Relationen und Funktionen
|
|
|
- Margarethe Zimmermann
- vor 7 Jahren
- Abrufe
Transkript
1 Vorkurs Mathematik Dr. Regula Krapf Sommersemester 018 Relationen und Funktionen Definition. Seien M und N Mengen. Eine Relation auf M N ist eine Teilmenge R M N. Falls (x,y) R, so schreibt man auch x R y und sagt, dass x in Relation zu y steht. Man kann eine Relation R M N auch direkt durch R angeben, denn aus R erhält man R = {(x,y) M N x R y}. Wenn M = N, so sagt man auch, dass R (bzw. R ) eine Relation auf M definiert. Relationen auf endlichen Mengen lassen sich durch Pfeildiagramme darstellen. Beispiel. Sei M = N = {a, b, c, d, e} und sei R die Relation gegeben durch R = {(a,b),(b,c),(b,d),(c,c),(c,d),(d,a),(d,c),(e,b)}. Diese Relation lässt sich durch folgendes Diagramm darstellen: Definition. Sei M eine Menge. Eine Relation R M heißt reflexiv, falls x R x für alle x M. irreflexiv, falls x R x für alle x M. symmetrisch, falls x R y = y R x für alle x,y M. antisymmetrisch, falls für alle x,y M aus x R y und y R x schon x = y folgt. transitiv, falls für alle x,y,z M aus x R y und y R z schon x R z folgt. Aufgabe 1. Sei M die Menge aller Studendierenden an der Uni Koblenz. Überprüfen Sie die folgenden Relationen auf M auf Reflexivität, Irreflexivität, Symmetrie, Antisymmetrie und Transitivität: (1) x y : x und y haben denselben Studiengang für x, y M () x y : x kennt y für x,y M () x y : x hat einen längeren Weg zur Uni als y für x,y M
2 Aufgabe. Sei M = {1,,}. Zeichnen Sie je eine Relation auf M, die reflexiv, irreflexiv, symmetrisch, antisymmetrisch resp. transitiv ist. Wir charakterisieren die Relationseigenschaften auf endlichen Mengen bzgl. der Darstellung durch Pfeildiagramme: Eine Relation auf einer endlichen Menge M ist... reflexiv, falls irreflexiv, falls symmetrisch, falls antisymmetrisch, falls transitiv, falls Definition. Eine Relation, die reflexiv, symmetrisch und transitiv ist, nennt man eine Äquivalenzrelation. Eine Relation, die reflexiv, antisymmetrisch und transitiv ist, heißt Ordnungsrelation. Aufgabe. Welche der folgenden Relationen sind Äquivalenzrelationen? Welche sind Ordnungsrelationen? (1) auf N () < auf N () = auf N () auf P (N) () auf N (6) auf Z (7) auf der Menge aller Aussagen
3 Lemma. Die Teilbarkeitsrelation ist eine Beweis. Aufgabe. Seien M und N Mengen. Was ist eine Funktion f : M N? Wie haben Sie Funktionen in der Schule eingeführt? Finden Sie Beispiele für Funktionen. Falls f : M N eine Funktion ist, so ist eine Relation. Definition. Seien M,N Mengen. Eine Funktion ist eine Relation f M N mit folgenden Eigenschaften: (1) () Statt (x, y) f schreibt man y = f (x) oder x f (x). Die Menge M wird als Definitionsbereich von f und die Menge N als Wertebereich von f bezeichnet. Aufgabe. Bei welchen der folgenden Zuordnungen handelt es sich um Funktionen? (1) Kind Vater () Vater Kind () Mensch Telefonnummer () Mensch Alter () Alter Mensch
4 Funktionen f : M N mit M,N R lassen sich durch einen Funktionsgraphen darstellen: Aufgabe 6. Stellen Sie die folgenden Funktionen als Funktionsgraph dar: (1) f : R R, x x + 1 () f : R R, x (x 1) Definition. Seien M und N beliebige Mengen sowie f : M N eine Funktion. Wir nennen die Funktion f injektiv, falls für alle x 1,x M aus f (x 1 ) = f (x ) schon x 1 = x folgt. surjektiv, falls für jedes y N ein x M existiert mit f (x) = y. bijektiv, falls f injektiv und surjektiv ist. Aufgabe 7. Welche der Eigenschaften injektiv/surjektiv/bijektiv haben die folgenden Funktionen (als Funktionen [0, 1] [0, 1])? Für Funktionen f : M N mit M,N R kann man die Funktionseigenschaften wie folgt geometrisch interpretieren: Die Funktion f ist... injektiv, falls surjektiv, falls bijektiv, falls
5 Beispiel. Die Funktion f : M N,f (x) = x 1 ist weder injektiv noch surjektiv für injektiv, aber nicht surjektiv für surjektiv, aber nicht injektiv für bijektiv für Beispiel. Welche Eigenschaften haben die folgenden Funktionen? (1) f : Z Z,a a 1 () g : Q Q,a a 1 () h : R R,x x + 6x + 9 () k : N N,n Q(n)
6 6 Definition. Wenn f : M N und g : N P zwei Funktionen sind, so können wir die beiden Funktionen hintereinanderschalten. So erhalten wir eine Funktion g f : M P. Formal ist g f definiert durch (g f )(x) := g(f (x)), d.h. wir wenden zuerst f auf x an, und danach g auf f (x). Beispiel. Seien f : R R,x x und g : R R,x x 1. Dann gilt (g f )(x) = Aufgabe 8. Seien f,g : R R mit f (x) = e x und g(x) = x. Geben Sie g f und f g an. Erfüllt die Komposition von Funktionen das Kommutativgesetz? Wie zeigt man, dass zwei Funktionen f,g : M N gleich bzw. verschieden sind? Die Funktionen f,g sind gleich, falls verschieden, falls Lemma. Die Komposition von Funktionen erfüllt das Assoziativgesetz, aber nicht das Kommutativgesetz, d.h. für Funktionen f : M N,g : N P und h : P Q gilt h (g f ) = (h g) f, aber im Allgemeinen f g g f (für P = M).
7 7 Beweis. Lemma. Seien f : M N und g : N P Funktionen. (1) Falls f,g injektiv sind, so ist g f injektiv. () Falls f,g surjektiv sind, so ist g f surjektiv. () Falls f,g bijektiv sind, so ist g f bijektiv.
Mathematik-Vorkurs für Informatiker (Wintersemester 2012/13) Übungsblatt 8 (Relationen und Funktionen)
DEPENDABLE SYSTEMS AND SOFTWARE Fachrichtung 6. Informatik Universität des Saarlandes Christian Eisentraut, M.Sc. Julia Krämer Mathematik-Vorkurs für Informatiker (Wintersemester 0/3) Übungsblatt 8 (Relationen
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018
Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für
2 Lösungen zu Kapitel 2
2 Lösungen zu Kapitel 2 2. Lösung. Die Funktion f ist nicht injektiv. So gibt es (unendlich) viele Paare (x, y) mit f(x, y) = 0, etwa (0, 0) und (/2, ). Die Funktion f ist surjektiv. Zum Beispiel gilt
Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. Aufgaben mit Musterlösung
Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen Aufgaben mit Musterlösung 21. März 2011 Tanja Geib 1 Aufgabe 1 Geben Sie zu B = {0, 2, 4} und
4. Funktionen und Relationen
4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:
Mathematik für Informatiker I Mitschrift zur Vorlesung vom
Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation
Lösungen zur Übungsserie 1
Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche
Mathematische Strukturen
Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten:
DM2 Slide 1 Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10)
Höhere Mathematik für die Fachrichtung Physik
Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Dipl.-Math. Sebastian Schwarz WS 2018/2019 18.10.2018 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre
Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10) Dean 2, 5-7
Lösungen zu Kapitel 2
Lösungen zu Kapitel 2 Lösung zu Aufgabe 1: Wir zeigen die Behauptung durch vollständige Induktion über n. Die einzige Menge mit n = 0 Elementen ist die leere Menge. Sie besitzt nur sich selbst als Teilmenge,
Höhere Mathematik für die Fachrichtung Physik
Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 015/016 30.10.015 Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 1. Übungsblatt
Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }
Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird
Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen sind nicht erlaubt!
Relationen, Funktionen und Partitionen 1. Geordnetes Paar Ein geordnetes Paar (oder: ein 2-Tupel) enthält immer zwei Elemente, deren Reihenfolge festgelegt ist. Mehrfachnennungen
2 Mengen, Abbildungen und Relationen
Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14
Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)
WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }
Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,
Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit
Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {
Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016
Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen
(1.18) Def.: Eine Abbildung f : M N heißt
Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N
Lösungen zur Übungsserie 2
Analysis 1 Herbstsemester 2018 rof. eter Jossen Montag, 8. Oktober Lösungen zur Übungsserie 2 Aufgaben 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14 Aufgabe 1. Sei X eine Menge. Wie behandeln in dieser Aufgabe
mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen
Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes
2 Mengen, Relationen, Funktionen
Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer
4. Funktionen und Relationen
Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27
2 Mengen, Relationen, Funktionen
Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,
D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 2
D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Lösung 2 Hinweise 1. Eine Möglichkeit ist, auf diese Forderungen massgeschneiderte Relationen explizit anzugeben. Dies ist aber nicht
Kapitel 1. Grundlagen Mengen
Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig
Mathematik für Informatiker I. Musterlösungen zum Hausübungsblatt 3. Aufgabe 1. Christoph Eisinger Wintersemester 2010/11
Mathematik für Informatiker I Christoph Eisinger Wintersemester 2010/11 Musterlösungen zum Hausübungsblatt 3 Aufgabe 1 Zu überpüfen sind jeweils folgende Eigenschaften: 1. Reflexivität: x R x x S 2. Symmetrie:
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Einführung in die Informatik 2
Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 [email protected] Sprechstunde: Freitag, 12:30-14:00 Uhr,
modulo s auf Z, s. Def
16. Januar 2007 Arbeitsblatt 5 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen I. Gasser, H. Strade, B. Werner WiSe 06/07 21.11.06 Präsenzaufgaben: 1) Seien
Vorkurs Mathematik B
Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.
Logische Grundlagen der Mathematik, WS 2014/15
Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich
i=1 j= 5 2. Verifizieren Sie die Gleichung indem Sie die Ausdrücke ohne Summenzeichen schreiben. j=0
Übungen zur Einführung in die Analysis (Einführung in das mathematische Arbeiten WS 2017 1. Schreiben Sie die folgenden Ausdrücke ohne Verwendung von Summen- bzw. Produktzeichen: 7 2 3 5 k 2k+1, a k, 2
Kapitel 1. Mengen und Abbildungen. 1.1 Mengen
Kapitel 1 Mengen und Abbildungen 1.1 Mengen Die Objekte der modernen Mathematik sind die Mengen. Obwohl die Logik einen axiomatischen Zugang zur Mengenlehre bietet, wollen wir uns in dieser Vorlesung auf
Logische Grundlagen der Mathematik, WS 2014/15
Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten
Teil 4. Mengen und Relationen
Teil 4 Mengen und Relationen KAPITEL 10 Äquivalenzrelationen und Faktormengen 1. Äquivalenzrelationen Wir nennen eine Relation von A nach A auch eine Relation auf A. DEFINITION 10.1. SeiΡeine Relation
Abbildungen, injektiv, surjektiv, bijektiv
Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 4 vom 25.10.2012 Abbildungen, injektiv, surjektiv, bijektiv Abbildungen sind eindeutige Zuordnungen Denition 23 (Abbildung(Funktion))
Kapitel 1. Grundlagen
Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig
Tutorium: Diskrete Mathematik
Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017
3 Werkzeuge der Mathematik
3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge
Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.
Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen
Logik und Künstliche Intelligenz
Logik und Künstliche Intelligenz Kurze Zusammenfassung (Stand: 14. Januar 2010) Prof. Dr. V. Stahl Copyright 2007 by Volker Stahl. All rights reserved. V. Stahl Logik und Künstliche Intelligenz Zusammenfassung
Skriptum EINFÜHRUNG IN DIE ALGEBRA
Skriptum EINFÜHRUNG IN DIE ALGEBRA 1 Günter Lettl SS 2016 1. Algebraische Grundbegriffe 1.1 Verknüpfungen Definition 1. Es sei M eine nicht leere Menge. a) Eine Verknüpfung (oder (binäre) Operation) auf
17 Lineare Abbildungen
Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:
Analysis I für Studierende der Ingenieurwissenschaften
Fachbereich Mathematik der Universität Hamburg WiSe 08/9 c Dr. K. Rothe Analysis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt Mengen Darstellung durch: a) Aufzählung
Kap 3: Abbildungen und Relationen
Kapitel 3: Abbildungen Seite 33 Kap 3: Abbildungen und Relationen Kap. 3.1: Relationen zwischen Mengen bzw. in einer Menge Definition 1: Seien A und B zwei nichtleere Mengen. Jede beliebige Teilmenge R
Grundbegriffe der Mathematik - Blatt 1, bis zum
Grundbegriffe der Mathematik - Blatt 1 bis zum 9.3.01 1. I.) Formalisieren Sie die folgenden Aussagen a) bis c) wie im folgenden Beispiel: Sei K ein Teilmenge der reellen Zahlen. Aussage: K ist genau dann
FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)
FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :
Grundlagen der linearen Algebra und analytischen Geometrie
Grundlagen der linearen Algebra und analytischen Geometrie Sascha Trostorff 27. Oktober 2017 Inhaltsverzeichnis I. Einführung in die Mengenlehre 3 1. Grundlagen der Aussagenlogik 4 2. Naive Mengenlehre
5.9 Permutationsgruppen. Sei nun π S n. Es existiert folgende naive Darstellung: Kürzer schreibt man auch
5.9 Permutationsgruppen Definition 103 Eine Permutation ist eine bijektive Abbildung einer endlichen Menge auf sich selbst; o. B. d. A. sei dies die Menge U := {1, 2,..., n}. S n (Symmetrische Gruppe für
Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen
Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 20 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,
Mathematik I. Vorlesung 2. Hintereinanderschaltung und Umkehrabbildung
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 2 Hintereinanderschaltung und Umkehrabbildung Lemma 2.1. Es seien L und M Mengen und es sei F :L M eine Abbildung. Dann sind folgende
Mathematik für Ökonomen 1
Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Herbstemester 2008 Mengen, Funktionen und Logik Inhalt: 1. Mengen 2. Funktionen 3. Logik Teil 1 Mengen
Mengen, Funktionen und Logik
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Mengen, Funktionen und Logik Literatur Referenz: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,
Grundlagen. Kapitel Mengen
Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte
Prüfungsaufgaben. Aufgabe 2 (TP1 Frühjahr 2006) ( ) logisch
Aufgabe 1 (TP1 Februar 2007) Prüfungsaufgaben Bestimmen Sie zu den nachstehenden aussagenlogischen Aussageformen je eine möglichst einfache logisch äquivalente Aussageform. Weisen Sie die Äquivalenzen
Tutorium: Diskrete Mathematik
Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler [email protected] mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016
Formale Sprachen und Automaten
Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen
WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Diskrete Strukturen. wissen leben WWU Münster
MÜNSTER Diskrete Strukturen Dietmar Lammers Vorlesung SoSe 2010 > Relationen MÜNSTER Diskrete Strukturen 41/101 Seien A und B und für n N seien A 1 A 2...A n Mengen > Relationen MÜNSTER Diskrete Strukturen
Vorkurs Mathematik Abbildungen
Vorkurs Mathematik Abbildungen Philip Bell 19. September 2016 Diese Arbeit beruht im Wesentlichen auf dem Vortrag Relationen, Partitionen und Abbildungen von Fabian Grünig aus den vorangehenden Jahren.
Kapitel 1. Grundlagen
Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig
: G G G. eine Abbildung. Gelten die folgenden Eigenschaften, so nennen wir (G,,e) eine Gruppe: (x,y) x y
5 GRUPPEN 5 Gruppen Hier fehlt eine schöne Einleitung oder ein motivierendes Beispiel. Definition [5.1] Sei G eine nicht-leere Menge, e G ein (ausgezeichnetes) Element in G und : G G G eine Abbildung.
Brückenkurs Mathematik 2015
Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass
Zur Zykelschreibweise von Permutationen
Zur Zykelschreibweise von Permutationen Olivier Sète 16. Juni 2010 1 Grundlagen Definition 1.1. Eine Permutation von {1, 2,..., n} ist eine bijektive Abbildung σ : {1, 2,..., n} {1, 2,..., n}, i σ(i).
Zusammenfassung der letzten LVA. Diskrete Mathematik
Zusammenfassung Zusammenfassung der letzten LVA Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom (Beweisformen) Beweisformen sind etwa (i) deduktive
Diskrete Mathematik für Informatiker
Diskrete Mathematik für Informatiker Rebecca Busch Universität Siegen Wintersemester 2016/2017 Busch (Universität Siegen) Diskrete Mathematik Wintersem. 2016/2017 1 / 16 Übersicht über die Themen Mengentheoretische
Grundbegriffe der Informatik
Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing [email protected] http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen
Vorlesung Diskrete Strukturen Relationen
Vorlesung Diskrete Strukturen Relationen Bernhard Ganter WS 2009/10 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist
Skript und Übungen Teil II
Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen
Abbildungen. Kapitel Definition: (Abbildung) 5.2 Beispiel: 5.3 Wichtige Begriffe
Kapitel 5 Abbildungen 5.1 Definition: (Abbildung) Eine Abbildung zwischen zwei Mengen M und N ist eine Vorschrift f : M N, die jedem Element x M ein Element f(x) N zuordnet. Schreibweise: x f(x) 5. Beispiel:
Einführung in die Theoretische Informatik
Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2013/14 Relationalstrukturen 59 Definition Sei A eine nichtleere Menge, R ist eine k-stellige
Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren
Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik
Lösungen 2 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren
Lösungen 2 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 26. September 2016, Fehler und Verbesserungsvorschläge bitte an [email protected]
1.4 Äquivalenzrelationen
8 1.4 Äquivalenzrelationen achdem nun die axiomatische Grundlage gelegt ist, können wir uns bis zur Einführung der Kategorien das Leben dadurch erleichtern, daß wir bis dorthin, also bis auf weiteres,
2 Von der Relation zur Funktion
2 Von der Relation zur Funktion 2.1 Relationen Gegeben seien zwei Zahlenmengen P = 1, 2, 3, 4 und Q = 5, 6, 7. Setzt man alle Elemente der Menge P in Beziehung zu allen Elementen der Menge Q, nennt man
Mathematik für Informatiker I,
Teil II Algebra 70 Kapitel 8 Gruppen 8.1 Bedeutung in der Informatik Gruppen sind abstrakte Modelle für Mengen, auf denen eine Verknüpfung (etwa Addition oder Multiplikation) definiert ist. Allgemeine
3. Die Definition einer Abbildung von A in B beinhaltet eigentlich zwei Bedingungen, nämlich
Kapitel 3: Abbildungen Seite 32 Kap 3: Abbildungen Kap. 3.1: Abbildungen (Funktion), Bild und Urbild Der Begriff der Abbildung ist wie auch der Begriff der Menge von fundamentaler Bedeutung für die Mathematik.
Abschnitt 3: Mathematische Grundlagen
Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick
