3.3 Der Seitenverband

Größe: px
Ab Seite anzeigen:

Download "3.3 Der Seitenverband"

Transkript

1 Diskrete Geometrie (Version 3) 10. Januar 2012 c Rudolf Scharlau Der Seitenverband Wir setzen die Untersuchung der Relation ist Seite von auf der Menge aller konvexen Polytope in einem gegebenen R-Vektorraum fort. Wir werden unter anderem zeigen, dass ein Polytop genügend viele Seiten in jeder denkbaren Dimension besitzt (anders als eine runde konvexe Menge wie die Kugel, die nur nulldimensionale Seiten besitzt). Bevor wir dieses Programm durchführen, müssen wir einige Begriffe betreffend Ordnungsrelationen einführen. Wir erinnern an den Begriff einer (binären) Relation auf (oder in) einer Menge M. Eine solche Relation heißt Halbordnungsrelation, meist kurz Halbordnung, wenn sie reflexiv, transitiv und antisymmetrisch ist. Letzteres bedeutet x,y M : x y y x x = y. Dieses gilt für das übliche von Zahlen und für die Inklusion von Mengen, genauso aber auch für die zugehörigen strikten Relationen < bzw.. Ein weiteres Beispiel einer Halbordung ist die Teilbarkeitsrelation auf den natürlichen Zahlen. Die gesamte Struktur (M, ) wird ebenfalls als Halbordnung bezeichnet. Die strukturerhaltenden Abbildungen f : (M, ) (N, ) sind definitionsgemäß die monotonen oder ordnungserhaltenden Abbildungen: x y f(x) f(y). Ein Isomorphismus von Halbordnungen ist eine bijektive monotone Abbildung, deren Umkehrabbildung ebenfalls monoton ist: x y f(x) f(y). Wenn (M, ) eine Halbordnung ist und N M eine Teilmenge, so ist klar, was eine obere Schranke für N ist. Ein Supremum s für N ist eine kleinste obere Schranke: Für eine zweielementige Teilmenge N = {x, y} bedeutet das: x s, y s, (z M x z y z) s z. (In Worten: s ist eine gemeinsame obere Schranke für x und y, und wenn z eine weitere gemeinsame obere Schranke ist, dann ist s z.) Der Begriff Infimum ist analog als größte untere Schranke definiert. Eine Verband ist eine Halbordnung, in der jede zweielementige Teilmenge (und damit per Induktion jede endliche Teilmenge) ein Supremum und ein Infimum besitzt. Ein typischer Verband ist die Potenzmenge, also die Menge aller Teilmengen einer festen (z.b. endlichen) Menge. Supremum und Infimum von {A, B} sind hier einfach die Vereinigung A B bzw. der Durchschnitt A B. Eine endliche Halbordnung wird oft durch ihr so genanntes Hasse-Diagramm beschrieben: hiernotiertmandieelemente alspunkte( Knoten einesgraphen), und zwei Elemente x, y werden durch eine (aufwärtsgerichtete) Kante verbunden, wenn x y ist und kein z M existiert mit x z y, x z y. (Anschaulich: y liegt unmittelbar über x.) Hier als Beispiel der Potenzmengenverband einer dreielementigen Menge:

2 218 Diskrete Geometrie (Version 3) 10. Januar 2012 c Rudolf Scharlau {1,2,3} {1,2} {1,3} {2,3} {1} {2} {3} Abb. 3.10: Hasse-Diagramm des Potenzmengenverbandes (P({1, 2, 3}), ) Satz und Definition Es sei P ein Polytop. Mit F(P) bezeichnen wir die Menge aller Seiten von P. a) Auf F(P) stimmt die Relation ist Seite von mit der Inklusion überein. b) Für A F(P) gilt F(A) F(P). Die durch Inklusion halbgeordnete Menge(F(P), ) heißt auch der Seitenverband von P. Beweis: Teil a) folgt aus Bemerkung Für Teil b) bemerken wir zunächst, dasanachsatz3.2.4selbst einpolytopist; F(A)istalso definiert. Diegewünschte Inklusion folgt nun aus der Transitivität der Seiten-Relation Satz Dass (F(P), ) tatsächlich ein Verband ist, wird in dem unten folgenden Satz weiter ausgeführt. Das Hasse-Diagramm des Seitenverbandes eines Vierecks sieht wie folgt aus: Abb. 3.11: Seitenverband eines Vierecks

3 Diskrete Geometrie (Version 3) 10. Januar 2012 c Rudolf Scharlau 219 Das Hauptergebnis dieses Abschnitt wird der Satz sein. Der folgende Satz ist hiervon ein Spezialfall, der aber entscheidend für den allgemeinen Beweis (durch Induktion nach der Dimension) ist. Aus diesem Grund und wegen seiner einfachen Formulierung halten wir ihn als separaten Satz fest. Wir erinnern daran, dass eine echte Seite F eines Polytopes P eine Seite mit F P ist. Eine Seite der Dimension dimp 1 wird auch als Wand oder Facette bezeichnet. Satz Jede echte Seite F eines Polytops P ist in einer Wand enthalten. Vor dem Beweis des Satzes führen wir noch eine naheliegende Sprechweise ein und beweisen einen Hilfssatz. Definition Das relative Innere einer Teilmenge K E besteht aus allen Punkten, die inneren Punkte von K in dem von K erzeugten affinen Unterraum Aff K sind Bezeichnung relint K. Wenn K eine nicht-leere konvexe Menge ist, so ist immer auch relint K nicht-leer. DasrelativeInnereeinerStrecke[x,y],x y istdie offenestrecke [x,y] {x,y}. Allgemeiner ist das relative Innere eines k-simplexes = conv{x 0,...,x k } mit affinenen unabhängigen Punkten x 0,x 1,...,x k das sogenannte offene Simplex, bestehend aus allen Punkten k t i x i mit echt positiven t i und k t i = 1. Lemma Es sei K eine beliebige Teilmenge von E und F eine konvexe Teilmenge von K. Es sei x relintf und H eine Stützhyperebene an K in x. Dann ist F H. Beweis: Setze A := AffF und m = dima. Es ist x innerer Punkte eines in A enthaltenen m-simplexes: x = t i x i, t i > 0, t i = 1, i=1 wobei x 0,...,x m F affin unabhängig sind, also Aff{x 0,...,x m } = A. Sei nun H = H f,α für ein f E und α R, und f(y) α für alle y K. Dann gilt α = f(x) = t i f(x i ) mit f(x i ) α. Da alle t i echt positiv sind, folgt hieraus f(x i ) = α für alle i, also x i H für alle i und somit A H, erst recht F H, wie gewünscht. Beweis von Satz 3.3.2:WirbenutzenSatzeineErgänzungzuSatz3.2.5,diewir allerdings oben nicht formuliert haben: Der Rand von P ist genau die Vereinigung der Wände von P. Wähle eine Darstellung von P wie in Satz sowie einen

4 220 Diskrete Geometrie (Version 3) 10. Januar 2012 c Rudolf Scharlau relativ inneren Punkt p F. Dieser Punkt ist jedenfalls ein Randpunkt von P. Es gilt also p F i := H i P für passendes i, wobei F i eine Wand von P ist. Nach Lemma ist F F i, wie gewünscht. Per Induktion erhalten wir nun wie oben angekündigt aus Satz die Existenz von Seiten beliebiger (passender) Dimension, die eine gegebene Seite umfassen. Satz Es seien F k,f m zwei Seiten eines Polytops mit F k F m, k = dimf k und m = dimf m. Dann gibt es eine Kette von Seiten F k F k+1 F k+2... F m 1 F m mit dimf j = j für alle j. Beweis: Das folgt sofort durch Induktion über m k durch Anwendung des vorigen Satzes auf P = F m und F = F k. Wir befassen uns nun mit dem Verhalten von Seiten unter Durchschnitten. Satz Es sei K eine kompakte konvexe Menge und F 1,...,F r Seiten von K. Dann ist auch der Durchschnitt F 1 F 2... F 2 eine Seite von K. Beweis: Es sei o.b.d.a. jedes F i eine echte Seite, F i = H i K mit einer Hyperebene H i = H fi,α i, f i E, α i R und K H i. Ferner sei der Durchschnitt F der F i als nicht-leer angenommen. Nach einer geeigneten Translation von K können wir 0 F annehmen; dann ist α i = 0 für alle i. Betrachte nun die Linearform f := f 1 +f f r. Für x K gilt f(x) 0 und f(x) = 0 genau dann, wenn f i (x) = 0, d.h. x F i für alle i ist. Für H := kerf bedeutet das H K = F. Insbesondere muß H E sein, d.h. f 0 und H eine Hyperebene. Also ist F eine Seite von K. Der nächste Satz ist eine Art verschärfte Umkehrung des vorigen. Satz Es sei P ein n-dimensionales Polytop und F eine k-dimensionale Seite von P, mit k n 2. Fixiere eine Zahl m mit k < m < n. Dann ist F ein Durchschnitt von m-dimensionalen Seiten. Beweis: Wir behandeln zuerst den Fall k = n 2 und m = n 1 und zeigen, dass jede Seite G der Dimension n 2 Durchschnitt von zwei Wänden ist. Nach Satz ist jedenfalls G in einer Wand F 1 enthalten. Stelle nun das gesamte Polytop P als Durchschnitt von Halbräumen dar, P = s, wobei o.b.d.a. H i i=1 das System der H i minimal ist, also nach Satz jedes F i = H i P eine Wand (F 1 wie oben). Also ist F 1 = H 1 P = s H 1 H i. Wenn wir hier zunächst die H 1 H i weglassen, für die H 1 H i keine Hyperebene in H 1 ist und weiter zu einem minimalen Durchschnitt übergehen, sehen wir mittels 3.2.5, dass jede Wand von F 1, insbesondere das obige G, von der Form F 1 H i = F 1 F i für ein geeignetes i {2,...,n} ist. i=2

5 Diskrete Geometrie (Version 3) 10. Januar 2012 c Rudolf Scharlau 221 Wir behandeln nun den allgemeinen Fall durch Induktion nach n k mit dem gerade behandelten Induktionsanfang n k = 2. Wähle nach Satz eine Seite F k+2 der Dimension k +2 von P mit F F k+2. Anwenden des Spezialfalls auf F und F k+2 liefert Seiten F k+1 und F k+1 von F k+2 der Dimension k +1 mit F = F k+1 F k+1. Nach Satz sind F k+1 und F k+1 auch Seiten von P. Nach Induktionsannahme sind sie Durchschnitte von m-dimensionalen Seiten von P. Also gilt dieses auch für F. Die Bezeichnung Seitenverband wird im folgenden Satz gerechtfertigt: Satz Für ein n-dimensionales Polytop P hat die Halbordnung (F(P), ) die folgenden kombinatorischen Eigenschaften. a) Jede maximale Kette F 1 = F 0 F 1... F m = P in F(P) hat dieselbe Länge m = n. b) Je zwei Elemente F,G F(P) besitzen ein Infimum, nämlich F G, und ein Supremum. c) F(P) besitzt ein kleinstes und ein größtes Element. d) Der Verband ist atomar, d.h. jedes Element ist Supremum einer geeigneten Menge von Atomen, das sind die minimalen vom kleinsten Element verschiedenen Elemente von F(P). e) Der Verband ist coatomar, d.h. jedes Element ist Infimum einer geeigneten Menge von Coatomen, das sind die maximalen vom größten Element verschiedenen Elemente von F(P). f) Für F,G F(P) mit F G, dimg = dimf + 2 gibt es genau zwei K F(P) mit F K G und dimk = dimf +1. In diesem Satz kommen eine Reihe neuer Begriffe vor, in der Substanz ist er jedoch abgesehen von Teil f) durch die Sätze 3.3.5, 3.3.6, bereits bewiesen. Neu ist die Einsicht, dass sich diese drei Sätze als Eigenschaften der Halbordnung (F(P), ) formulieren lassen. Man kann die konkrete geometrische Gestalt des Polytops als Teilmenge eines affinen Raumes völlig vergessen und trotzdem diesen Satz formulieren. Man spricht deshalb von kombinatorischen Eigenschaften eines Polytops bzw. der Klasse aller Polytope. Auch die Dimension einer Seite kann als rein kombinatorische Eigenschaft aufgefaßt werden: für F F(P) ist dimf die größte Zahl d so, dass eine Kette F 0 F 1 F d in F(P) mit F d = F existiert. Insofern ist auch der (hier nicht bewiesene) Teil f) des Satzes eine Aussage, die nur vom Seitenverband handelt, aber nicht vom Polytop selbst.

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen

3.4 Kombinatorische Äquivalenz und Dualität von Polytopen 222 Diskrete Geometrie (Version 3) 12. Januar 2012 c Rudolf Scharlau 3.4 Kombinatorische Äquivalenz und Dualität von Polytopen Dieser Abschnitt baut auf den beiden vorigen auf, indem er weiterhin den Seitenverband

Mehr

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule

8. Konvexe Polytope. Tobias Boelter. Mittwoch, 5. März TopMath Frühlingsschule 1 / 31 8. Konvexe Tobias Boelter TopMath Frühlingsschule Mittwoch, 5. März 2014 2 / 31 Es können auch nicht konvexe untersucht werden, wir beschränken uns hier aber auf konvexe. Mit einem Polytop ist hier

Mehr

Auswahlaxiom, Zornsches Lemma und Wohlordnungssatz. 14.Oktober 97

Auswahlaxiom, Zornsches Lemma und Wohlordnungssatz. 14.Oktober 97 Auswahlaxiom, Zornsches Lemma und Wohlordnungssatz Uwe Liebe Sven Hermann 14.Oktober 97 Inhaltsverzeichnis 1 Einleitung 3 2 Auswahlaxiom 4 3 Ordnung 5 4 Zornsches Lemma 9 5 Wohlordnungssatz 11 6 Zurück

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

3 Polytope. 3.1 Polyeder

3 Polytope. 3.1 Polyeder 28 3 Polytope 3.1 Polyeder Polytope in der Ebene und im Raum standen neben Kreis und Kugel schon während der griechischen Antike im Mittelpunkt des mathematischen (und philosophischen) Interesses. Durch

Mehr

5 Komplementäre Verbände

5 Komplementäre Verbände 5 Komplementäre Verbände Die Bestimmung von Verbandselementen durch Punkte hat in modularen längenendlichen Verbänden im Falle der Existenz sinnvolle Eigenschaften (vgl. 4.5), die Existenz kann aber mit

Mehr

13 Auswahlaxiom und Zornsches Lemma

13 Auswahlaxiom und Zornsches Lemma 13 Auswahlaxiom und Zornsches Lemma Handout zur Funktionalanalysis I von H. Glöckner, 25.11.2008 Wichtige Teile der modernen Mathematik beruhen auf dem sogenannten Auswahlaxiom der Mengenlehre. Dieses

Mehr

5.1 Affine Räume und affine Abbildungen

5.1 Affine Räume und affine Abbildungen 402 LinAlg II Version 1.2 21. Juli 2006 c Rudolf Scharlau 5.1 Affine Räume und affine Abbildungen Ein affiner Raum besteht aus zwei Mengen P und G zusammen mit einer Relation der Inzidenz zwischen ihnen.

Mehr

4.2 Quotientenvektorräume

4.2 Quotientenvektorräume 306 LinAlg II Version 1 6. Juni 2006 c Rudolf Scharlau 4.2 Quotientenvektorräume Zum Verständnis der folgenden Konstruktion ist es hilfreich, sich noch einmal den Abschnitt 1.4 über Restklassen vom Beginn

Mehr

b liegt zwischen a und c.

b liegt zwischen a und c. 2 DIE ANORDNUNGSAXIOME 5 (2.4) a, b, c R : (a < b 0 < c) ac < bc Monotoniegesetz der Multiplikation Bezeichnungen a > b : b < a (> wird gelesen: größer als ) a b : a < b oder a = b a b : a > b oder a =

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 89 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist.

Geordnete Mengen. Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Geordnete Mengen Eine Relation heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Ist eine Ordnungsrelation auf eine geordnete Menge., dann nennt man Die Namensgebung

Mehr

Geordnete Mengen. Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist.

Geordnete Mengen. Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Mathematik I für Informatiker Ordnungsrelationen p. 1 Geordnete Mengen Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv, transitiv und antisymmetrisch ist. Ist R eine Ordnungsrelation

Mehr

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex.

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex. Konvexe Mengen 2 Wie am Ende des vorigen Kapitels bereits erwähnt, ist die notwendige Gradientenbedingung aus Satz 1.4.6 für konvexe Zielfunktionen auch hinreichend. Diese Tatsache mag als erste Motivation

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Proseminar Konvexe Mengen: Der Satz von Carathéodory

Proseminar Konvexe Mengen: Der Satz von Carathéodory Proseminar Konvexe Mengen: Der Satz von Carathéodory Gerrit Grenzebach 26. Otober 2004 In diesem Referat werden der Begriff der onvexen Hülle einer Menge eingeführt und einige Eigenschaften der onvexen

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 86 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Der Satz von Krein-Milman und der Satz von der trennenden Hyperebene

Der Satz von Krein-Milman und der Satz von der trennenden Hyperebene Der Satz von Krein-Milman und der Satz von der trennenden Hyperebene Sascha Schleef 28.10.2011 Ausarbeitung im Rahmen des Proseminars Analysis auf Grundlage des Buches A course in convexity von Alexander

Mehr

Relationen und Funktionen

Relationen und Funktionen Vorkurs Mathematik Dr. Regula Krapf Sommersemester 018 Relationen und Funktionen Definition. Seien M und N Mengen. Eine Relation auf M N ist eine Teilmenge R M N. Falls (x,y) R, so schreibt man auch x

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke

Konvexe Mengen. Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke Konvexe Mengen Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x,y auch stets deren Verbindungsstrecke xy = {x + t xy 0 t 1} = {(1 t)x + ty 0 t 1} enthält. konvex nicht konvex Lemma

Mehr

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Ordnungsrelationen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden Ordnungsrelationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] Geordnete Mengen Eine Relation R A A heißt Ordnung oder Ordnungsrelation, wenn sie reflexiv,

Mehr

Kapitel 6. Fixpunkte und semantische Bereiche

Kapitel 6. Fixpunkte und semantische Bereiche Kapitel 6 Fixpunkte und semantische Bereiche Sowohl bei der Definition der operationalen Semantik als auch bei der Definition der mathematischen Semantik haben wir mehr oder weniger explizit Fixpunkte

Mehr

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform

3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform LinAlg II Version 1 29. Mai 2006 c Rudolf Scharlau 219 3.5 Trigonalisierbarkeit, verallgemeinerte Eigenräume und Jordansche Normalform Das Problem der Normalformen für Endomorphismen handelt kurz gesprochen

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik Prof. Dr. H. Brenner Osnabrück SS 2014 Einführung in die mathematische Logik Vorlesung 5 Das Lemma von Zorn Wir möchten im Folgenden zeigen, dass eine widerpruchsfreie Menge Γ L V von Aussagen nicht nur

Mehr

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie

Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Lemma 10. Die Menge Aff (K n ) aller Affinitäten von K n ist eine Gruppe bezüglich der Verkettung. Beweis. (vgl. Lemma 39 LAAG I sowie Noch ein Beispiel aus Vorl. 1, Seite 10) Zuerst zeigen wir, dass jede

Mehr

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C)

Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version C) Misterlösung zur Klausur zur Vorlesung Analysis I, WS08/09, Samstag, 14..009 (Version C Vokabelbuch In diesem Teil soll getestet werden, inwieweit Sie in der Lage sind, wichtige Definitionen aus der Vorlesung

Mehr

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete

4 Holomorphie-Konvexität. Definition Satz. 42 Kapitel 2 Holomorphiegebiete 42 Kapitel 2 Holomorphiegebiete 4 Holomorphie-Konvexität Wir wollen weitere Beziehungen zwischen Pseudokonvexität und affiner Konvexität untersuchen. Zunächst stellen wir einige Eigenschaften konvexer

Mehr

Aufbau der Projektiven Geometrie

Aufbau der Projektiven Geometrie Seminararbeit zum Seminar aus Reiner Mathematik Aufbau der Projektiven Geometrie Leonie Knittelfelder Matr. Nr. 1011654 WS 2012/13 Inhaltsverzeichnis 1 Einleitung 3 2 Linearmengen 4 2.1 Satz (1.3.1): Das

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} Ganze Zahlen : Aus

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 17: Relationen Thomas Worsch Karlsruher Institut für Technologie, Fakultät für Informatik Wintersemester 2013/2014 1/61 Anmerkung Änderung im Wintersemester 2013/2014:

Mehr

Projektive Räume und Unterräume

Projektive Räume und Unterräume Projektive Räume und Unterräume Erik Slawski Proseminar Analytische Geometrie bei Prof. Dr. Werner Seiler und Marcus Hausdorf Wintersemester 2007/2008 Fachbereich 17 Mathematik Universität Kassel Inhaltsverzeichnis

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Lösungen zu Kapitel 2 Lösung zu Aufgabe 1: Wir zeigen die Behauptung durch vollständige Induktion über n. Die einzige Menge mit n = 0 Elementen ist die leere Menge. Sie besitzt nur sich selbst als Teilmenge,

Mehr

1.2 Gitter: Grundlegende Konzepte

1.2 Gitter: Grundlegende Konzepte Gitter und Codes c Rudolf Scharlau 16. April 2009 5 1.2 Gitter: Grundlegende Konzepte Es sei V ein n-dimensionaler R-Vektorraum. Auf V sei ein Skalarprodukt gegeben, dessen Werte mit x, y R, dabei x, y

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

3.2 Unabhängigkeitsstrukturen

3.2 Unabhängigkeitsstrukturen 80 3.2 Unabhängigkeitsstrukturen Unser Ziel ist der Nachweis, daß in Vektorräumen, also in Moduln über Körpern, Basen existieren und zwei endliche Basen gegebenenfalls von derselben Ordnung sind. (Basen

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ),

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ), D-MATH Topologie FS 15 Theo Bühler Musterlösung 11 1. a) Da (C n, d n ) kompakt ist, nimmt die stetige Funktion d n : C n C n [0, ), (x, y) d(x, y) ihr Maximum diam C n an. Ersetzen wir d n durch d n =

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

Zahlen und metrische Räume

Zahlen und metrische Räume Zahlen und metrische Räume Natürliche Zahlen : Die natürlichen Zahlen sind die grundlegendste Zahlenmenge, da man diese Menge für das einfache Zählen verwendet. N = {1, 2, 3, 4,...} bzw. N 0 = {0, 1, 2,

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 03.12.2013 Alexander Lytchak 1 / 16 Wiederholung und Beispiele Der Spaltenrang einer Matrix ist gleich ihrem Zeilenrang.

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

3.3 Austauschsatz, Basisergänzungssatz und Dimension

3.3 Austauschsatz, Basisergänzungssatz und Dimension 66 Kapitel III: Vektorräume und Lineare Abbildungen 3.3 Austauschsatz, Basisergänzungssatz und Dimension Montag, 15. Dezember 2003 Es sei V ein Vektorraum. Jedes Teilsystem eines linear unabhängigen Systems

Mehr

3 Längenendliche Verbände. Dimension

3 Längenendliche Verbände. Dimension 3 Längenendliche Verbände. Dimension Unser Ziel ist es, projektive Geometrien endlicher Dimension durch Spezialisierung der betrachteten Verbände zu kennzeichnen. Dazu gehört sicher, dass es endliche viele

Mehr

Grundbegriffe der Informatik Tutorium 14

Grundbegriffe der Informatik Tutorium 14 Grundbegriffe der Informatik Tutorium 14 Tutorium Nr. 16 Philipp Oppermann 11. Februar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann

Ordinalzahlen. Sei (X, ) eine total geordnete Menge und a X. Dann Ordinalzahlen Im Rahmen der Ordnungsrelationen wurden bisher die Begriffe Partialordnung und Totalordnung (lineare Ordnung) erwähnt. Ein weiterer wichtiger Ordnungsbegriff ist die Wohlordnung. Wohlgeordnete

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel IV SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG [email protected] http://www2.mathematik.uni-wuerzburg.de

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

1.1 Mengen und Abbildungen

1.1 Mengen und Abbildungen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 3 1.1 Mengen und Abbildungen In diesem Abschnitt stellen wir die grundlegende mathematische Sprache und Notation zusammen, die für jede Art von heutiger Mathematik

Mehr

5 Der Transzendenzgrad

5 Der Transzendenzgrad $Id: trgrad.tex,v 1.6 2009/05/11 14:48:57 hk Exp $ 5 Der Transzendenzgrad Wir stellen nun einige der Tatsachen über die Mächtigkeit von Mengen zusammen, die Ihnen wahrscheinlich aus den ersten Semester

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14

Mehr

1.2 Modulare Arithmetik

1.2 Modulare Arithmetik Algebra I 8. April 2008 c Rudolf Scharlau, 2002 2008 11 1.2 Modulare Arithmetik Wir erinnern an die Notation für Teilbarkeit: m c für m, c Z heißt, dass ein q Z existiert mit qm = c. Definition 1.2.1 Sei

Mehr

Primzahlen und Primfaktorzerlegung

Primzahlen und Primfaktorzerlegung Primzahlen und Primfaktorzerlegung Yasin Hamdan Inhaltsverzeichnis 1 Das Sieb des Eratosthenes 1 2 Primfaktorzerlegung 4 2.1 Existenz und Eindeutigkeit.......................... 4 2.2 Hasse-Diagramme...............................

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 21: Relationen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.4 2010/05/31 08:41:53 hk Exp hk $ 3 Topologische Gruppen Nachdem wir jetzt gezeigt haben das Quotienten G/H topologischer Gruppen wieder topologische Gruppen sind, wollen wir das Ergebnis

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.5 2014/04/28 14:01:50 hk Exp $ $Id: diff.tex,v 1.2 2014/04/28 14:24:56 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d Am Ende der letzten Sitzung hatten wir die Tangentialvektoren

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Übungsblatt 2 - Analysis 2, Prof. G. Hemion

Übungsblatt 2 - Analysis 2, Prof. G. Hemion Tutor: Martin Friesen, [email protected] Übungsblatt 2 - Analysis 2, Prof. G. Hemion Um die hier gestellten Aufgaben zu lösen brauchen wir ein wenig Kentnisse über das Infimum bzw. Supremum einer Menge.

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die Konvergenz

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2018 Lineare Algebra und analytische Geometrie II Vorlesung 52 Auf dem R n gibt es sehr viele verschiedene Normen, allerdings hängen sehr viele wichtige Begriffe wie die

Mehr

Der Fundamentalsatz der Algebra

Der Fundamentalsatz der Algebra Der Fundamentalsatz der Algebra Vortragsausarbeitung im Rahmen des Proseminars Differentialtopologie Benjamin Lehning 17. Februar 2014 Für den hier dargelegten Beweis des Fundamentalsatzes der Algebra

Mehr

Erste topologische Eigenschaften: Zusammenhang und Kompaktheit

Erste topologische Eigenschaften: Zusammenhang und Kompaktheit Abschnitt 2 Erste topologische Eigenschaften: Zusammenhang und Kompaktheit Zusammenhang 2.1 Definition. Ein Raum X heißt zusammenhängend, wenn er außer X und Ø keine Teilmengen hat, die zugleich offen

Mehr

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3...

Affine Hülle. x x 1 ist lineare Kombination der Vektoren x 2 x 1,x 3 x 1,...,x k x 1. Tatsächlich, in diesem Fall ist λ 1 = 1 λ 2 λ 3... Affine Hülle Wiederholung. Der Vektor x K n ist eine lineare Kombination der Vektoren x,...,x k K n, wenn es Zahlen λ,...,λ k K gibt mit x = λ x +... + λ k x k. Def. Gibt es solche Zahlen λ,...,λ k K mit

Mehr

Topologische Aspekte: Eine kurze Zusammenfassung

Topologische Aspekte: Eine kurze Zusammenfassung Kapitel 1 Topologische Aspekte: Eine kurze Zusammenfassung Wer das erste Knopfloch verfehlt, kommt mit dem Zuknöpfen nicht zu Rande J. W. Goethe In diesem Kapitel bringen wir die Begriffe Umgebung, Konvergenz,

Mehr

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A) Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, 10.1.009 (Version A) Kennwort: Übungsgruppe: (Sie können ein beliebiges Kennwort wählen, um Ihre Anonymität zu wahren! Da die Probeklausur

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 3: Das Matching-Polytop Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 3: Das Matching-Polytop Diskutieren Sie folgende Fragen in der

Mehr

Topologische Grundbegriffe in metrischen und topologischen

Topologische Grundbegriffe in metrischen und topologischen KAPITEL 1 Topologische Grundbegriffe in metrischen und topologischen Räumen Die topologischen Grundbegriffe offene Mengen, abgeschlossene Mengen, Inneres einer Menge und Abschließung einer Menge, Stetigkeit

Mehr

Exkurs in die Mengenlehre: Das Auswahlaxiom

Exkurs in die Mengenlehre: Das Auswahlaxiom Exkurs in die Mengenlehre: Das Auswahlaxiom Def. Sei A eine Menge von nichtleeren Mengen. Dann heißt F : A α Aα eine Auswahlfunktion für A (mit Definitionsbereich A und Werbereich die Vereinigung von allen

Mehr

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0

i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0 Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten WS 2017 1. Schreiben Sie die folgenden Ausdrücke ohne Verwendung von Summen- bzw. Produktzeichen: 7 2 3 5 k 2k+1, a k, 2

Mehr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr

Diskrete Strukturen 5.9 Permutationsgruppen 168/558 c Ernst W. Mayr Bemerkung: Der folgende Abschnitt Boolesche Algebren ist (im WS 2010/11) nicht Teil des Prüfungsstoffs, soweit nicht Teile daraus in der Übung behandelt werden! Diskrete Strukturen 5.9 Permutationsgruppen

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen.

Satz Eine Teilmenge U von M ist genau dann offen, wenn jeder Punkt von U innerer Punkt ist. U x, und U ist als Vereinigung offener Mengen offen. Ergänzungen zu offenen und abgeschlossenen Mengen Definition Ist L Teilmenge eines topologischen Raums M, so heißt x L innerer Punkt von L, wenn es eine offene Umgebung von x gibt, die ganz in L liegt.

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3

(alternierendes Vorzeichen) a n := ( 1)n n + 1 a n := 3n 2 7n a n := n(n 1)(n 2), n 3 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 43 2. Folgen und Reihen Folgen und Reihen werden in jedem Analysislehrbuch besprochen, siehe etwa [H, Kapitel III], [K, Kapitel 5], [J2, Kapitel 23] oder [M,

Mehr

Vergleich und Erzeugung von Topologien und topologischen

Vergleich und Erzeugung von Topologien und topologischen KAPITEL 3 Vergleich und Erzeugung von Topologien und topologischen Räumen 3.1. Definition. Auf einer Menge X seien zwei Topologien τ und σ gegeben. Ist jede bezüglich σ offene Menge auch bezüglich τ offen,

Mehr

Einbettungen von Polarräumen

Einbettungen von Polarräumen Einbettungen von Polarräumen Diplomarbeit von Velena Reuter betreut von Prof. Dr. Dr. Katrin Tent Fakultät für Mathematik Universität Bielefeld 13. August 2008 Inhaltsverzeichnis 1 Einleitung 2 2 Punkt-Geraden-Räume

Mehr

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter. 7 Folgen 30 7 Folgen Wir betrachten nun (unendliche) Folgen von Zahlen a 0, a, a 2, a 3,.... Dabei stehen die drei Pünktchen für unendlich oft so weiter. Bezeichnung Wir bezeichnen mit N die Menge der

Mehr

Kapitel 11. Dimension und Isomorphie

Kapitel 11. Dimension und Isomorphie Kapitel 11. Dimension und Isomorphie Bestimmung der Dimension Satz. Sei (v 1, v 2,..., v n ) ein minimales Erzeugendensystem von V, d.h. dieses System ist ein Erzeugendensystem von V, aber keines der nach

Mehr

Der Eulersche Polyedersatz in beliebiger Dimension

Der Eulersche Polyedersatz in beliebiger Dimension Der Eulersche Polyedersatz in beliebiger Dimension Rolf Stefan Wilke 17. Juli 2007 Definition. Sei P R d ein Polytop der Dimension d. Es bezeichne f k (P ) die Anzahl der k-dimensionalen Seitenflächen.

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

4 Affine Koordinatensysteme

4 Affine Koordinatensysteme 4 Affine Koordinatensysteme Sei X φ ein affiner Raum und seien p,, p r X Definition: Nach ( c ist der Durchschnitt aller affinen Unterräume Z X, welche die Menge {p,,p r } umfassen, selbst ein affiner

Mehr