aufgabe 20. Zeige, daß die positive Quadratwurzel eines positiven semidefiniten Operators eindeutig bestimmt ist. Aufgabe 21. Seien A, B B(H). (a) Zeige, daß r(ab) = r(ba) (b) Seien A B 0. Zeige, daß A 1/2 B 1/2, wohingegen aber A 2 B 2 nicht gelten muß. Hinweis: Zunächst kann angenommen werden, daß A invertierbar ist, der allgemeine Fall folgt dann mit einem Grenzwertargument. Aufgabe 22. Sei V B(H). Zeige, daß die folgenden Aussagen äquivalent sind: (i) V ist eine partielle Isometrie. (ii) V ist eine partielle Isometrie. (iii) V V ist eine Projektion (nämlich die Projektion auf den Anfangsraum von V ). (iv) V V ist eine Projektion (nämlich die Projektion auf ran V ). (v) V = V V V. (vi) V = V V V. Aufgabe 23. Zeige, daß die Polarzerlegung eindeutig ist: Wenn T B(H) geschrieben werden kann als T = UP mit P 0 und einer partiellen Isometrie U sodaß ker U = ker P, dann ist P = (T T ) 1/2 und U eindeutig bestimmt.

5 Höhere Funktionalanalysis WS2016/17 Übungsblatt Aufgabe 24. Berechne die Norm des linearen Funktionals F : C[0, 1] C 1 f 2 n f(1/n) xf(x) dx n=2 und bestimme eine rechtsstetige Funktion α(x) von beschränkter Variation, sodaß F, f = f(x) dα(x) für alle f C[0, 1]. Aufgabe 25. Sei T B(H). Zeige, daß T invertierbar ist genau dann, wenn T T und T T nach unten beschränkt sind. Aufgabe 26. Zeige, daß die Summe zweier von unten (bzw. oben) halbstetiger Funktionen wieder von unten (bzw. oben) halbstetig ist. Aufgabe 27. Seien P, Q B(H) Orthogonalprojektionen. Zeige: (a) P Q ran P ran Q P Q = P QP = P P QP = P. (b) P Q = 0 P + Q I. (c) Wenn P Q = QP, dann ist P Q = P Q und P Q = P + Q P Q. (d) Wenn P Q QP, dann muß nicht gelten P Q P + Q. (e) P Q = SOT lim n (P QP ) n. Aufgabe 28. Sei (A n ) n N eine beschränkte Folge von selbstadjungierten Operatoren sodaß A m A n = 0 für m n. Zeige, daß n N A n bezüglich der SOT konvergiert und n N A n = supn A n. 1/2

6 Höhere Funktionalanalysis WS2016/17 Übungsblatt Aufgabe 29. Sei E : B(R) B(H) ein Spektralmaß gemäß Definition Zeige, daß für alle B 1, B 2 B(R) gilt: (a) B 1 B 2 = E B1 E B2. (b) E B1 E B2 = E B2 E B1. (c) E B1 B 2 = E B1 E B2. Aufgabe 30. Sei f : R R eine beschränkte meßbare Funktion und M f : L 2 (R) L 2 (R) M f g(t) = f(t)g(t) der (selbstadjungierte) Multiplikationsoperator. Bestimme die Spektralprojektion E B für B B(R). Aufgabe 31. Sei P B(H) eine Orthogonalprojektion und die Kommutante von P. Zeige, daß {P } := {T B(H) T P = P T } {P } = {T B(H) ran P und ker P sind invariant unter T } Aufgabe 32. Ein Vektor x H heißt zyklisch für einen Operator T B(H), wenn L{T n x n N 0 } dicht in H liegt. Zeige, daß jeder Vektor x = (ξ 0, ξ 1,... ) mit der Eigenschaft lim n 1 ξ n 2 ξ n+k 2 = 0 (z.b. der Vektor x = ( 1 n! ) n N 0 ) zyklisch ist für den Linksshift k=1 S : l 2 l 2 (x 0, x 1,... ) (x 1, x 2,... ).

Kompakte Operatoren in Hilberträumen

Kompakte Operatoren in Hilberträumen Kompakte Operatoren in Hilberträumen 1 Vorbemerkungen Im Folgenden bezeichne H immer einen seperablen Hilbertraum über C Mit B(H 1, H 2 ) bezeichnen wir die Menge aller beschränkten linearen Operatoren

Mehr

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen.

Wiederholung. Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Wiederholung Wir wiederholen einige Begriffe und Sätze der Analysis, die in der Maßtheorie eine wichtige Rolle spielen. Definition. Sei X eine Menge und d : X X R eine Abbildung mit den Eigenschaften 1.

Mehr

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7

FUNKTIONALANALYSIS. Carsten Schütt WS 2006/7 1. Eine Teilmenge K eines topologischen Raumes heißt folgenkompakt, wenn jede Folge in K eine Teilfolge enthält, die in K konvergiert. Die Menge K heißt abzählbar kompakt, wenn jede unendliche Teilmenge

Mehr

Zusammenfassung Analysis 2

Zusammenfassung Analysis 2 Zusammenfassung Analysis 2 1.2 Metrische Räume Die Grundlage metrischer Räume bildet der Begriff des Abstandes (Metrik). Definition 1.1 Ein metrischer Raum ist ein Paar (X, d), bestehend aus einer Menge

Mehr

Vollständiger Raum, Banachraum

Vollständiger Raum, Banachraum Grundbegriffe beschränkte Menge Cauchyfolge Vollständiger Raum, Banachraum Kriterium für die Vollständigkeit Präkompakte Menge Kompakte Menge Entropiezahl Eigenschaften kompakter und präkompakter Mengen

Mehr

L 2 -Theorie und Plancherel-Theorem

L 2 -Theorie und Plancherel-Theorem L -Theorie und Plancherel-Theorem Seminar Grundideen der Harmonischen Analysis bei Porf Dr Michael Struwe HS 007 Vortrag von Manuela Dübendorfer 1 Wiederholung aus der L 1 -Theorie Um die Fourier-Transformation

Mehr

Funktionalanalysis II. Carsten Schütt SS 2012

Funktionalanalysis II. Carsten Schütt SS 2012 1. Jeder Filter ist in einem Ultrafilter enthalten. 2. Es sei X ein topologischer Hausdor Raum. X ist genau dann kompakt, wenn jeder Ultrafilter konvergiert. 3. (Skript) (i) {0, 1} [0,1] mit der Produkttopologie

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2

Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Übungen zur Funktionalanalysis Lösungshinweise Blatt 2 Aufgabe 5. Beweisen Sie: Ein kompakter Hausdorffraum, welcher dem ersten Abzählbarkeitsaxiom genügt, ist folgenkompakt. Lösung. Es sei X ein kompakter

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Lösungsvorschlag zur Klausur

Lösungsvorschlag zur Klausur FAKULTÄT FÜ MATHEMATIK Prof. Dr. Patrizio Neff Frank Osterbrink Johannes Lankeit 27.7.23 Lösungsvorschlag zur Klausur Hinweise zur Bearbeitung: - Die Bearbeitungszeit für die Klausur beträgt 8 Minuten.

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges

also ist Sx m eine Cauchyfolge und somit konvergent. Zusammen sagen die Sätze 11.1 und 11.2, dass B (X) ein abgeschlossenes zweiseitiges 11. Kompakte Operatoren Seien X, Y Banachräume, und sei T : X Y ein linearer Operator. Definition 11.1. T heißt kompakt, enn T (B) eine kompakte Teilmenge von Y ist für alle beschränkten Mengen B X. Wir

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Lösungen der Übungsaufgaben von Kapitel 3

Lösungen der Übungsaufgaben von Kapitel 3 Analysis I Ein Lernbuch für den sanften Wechsel von der Schule zur Uni 1 Lösungen der Übungsaufgaben von Kapitel 3 zu 3.1 3.1.1 Bestimmen Sie den Abschluss, den offenen Kern und den Rand folgender Teilmengen

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

4.4 Hermitesche Formen

4.4 Hermitesche Formen 44 Hermitesche Formen Wie üblich bezeichnen wir das komplex konjugierte Element von ζ = a + bi C (a, b R) mit ζ = a bi Definition 441 Sei V ein C-Vektorraum Eine hermitesche Form (HF) auf V ist eine Abbildung

Mehr

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11

Differentialgleichungen und Hilberträume Sommersemester 2014 Übungsblatt 11 Institut für Analysis Prof. Dr. Wolfgang Reichel Dipl.-Math. Anton Verbitsky Aufgabe 1 Differentialgleichungen und Hilberträume Sommersemester 14 Übungsblatt 11 5 Punkte In dieser Aufgabe geht es um die

Mehr

Eigenschaften kompakter Operatoren

Eigenschaften kompakter Operatoren Eigenschaften kompakter Operatoren Denition Seien X, Y normierte Räume und sei A : X Y linear. Dann heiÿt A kompakt (vollstetig), wenn für jede beschränkte Menge B X die Menge A(B) kompakt ist. Eigenschaften

Mehr

12 Aufgaben zu linearen Funktionalen

12 Aufgaben zu linearen Funktionalen 266 12. Aufgaben zu linearen Funktionalen A B C 12 Aufgaben zu linearen Funktionalen 12.1 Stetige Funktionale (siehe auch 11.6.E, 12.2, 13.4.A) Sei E ein topologischer Vektorraum und ϕ: E K (ϕ ) linear.

Mehr

Übungen zu Grundbegriffe der Topologie

Übungen zu Grundbegriffe der Topologie Übungen zu Grundbegriffe der Topologie A. Čap Wintersemester 2018 (1) Wiederholen Sie die Definition des Durchschnittes i I A i einer beliebigen Familie {A i : i I} von Mengen und zeigen Sie, dass für

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

8.1. DER RAUM R N ALS BANACHRAUM 17

8.1. DER RAUM R N ALS BANACHRAUM 17 8.1. DER RAUM R N ALS BANACHRAUM 17 Beweis. Natürlich ist d 0 und d(x, y) = 0 genau dann, wenn x = y. Wegen (N2) ist x = x und damit d(x, y) = d(y, x). Die letzte Eigenschaft einer Metrik schließt man

Mehr

Merkblatt zur Funktionalanalysis

Merkblatt zur Funktionalanalysis Merkblatt zur Funktionalanalysis Literatur: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen.

Mehr

Universität Ulm Abgabe: Mittwoch,

Universität Ulm Abgabe: Mittwoch, Universität Ulm Abgabe: Mittwoch, 8.5.23 Prof. Dr. W. Arendt Jochen Glück Sommersemester 23 Punktzahl: 36+4* Lösungen Halbgruppen und Evolutionsgleichungen: Blatt 2. Sei X ein Banachraum und (T (t)) t

Mehr

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:

Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist: Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,

Mehr

4 Kompakte Operatoren

4 Kompakte Operatoren 4.1 Kompakte Op. auf dem Hilbertraum 57 4 Kompakte Operatoren 4.1 Kompakte Operatoren auf dem Hilbertraum 4.1.1 Folg. (id H kompakt H endlichdim.) Die identische Abbildung eines Prähilbertraumes X ist

Mehr

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4

Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Übungen zur Funktionalanalysis Lösungshinweise Blatt 4 Aufgabe 13 Wie üblich sei l 1 = {x : N K x n < } mit Norm x l 1 = x n und l = {x : N K sup n N x n < } mit x l = sup n N x n Für die Unterräume d

Mehr

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009

Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 2009 I. (4 Punkte) Gegeben sei die Menge Aufgaben und Lösungen zur Klausur Lineare Algebra im Frühjahr 9 G := { a c b a, b, c R }. (a) Zeigen Sie, dass G zusammen mit der Matrizenmultiplikation eine Gruppe

Mehr

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ).

ϕ k (t)ψ j (s) 2 ds)dt < folgt ϕ k (t)ψ j (s) δ j1,j 2 und daher handelt es sich um ein Orthonormalsystem in L 2 (Ω 1 Ω 2 ). 1) a) Wir wollen zeigen, dass {ϕ k (t)ψ j (s)} j,k N0 eine Orthonormalbasis ist. Beachte dabei zunächst, dass (t, s) ϕ k (t)ψ j (s) für alle j, k N 0 messbare Abbildungen auf Ω 1 Ω 2 sind und da Ω 1 ϕ

Mehr

Bezeichnungen und Hilfsmittel aus der Analysis

Bezeichnungen und Hilfsmittel aus der Analysis Finite Elemente I 169 A Bezeichnungen und Hilfsmittel aus der Analysis A Bezeichnungen und Hilfsmittel aus der Analysis TU Bergakademie Freiberg, WS 2010/111 Finite Elemente I 170 A.1 Normierte Vektorräume

Mehr

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H.

(c) Ein inneres Produkt (Skalarprodukt) auf H ist eine positiv definite hermitesche Form auf H. 11 Hilberträume Sei H ein Vektorraum über K = R oder K = C. Definition 11.1. (a) Eine sesquilineare Form auf H ist eine Abbildung, : H H K so, dass für alle x, x, y, y H und α, β K gilt αx + βx, y = α

Mehr

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele

Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele Univ.-Prof. Dr. Radu Ioan Boţ, Axel Böhm Konversatorium zu Lineare Algebra und Analysis Analysis - Übungsbeispiele SS18 A1. Sei f : [, + ) R so, dass und dass ein M existiert mit Zeigen Sie, dass f(s +

Mehr

1 Hilbertraum. 1.1 Denition und einführende Beispiele. Im Folgenden sei K {R, C}.

1 Hilbertraum. 1.1 Denition und einführende Beispiele. Im Folgenden sei K {R, C}. 1 1 Hilbertraum Im Folgenden sei K {R, C}. 1.1 Denition und einführende Beispiele Denition 1.1 (inneres Produkt, Skalarprodukt) Ein inneres Produkt auf einem K-Vektorraum V ist eine positiv denite hermitesche

Mehr

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume

Inhaltsverzeichnis. 6 Topologische Grundlagen. 6.1 Normierte Räume Inhaltsverzeichnis 6 Topologische Grundlagen 1 6.1 Normierte Räume................................ 1 6.2 Skalarprodukte................................. 2 6.3 Metrische Räume................................

Mehr

Spektraltheorie. 2. Übungsblatt - Lösungsvorschläge. (Elementare Aussagen über Spektrum & Resolventenfunktion)

Spektraltheorie. 2. Übungsblatt - Lösungsvorschläge. (Elementare Aussagen über Spektrum & Resolventenfunktion) 4.4.8 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Spektraltheorie. Übungsblatt - Lösungsvorschläge Aufgabe Elementare Aussagen über Spektrum & Resolventenfunktion Seien X, X, Y, Y Banachräume und S, T

Mehr

45 Hilberträume. v = 2 <v, v>.

45 Hilberträume. v = 2 <v, v>. 45 Hilberträume Zusammenfassung Unter dem Begriff Hilbertraum werden solche euklidische oder unitäre Vektorräume zusammengefasst, die auch noch vollständig sind. Damit werden die in 41, 42 und in 43, 44

Mehr

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y.

d(x, z) = z x = y x + z y y x + z y = d(x, y) + d(y, z). d(x, y) = 0, falls x = y. Metrische Räume K bezeichnet entweder den Körper R oder den Körper C. Genauer bedeutet dies: K wird in denjenigen Situationen verwendet, in denen die Ersetzung von K sowohl durch R als auch durch C einen

Mehr

Aufgabensammlung zur Analysis 1

Aufgabensammlung zur Analysis 1 Analysis 1 18.12.2017 Prof. Dr. H. Koch Dr. F. Gmeineder Abgabe: Keine Abgabe. Aufgabensammlung zur Analysis 1 Anmerkungen: Das vorliegende Blatt enthält eine Auswahl von Aufgaben, die auf Klausuren zur

Mehr

10 Unitäre Vektorräume

10 Unitäre Vektorräume 10 Unitäre Vektorräume Pink: Lineare Algebra 2014/15 Seite 98 10 Unitäre Vektorräume Die Theorie komplexer Vektorräume mit Skalarprodukt folgt denselben Linien wie die Theorie reeller Vektorräume mit Skalarprodukt;

Mehr

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren

Beispiele. Grundlagen. Kompakte Operatoren. Regularisierungsoperatoren Beispiele Grundlagen Kompakte Operatoren Regularisierungsoperatoren Transportgleichung Dierenzieren ( nx ) (f δ n ) (x) = f (x) + n cos, x [0, 1], δ Regularisierung!! Inverse Wärmeleitung Durc f (f δ n

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ),

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ), D-MATH Topologie FS 15 Theo Bühler Musterlösung 11 1. a) Da (C n, d n ) kompakt ist, nimmt die stetige Funktion d n : C n C n [0, ), (x, y) d(x, y) ihr Maximum diam C n an. Ersetzen wir d n durch d n =

Mehr

Klausur zur Höheren Mathematik IV

Klausur zur Höheren Mathematik IV Düll Höhere Mathematik IV 8. 1. 1 Klausur zur Höheren Mathematik IV für Fachrichtung: kyb Bitte beachten Sie die folgenden Hinweise: Bearbeitungszeit: 1 Minuten Erlaubte Hilfsmittel: 1 eigenhändig beschriebene

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, martin.friesen@gmx.de Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

7. Übungsblatt zur Mathematik II für Inf, WInf

7. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 2010 27.-31.05.10 7. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G24 (Grundlegende Definitionen) Betrachten

Mehr

Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 5: Endliche Maße und schwache Konvergenz von Maßen in metrischen Räumen

Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 5: Endliche Maße und schwache Konvergenz von Maßen in metrischen Räumen Aktuelle Themen aus der Stochastik Wintersemester 2017/2018 Abschnitt 5: Endliche Maße und schwache Konvergenz von Maßen in metrischen Räumen Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut

Mehr

Ferienkurs in Maß- und Integrationstheorie

Ferienkurs in Maß- und Integrationstheorie Zentrum Mathematik Technische Universität München Dipl. Math. Wolfgang Erb WS 9/ Übungsblatt Ferienkurs in Maß- und Integrationstheorie Aufgabe. (σ-algebren Sei eine Menge und A eine σ-algebra in. Seien

Mehr

Die von Neumannsche Ungleichung

Die von Neumannsche Ungleichung Die von Neumannsche Ungleichung Dominik Schillo 12. November 2012 Satz (Die von Neumannsche Ungleichung) Seien p C[z] ein Polynom in einer Variablen und T L(H) eine Kontraktion (d.h. T 1). Dann gilt: p(t

Mehr

([0, 1]) und int K = p 1

([0, 1]) und int K = p 1 126 III. Der Satz von Hahn-Banach und seine Konsequenzen wie man durch Einsetzen unmittelbar erkennt. Zeigen wir noch die Halbstetigkeit von f: Sei(x n ) eine Folge in L p (R) mitx n x in L p (R) und f(x

Mehr

Lösungsvorschlag zur Nachklausur zur Analysis

Lösungsvorschlag zur Nachklausur zur Analysis Prof Dr H Garcke, D Depner SS 09 NWF I - Mathematik 080009 Universität Regensburg Lösungsvorschlag zur Nachklausur zur Analysis Aufgabe Untersuchen Sie folgende Reihen auf Konvergenz und berechnen Sie

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Definition: Sei M R, alsom

Mehr

Topologie - Übungsblatt 1

Topologie - Übungsblatt 1 1 Topologie - Übungsblatt 1 1. Sei τ die cofinite Topologie auf einer Menge X. Man zeige: i) Ist X abzählbar, dann ist (X, τ) ein A 2 -Raum. ii) Ist X überabzählbar, dann ist (X, τ) kein A 1 -Raum. 2.

Mehr

α + x x 1 F c y + x 1 F (y) c z + x 1 F (z) für alle y, z M. Dies folgt aus

α + x x 1 F c y + x 1 F (y) c z + x 1 F (z) für alle y, z M. Dies folgt aus 4. Dualräume und schwache Topologien Den Begriff des Dualraums hatten wir bereits in Kapitel 2 definiert. Der Dualraum X eines Banachraums X ist X = B(X, C). X ist mit der Abbildungsnorm F = sup x =1 F

Mehr

Analysis. Lineare Algebra

Analysis. Lineare Algebra Analysis Ableitung Ableitungsregeln totale und partielle Ableitung Extremwertbestimmung Integrale partielle Integration Substitution der Variablen Koordinatentransformationen Differentialgleichungen Lineare

Mehr

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Lösungsvorschlag zu den Hausaufgaben der 8. Übung FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

2.3 Eigenschaften linearer Operatoren

2.3 Eigenschaften linearer Operatoren 2.3. LINEARE OPERATOREN 47 2.3 Eigenschaften linearer Operatoren Es seien V, W normierte Räume. Die Elemente von L(V ; W ) werden oft als lineare Operatoren bezeichnet. Wir hatten gesehen, dass die Stetigkeit

Mehr

Lineare Algebra II (NAWI) SS2014 Übungsblatt 1

Lineare Algebra II (NAWI) SS2014 Übungsblatt 1 Lineare Algebra II (NAWI) SS2014 Übungsblatt 1 Aufgabe 1. Welche der folgenden Abbildungen sind Sesquilinearformen oder Bilinearformen? Welche davon sind Skalarprodukte? (a) B 1 : R R R, (x, y) xy (b)

Mehr

72 Orthonormalbasen und Konvergenz im quadratischen Mittel

72 Orthonormalbasen und Konvergenz im quadratischen Mittel 72 Orthonormalbasen und Konvergenz im quadratischen Mittel 30 72 Orthonormalbasen und Konvergenz im quadratischen Mittel Wir untersuchen nun die Konvergenz von Fourier-Reihen im quadratischen Mittel in

Mehr

Grundlagen der Mathematik 2 Nachklausur

Grundlagen der Mathematik 2 Nachklausur Andreas Gathmann und Yue Ren Sommersemester 6 Grundlagen der Mathematik Nachklausur Bearbeitungszeit: 8 Minuten Aufgabe (6 Punkte): Es sei f : R R, (x,y) xye (x+y). (a) Bestimme alle lokalen Maxima und

Mehr

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13

Vollständigkeit. Andreas Schmitt. Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 Vollständigkeit Andreas Schmitt Ausarbeitung zum Proseminar zur Topologie im WS 2012/13 1 Einleitung Bei der Konvergenz von Folgen im Raum der reellen Zahlen R trifft man schnell auf den Begriff der Cauchy-Folge.

Mehr

III. Prinzipien der Funktionalanalysis

III. Prinzipien der Funktionalanalysis III. Prinzipien der Funktionalanalysis 9 Der Satz von Hahn-Banach 9.1 Momentenproblem. a) Es seien X ein normierter Raum, (x n ) n=0 eine Folge in X und (α n ) n=0 eine Folge in K. Gibt es eine stetige

Mehr

68 Hilberträume - Grundbegriffe

68 Hilberträume - Grundbegriffe - 235-68 Hilberträume - Grundbegriffe In 21 haben wir uns ausführlich mit R und C Vektorräumen mit Skalarprodukt beschäftigt, dort allerdings hauptsächlich mit endlichdimensionalen Vektorräumen. Im Folgenden

Mehr

Analysis 2 UE VI) 121, 129, 133, 134, 140, 143

Analysis 2 UE VI) 121, 129, 133, 134, 140, 143 27.04.2009 Analysis 2 UE VI) 2, 29, 33, 34, 40, 43 2) Sei M j = {(x, y) R 2 j x + y < j} (j N)}. Bestimmen Sie das Innere, den Rand und die abgeschlossene Hülle der Menge T (bezüglich der euklidischen

Mehr

Wiederholung von Linearer Algebra und Differentialrechnung im R n

Wiederholung von Linearer Algebra und Differentialrechnung im R n Wiederholung von Linearer Algebra und Differentialrechnung im R n 1 Lineare Algebra 11 Matrizen Notation: Vektor x R n : x = x 1 x n = (x i ) n i=1, mit den Komponenten x i, i {1,, n} zugehörige Indexmenge:

Mehr

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink

Lösung zu Serie 18. Lineare Algebra D-MATH, HS Prof. Richard Pink Lineare Algebra D-MATH, HS 201 Prof. Richard Pink Lösung zu Serie 18 1. Sei V,, ein endlich-dimensionaler unitärer Vektorraum. Zeige, dass zu jeder Sesquilinearform f : V V C eine eindeutige lineare Abbildung

Mehr

Wiederholungsserie II

Wiederholungsserie II Lineare Algebra II D-MATH, FS 205 Prof. Richard Pink Wiederholungsserie II. Zeige durch Kopfrechnen, dass die folgende reelle Matrix invertierbar ist: 205 2344 234 990 A := 224 423 990 3026 230 204 9095

Mehr

i=1 i=1,...,n x K f(x).

i=1 i=1,...,n x K f(x). 2. Normierte Räume und Banachräume Ein normierter Raum ist ein Vektorraum, auf dem wir Längen messen können. Genauer definieren wir: Definition 2.1. Sei X ein Vektorraum über C. Eine Abbildung : X [0,

Mehr

Topologische Grundbegriffe II. Inhaltsverzeichnis

Topologische Grundbegriffe II. Inhaltsverzeichnis Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten des Vortrages Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

Messbare Vektorräume

Messbare Vektorräume Messbare Vektorräume Hans-Jörg Starkloff TU Bergakademie Freiberg Westsächsische Hochschule Zwickau Dezember 2010 / Januar 2011 Hans-Jörg Starkloff Messbare Vektorräume 1 1. Definition Geg. X linearer

Mehr

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13

(n + 1)2. + n. ((n 1) + 1)2. = (n2 + 2n) A = 21 13 Universität Stuttgart Fachbereich Mathematik Prof. Dr. E. Teufel, Dr. N. Röhrl, J. Spreer MUSTERLÖSUNG FÜR KLAUSUR Mathematik inf / sotech / tpinf Aufgabe 1 (4 Punkte) Zeigen Sie, dass für alle n gilt

Mehr

1 Die direkte Methode der Variationsrechnung

1 Die direkte Methode der Variationsrechnung Die direkte Methode der Variationsrechnung Betrachte inf I(u) = f(x, u(x), u(x)) dx : u u + W,p () wobei R n, u W,p mit I(u ) < und f : R R n R. (P) Um die Existenz eines Minimierers direkt zu zeigen,

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014

1 Verbandstheorie. Aufgabensammlung. Höhere Mathematik für Physiker III Wintersemester 2014 Aufgabensammlung Höhere Mathematik für Physiker III Wintersemester 2014 1 Verbandstheorie 1. Aufgabe: (a) Sei f C(R) eine stetige Funktion. Wenn Rf(x)φ(x)dx = 0 für alle Testfunktionen φ Cc (R) gilt, dann

Mehr

Vorlesung Lineare Funktionale LINEARE FUNKTIONALE 69

Vorlesung Lineare Funktionale LINEARE FUNKTIONALE 69 13.1. LINEARE FUNKTIONALE 69 Vorlesung 13 13.1 Lineare Funktionale Der Begriff der schwachen Konvergenz wird klarer, wenn man lineare Funktionale betrachtet. Das Skalarprodukt f, g in Hilberträumenkann

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Schauderbasen und das Beispiel der Riesz-Basen auf Hilberträumen

Schauderbasen und das Beispiel der Riesz-Basen auf Hilberträumen Schauderbasen und das Beispiel der Riesz-Basen auf ilberträumen Bernhard Stiftner 0. Dezember 0 Inhaltsverzeichnis Allgemeines zu Schauderbasen Spezielle Schauderbasen auf ilberträumen 8 3 Literatur 8

Mehr

Übungsblatt 5. D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. 1. Berechnen Sie die Ableitung v f(x, y) der Funktion

Übungsblatt 5. D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. 1. Berechnen Sie die Ableitung v f(x, y) der Funktion D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler Übungsblatt 5 1. Berechnen Sie die Ableitung v f(x, y) der Funktion ( ) ( ) x f : R 2 R 2 x 3 1 + y, 2 y (1 + e x ) 1. entlang des Vektors

Mehr

Lösungsvorschlag Klausur MA9801

Lösungsvorschlag Klausur MA9801 Lehrstuhl für Numerische Mathematik Garching, den 03.08.2012 Prof. Dr. Herbert Egger Dr. Matthias Schlottbom Lösungsvorschlag Klausur MA9801 Aufgabe 1 [4 Punkte] Seien M, N Mengen und f : M N eine Abbildung.

Mehr

Stetigkeit, Konvergenz, Topologie

Stetigkeit, Konvergenz, Topologie Ferienkurs Seite 1 Technische Universität München Ferienkurs Analysis 1 Hannah Schamoni Wintersemester 2011/12 Stetigkeit, Konvergenz, Topologie 21.03.2012 Inhaltsverzeichnis 1 Stetigkeit und Konvergenz

Mehr

Wie in der reellen Analysis üblich notiert man Folgen f in der Form

Wie in der reellen Analysis üblich notiert man Folgen f in der Form 2.1.3 Folgen und Konvergenz Viele aus der Analysisvorlesung bekannte Begriffe lassen sich in den Bereich der metrischen Räume verallgemeinern. Diese Verallgemeinerung hat sich als sehr nützliches mathematisches

Mehr

= ( n x j x j ) 1 / 2

= ( n x j x j ) 1 / 2 15 Skalarprodukte 77 15 Skalarprodukte 15.1 Einführung. a) Ab jetzt sei stets K = R oder K = C, da Wurzeln eine wichtige Rolle spielen werden. b) Nach dem Satz des Pythagoras ist die Länge eines Vektors

Mehr

Ultrametrik. Christian Semrau Metrische Räume

Ultrametrik. Christian Semrau Metrische Räume Ultrametrik Christian Semrau 05.11.2002 Inhaltsverzeichnis 1 Metrische Räume 1 1.1 Definition der Metrik.................................. 1 1.2 Offene und abgeschlossene Mengen..........................

Mehr

Topologische Grundbegriffe II. 1 Begriffe auf Mengen

Topologische Grundbegriffe II. 1 Begriffe auf Mengen Vortrag zum Seminar zur Analysis, 03.05.2010 Dennis Joswig, Florian Goy Aufbauend auf den Resultaten der Vorlesung Topologische Grundbegriffe I untersuchen wir weitere topologische Eigenschaften von metrischen

Mehr

8.1 Beschränkte Operatoren auf Hilberträumen

8.1 Beschränkte Operatoren auf Hilberträumen $Id: operator.tex,v 1.4 2013/10/23 20:41:41 hk Exp $ 8 Beschränkte Operatoren auf Hilberträumen 8.1 Beschränkte Operatoren auf Hilberträumen In der letzten Sitzung hatten wir den Adjungierten T eines Operators

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR 0 Inhaltsverzeichnis 1 Metrik 1 1.1 Definition einer Metrik............................. 1 1.2 Abstand eines Punktes von einer Menge................... 1 1.3 Einbettung eines metrischen Raumes in einen

Mehr

Der Satz von Hahn-Banach und seine geometrische Bedeutung Seminararbeit im Rahmen des PS Funktionalanalysis 2 SS 2008

Der Satz von Hahn-Banach und seine geometrische Bedeutung Seminararbeit im Rahmen des PS Funktionalanalysis 2 SS 2008 Der Satz von Hahn-Banach und seine geometrische Bedeutung Seminararbeit im Rahmen des PS Funktionalanalysis 2 SS 2008 Brigitte Kertelits (9925250) 16. November 2008 1 Zusammenfassung Diese Arbeit befasst

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

Multiplikationsoperatoren

Multiplikationsoperatoren Multiplikationsoperatoren Dennis Dyck 07.04.2014 1 Einleitung In dem ersten Vortrag des eminars soll es um die Untersuchung von Multiplikationsoperatoren gehen. Es werden grundlegende Eigenschaften hergeleitet

Mehr

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Thomas Steinle Seminar Zufällige Felder Universität Ulm 18. November, 2008 Einleitung Inhalt Einleitung Wiederholung und Themenvorstellung Wichtiges

Mehr

Prüfung Lineare Algebra 2

Prüfung Lineare Algebra 2 1. Überprüfen Sie die folgenden Aussagen: (1) Zwei reelle symmetrische Matrizen sind genau dann ähnlich, wenn sie die gleiche Signatur haben. (2) Jede symmetrische Matrix ist kongruent zu einer Diagonalmatrix,

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

Lineare Algebra und Geometrie II, Übungen

Lineare Algebra und Geometrie II, Übungen Lineare Algebra und Geometrie II, Übungen Gruppe (9 9 45 ) Sei A 2 Bestimmen Sie A und A Finden Sie weiters Vektoren u, v R 2 mit u und Au A, beziehungsweise v und Av A Zunächst die Berechnung der Norm

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Spektraltheorie. 9. Übungsblatt - Lösungsvorschläge. (Einiges zum stetigen Funktionalkalkül) PD Dr. Peer Kunstmann M.Sc.

Spektraltheorie. 9. Übungsblatt - Lösungsvorschläge. (Einiges zum stetigen Funktionalkalkül) PD Dr. Peer Kunstmann M.Sc. 8.06.208 PD Dr. Peer Kunstmann M.Sc. Michael Ullmann Spektraltheorie 9. Übungsblatt - Lösungsvorschläge Aufgabe (Einiges zum stetigen Funktionalkalkül) Seien (H,, H ) ein Hilbertraum und T selbst-adjungiert.

Mehr

4 Differenzierbarkeit einer konjugierten Funktion

4 Differenzierbarkeit einer konjugierten Funktion 4 Differenzierbarkeit einer konjugierten Funktion (Eingereicht von Corinna Vits) 4.1 Differenzierbarkeit 1.Ordnung Theorem 4.1.1: Sei f ConvR n strikt konvex. Dann ist int dom und f ist stetig differenzierbar

Mehr

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag

Analysis II. Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag Prof Dr H Garcke, D Depner SS 9 NWF I - Mathematik 1979 Universität Regensburg Aufgabe 1 Analysis II Aufgaben zum Stoff der Analysis I und II Lösungsvorschlag i Erinnern Sie sich an die Konvergenzkriterien

Mehr

Die Topologie von R, C und R n

Die Topologie von R, C und R n Die Topologie von R, C und R n Für R haben wir bereits eine Reihe von Strukturen kennengelernt: eine algebraische Struktur (Körper), eine Ordnungsstruktur und eine metrische Struktur (Absolutbetrag, Abstand).

Mehr