WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Diskrete Strukturen. wissen leben WWU Münster

Größe: px
Ab Seite anzeigen:

Download "WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER. Diskrete Strukturen. wissen leben WWU Münster"

Transkript

1 MÜNSTER Diskrete Strukturen Dietmar Lammers Vorlesung SoSe 2010

2 > Relationen MÜNSTER Diskrete Strukturen 41/101 Seien A und B und für n N seien A 1 A 2...A n Mengen

3 > Relationen MÜNSTER Diskrete Strukturen 41/101 Seien A und B und für n N seien A 1 A 2...A n Mengen 1. Eine Teilmenge R A B heißt (binäre) Relation von A und B. Für zwei Elemente a A b B schreibt man statt (a b) R meist kurz: arb Ist A = B spricht man auch von einer Relation auf A.

4 > Relationen MÜNSTER Diskrete Strukturen 41/101 Seien A und B und für n N seien A 1 A 2...A n Mengen 1. Eine Teilmenge R A B heißt (binäre) Relation von A und B. Für zwei Elemente a A b B schreibt man statt (a b) R meist kurz: arb Ist A = B spricht man auch von einer Relation auf A. 2. Eine Teilmenge R A 1 A 2...A n heißt (n-stellige) Relation über A 1... A n.

5 MÜNSTER Diskrete Strukturen 42/101 > Relationen - Beispiele Für geordnete Zahlenmengen sind = <... beliebte Beispiele von Relationen - so geläufig das man sie meist gar nicht als Teilmengen sieht: 3 < 4 wird meist nicht interpretiert als (3 4) < < (N N)

6 MÜNSTER Diskrete Strukturen 43/101 > Relationen - Beispiele Für Wörter über einem Alphabet kann man z.b. die nützliche Relation ist Anfangswort von definieren. Verwandschaftsbeziehungen bei Menschen sind Relationen - ist Tante von ist Elternteil von ist Kind von...

7 MÜNSTER Diskrete Strukturen 44/101 > Relationen - Beispiele Relationale Datenbanken bestehen im wesentlichen aus mehrstelligen Relationen die den Zusammenhang der Daten herstellen. Sie sind in Tabellen geordnet die wesentlichen Operationen sind: project: Wähle Teilspalten einer Tabelle

8 MÜNSTER Diskrete Strukturen 44/101 > Relationen - Beispiele Relationale Datenbanken bestehen im wesentlichen aus mehrstelligen Relationen die den Zusammenhang der Daten herstellen. Sie sind in Tabellen geordnet die wesentlichen Operationen sind: project: Wähle Teilspalten einer Tabelle select: Wähle aus einer Tabelle die Einträge die angegebenen Bedingungen genügen und

9 MÜNSTER Diskrete Strukturen 44/101 > Relationen - Beispiele Relationale Datenbanken bestehen im wesentlichen aus mehrstelligen Relationen die den Zusammenhang der Daten herstellen. Sie sind in Tabellen geordnet die wesentlichen Operationen sind: project: Wähle Teilspalten einer Tabelle select: Wähle aus einer Tabelle die Einträge die angegebenen Bedingungen genügen und join: verknüpft Werte anhand von korrespondierenden Werten

10 MÜNSTER Diskrete Strukturen 45/101 > Relationen - Darstellung Binäre Relationen auf kleinen Mengen kann auch als Matrix darstellen: R {o 0... o m } {p 0... p n } { R 1 falls (oi p = (r ij ) i=0...m j=0...n mit r ij = j ) R 0 sonst

11 MÜNSTER Diskrete Strukturen 46/101 > Eigenschaften von Relationen (1) (transitv reflexiv symmetrisch...) Eine Relation R über M M heißt genau dann

12 MÜNSTER Diskrete Strukturen 46/101 > Eigenschaften von Relationen (1) (transitv reflexiv symmetrisch...) Eine Relation R über M M heißt genau dann 1. symmetrisch wenn a b : arb bra

13 MÜNSTER Diskrete Strukturen 46/101 > Eigenschaften von Relationen (1) (transitv reflexiv symmetrisch...) Eine Relation R über M M heißt genau dann 1. symmetrisch wenn a b : arb bra 2. antisymmetrisch wenn a b : (arb bra) a = b

14 MÜNSTER Diskrete Strukturen 46/101 > Eigenschaften von Relationen (1) (transitv reflexiv symmetrisch...) Eine Relation R über M M heißt genau dann 1. symmetrisch wenn a b : arb bra 2. antisymmetrisch wenn a b : (arb bra) a = b 3. transitiv wenn a b c : (arb brc) arc

15 MÜNSTER Diskrete Strukturen 46/101 > Eigenschaften von Relationen (1) (transitv reflexiv symmetrisch...) Eine Relation R über M M heißt genau dann 1. symmetrisch wenn a b : arb bra 2. antisymmetrisch wenn a b : (arb bra) a = b 3. transitiv wenn a b c : (arb brc) arc 4. reflexiv wenn a M : ara

16 MÜNSTER Diskrete Strukturen 47/101 > Eigenschaften von Relationen (2) (transitv reflexiv symmetrisch...) Eine Relation R über M M heißt genau dann

17 MÜNSTER Diskrete Strukturen 47/101 > Eigenschaften von Relationen (2) (transitv reflexiv symmetrisch...) Eine Relation R über M M heißt genau dann 1. Aequivalenzrelation wenn sie reflexiv transitiv und symmetrisch ist.

18 MÜNSTER Diskrete Strukturen 47/101 > Eigenschaften von Relationen (2) (transitv reflexiv symmetrisch...) Eine Relation R über M M heißt genau dann 1. Aequivalenzrelation wenn sie reflexiv transitiv und symmetrisch ist. 2. partielle Ordnung oder Halbordnung wenn sie reflexiv transitiv und antisymmetrisch

19 MÜNSTER Diskrete Strukturen 48/101 > Hasse-Diagramme Bei einer Halbordnung R spricht man bei arb auch von a als Vorgänger von b gibt es kein Zwischenelement z mit arz und zrb auch von a als direktem Vorgänger von b. Halbordnungen kann man so in Hasse-Diagrammen aufzeichnen. Knoten sind dabei die Elemente der Menge ein direkter Vorgänger wird unter seinen Nachfolger geschrieben und beide mit einer Kante verbunden.

20 MÜNSTER Diskrete Strukturen 49/101 > Aequivalenzklassen Für eine Aequivalenzrelation A auf einer Menge M heisst für jedes x M die Menge definiert durch Equiv(x A) := {y M (x y) A} die Aequivalenzklasse von x (bzg. A). Für jede Aequivalenzrelation bilden die (diskunkten) Aequivalenzklassen eine Partition der Ausgangsmenge d.h. die Vereinigung aller Aequivalenzklassen einer Aequivalenzrelation ergibt die Gesamtmenge:

21 MÜNSTER Diskrete Strukturen 50/101 > Aequivalenzklassen Theorem Aequivalenzklassen sind gleich oder haben einen leeren Schnitt

22 MÜNSTER Diskrete Strukturen 50/101 > Aequivalenzklassen Theorem Aequivalenzklassen sind gleich oder haben einen leeren Schnitt Beweis. Sei X := Equiv(x A) und Y := Equiv(y A) Wenn X Y = ist der Satz erfüllt. Es gebe also nun ein w X Y und sei z X beliebig Dann gilt xaz zax xaw zaw weiter yaw way zusammen zay also z Y und damit X Y. Analog folgert man Y X zusammen X = Y.

23 MÜNSTER Diskrete Strukturen 51/101 > BSP Aequivalenzklassen Sei für Z die Relation = 5 definiert durch a = 5 b k Z : b = k 5 + a

24 MÜNSTER Diskrete Strukturen 51/101 > BSP Aequivalenzklassen Sei für Z die Relation = 5 definiert durch a = 5 b k Z : b = k 5 + a Beispiel Es gilt Z = Equiv(0 = 5 ) Equiv(1 = 5 )... Equiv(4 = 5 )

25 > Ref.-Trans. Hülle MÜNSTER Diskrete Strukturen 52/101 Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: Statt von trans.-ref. Hülle spricht man auch von transitiv-reflexiver Fortsetzung.

26 > Ref.-Trans. Hülle MÜNSTER Diskrete Strukturen 52/101 Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a a) R Statt von trans.-ref. Hülle spricht man auch von transitiv-reflexiver Fortsetzung.

27 > Ref.-Trans. Hülle MÜNSTER Diskrete Strukturen 52/101 Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a a) R 2. R R Statt von trans.-ref. Hülle spricht man auch von transitiv-reflexiver Fortsetzung.

28 > Ref.-Trans. Hülle MÜNSTER Diskrete Strukturen 52/101 Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a a) R 2. R R 3. a b c : ((a b) R (b c) R ) (a c) R Statt von trans.-ref. Hülle spricht man auch von transitiv-reflexiver Fortsetzung.

29 > Ref.-Trans. Hülle MÜNSTER Diskrete Strukturen 53/101 Für a b R gilt dann entweder a = b oder n a 1... a n : a = a 1 a 1 Ra 2 a 2 Ra 3... a n 1 Ra n = b

30 > Ref.-Trans. Hülle MÜNSTER Diskrete Strukturen 53/101 Für a b R gilt dann entweder a = b oder n a 1... a n : a = a 1 a 1 Ra 2 a 2 Ra 3... a n 1 Ra n = b Das kann man auch mechanisch interpretieren z.b. bei der Interpretation von Programmen.

31 MÜNSTER Diskrete Strukturen 54/101 > Abbildende Relationen Eine Relation R über A B heißt

32 MÜNSTER Diskrete Strukturen 54/101 > Abbildende Relationen Eine Relation R über A B heißt linkstotal wenn gilt: a A b B : arb

33 MÜNSTER Diskrete Strukturen 54/101 > Abbildende Relationen Eine Relation R über A B heißt linkstotal wenn gilt: a A b B : arb rechtsstotal wenn gilt: b B a A : arb

34 MÜNSTER Diskrete Strukturen 54/101 > Abbildende Relationen Eine Relation R über A B heißt linkstotal wenn gilt: a A b B : arb rechtsstotal wenn gilt: b B a A : arb linkseindeutig wenn gilt: a b c : (arb crb) a = c

35 MÜNSTER Diskrete Strukturen 54/101 > Abbildende Relationen Eine Relation R über A B heißt linkstotal wenn gilt: a A b B : arb rechtsstotal wenn gilt: b B a A : arb linkseindeutig wenn gilt: a b c : (arb crb) a = c rechtseindeutig wenn gilt: a b c : (arb arc) b = c

36 > Funktionen MÜNSTER Diskrete Strukturen 55/101

37 > Funktionen MÜNSTER Diskrete Strukturen 55/ Eine rechtseindeutige Relation f A B heißt partielle Funktion oder Abbildung von A nach B.

38 > Funktionen MÜNSTER Diskrete Strukturen 55/ Eine rechtseindeutige Relation f A B heißt partielle Funktion oder Abbildung von A nach B. 2. Eine linkstotale partielle Funktion (also rechtseindeutige Relation) f A B heißt (totale) Funktion von A nach B.

39 > Funktionen MÜNSTER Diskrete Strukturen 55/ Eine rechtseindeutige Relation f A B heißt partielle Funktion oder Abbildung von A nach B. 2. Eine linkstotale partielle Funktion (also rechtseindeutige Relation) f A B heißt (totale) Funktion von A nach B. 3. Statt (a b) f M N schreibt man bei Funktionen üblicherweise f : M N b = f (a) oder a f (a) bzw. a b

40 > Funktionen MÜNSTER Diskrete Strukturen 56/101 Funktionen sind also linkstotale und rechtseindeutige Relationen.

41 > Funktionen MÜNSTER Diskrete Strukturen 56/101 Funktionen sind also linkstotale und rechtseindeutige Relationen. 1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion

42 > Funktionen MÜNSTER Diskrete Strukturen 56/101 Funktionen sind also linkstotale und rechtseindeutige Relationen. 1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion

43 > Funktionen MÜNSTER Diskrete Strukturen 56/101 Funktionen sind also linkstotale und rechtseindeutige Relationen. 1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion 3. Eine surjektive und injektive Funktion heißt bijektive Funktion oder auch Bijektion.

44 > Funktionen MÜNSTER Diskrete Strukturen 57/101

45 > Funktionen MÜNSTER Diskrete Strukturen 57/ Zu f : N M ist f (N) := {m M n N : m = f (n)} das Bild von N unter f und f 1 (M) := {n N f (n) M} das Urbild von M bzgl. f.

46 > Funktionen MÜNSTER Diskrete Strukturen 57/ Zu f : N M ist f (N) := {m M n N : m = f (n)} das Bild von N unter f und f 1 (M) := {n N f (n) M} das Urbild von M bzgl. f. 2. Zu f : N M ist für alle m M f 1 (m) := {n N f (n) = m} das Urbild von m unter f.

47 > Funktionen MÜNSTER Diskrete Strukturen 57/ Zu f : N M ist f (N) := {m M n N : m = f (n)} das Bild von N unter f und f 1 (M) := {n N f (n) M} das Urbild von M bzgl. f. 2. Zu f : N M ist für alle m M f 1 (m) := {n N f (n) = m} das Urbild von m unter f. 3. Bei injektiven Funktionen ist das Urbild eindeutig man identifiziert das eine Element dann mit der Menge und spricht bei f 1 von Umkehrfunktion.

48 MÜNSTER Diskrete Strukturen 58/101 > Bijektive Funktionen 1. Mengen M N mit einer bijektiven Abbildung f : M N sind in gewisser Weise gleich.

49 MÜNSTER Diskrete Strukturen 58/101 > Bijektive Funktionen 1. Mengen M N mit einer bijektiven Abbildung f : M N sind in gewisser Weise gleich.

50 MÜNSTER Diskrete Strukturen 58/101 > Bijektive Funktionen 1. Mengen M N mit einer bijektiven Abbildung f : M N sind in gewisser Weise gleich. 2. Zwei Mengen M N sind gleich mächtig (haben gleiche Kardinalität) in Zeichen M = N wenn es eine Bijektion zwischen ihnen gibt.

Anwendung der Algebra Mit den oben gelisteten Regeln kann man viele Zusammenhänge einfach direkt beweisen, etwa den folgenden Satz:

Anwendung der Algebra Mit den oben gelisteten Regeln kann man viele Zusammenhänge einfach direkt beweisen, etwa den folgenden Satz: Logik-Algebra - Beweise Diese Sätze kann man alle einfach beweisen. Hier ist es sogar besonders einfach, da die vorkommenden freien Ausdrücke nur zwei Werte annehmen können. Man kann für alle Wertkombinationen

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws13/14

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion

1. Eine rechtstotale Funktion heißt surjektive Funktion oder Surjektion. 2. Eine linkseindeutige Funktion heißt injektive Funktion oder Injektion Transitiv-reflexive Hülle Definition 24. Sei R M M eine Relation. Dann ist die transitiv-reflexive Hülle R von R definiert als die kleinste Menge mit folgenden Eigenschaften: 1. a M : (a, a) R 2. R R 3.

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen:

4. Mathematische und notationelle Grundlagen. Beispiel Mengen. Bezeichnungen: 4. Mathematische und notationelle Grundlagen 4.1 Mengen Beispiel 3 A 1 = {2, 4, 6, 8}; A 2 = {0, 2, 4, 6,...} = {n N 0 ; n gerade} Bezeichnungen: x A A x x A B A B A { } x Element A x nicht Element A B

Mehr

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } }

Mengen. (Nicht-) Elemente einer Menge { 3, 4 } { 1, { 2 }, { 3, 4 }, { 5 } } 3 { 1, { 2 }, { 3, 4 }, { 5 } } Mengen Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor) Notation 1. Aufzählung aller Elemente: { 1,

Mehr

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit

Mengen. Eigenschaften. Spezielle Mengen (1) Prominente Mengen. ! Mengenzugehörigkeit Mengen! Definition (Intuitive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer Anschauung zu einem wohldefinierten Ganzen. (Georg Cantor)! Notation 1. Aufzählung aller Elemente: {

Mehr

Abbildungen, injektiv, surjektiv, bijektiv

Abbildungen, injektiv, surjektiv, bijektiv Dr. Sebastian Bab WiSe 12/13 Theoretische Grundlagen der Informatik für TI Termin: VL 4 vom 25.10.2012 Abbildungen, injektiv, surjektiv, bijektiv Abbildungen sind eindeutige Zuordnungen Denition 23 (Abbildung(Funktion))

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 20 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000

Gliederung. Mengen und operationen. Relationen. Funktionen. Kardinalität von Mengen. Formale Grundlagen der Informatik Knorr/Fuchs SS 2000 Gliederung Mengen und operationen Relationen Funktionen Kardinalität von Mengen Mengen, Relationen, Funktionen 1 Mengen Definition (Naive Mengenlehre) Eine Menge ist die Zusammenfassung von Elementen unserer

Mehr

Relationen (Teschl/Teschl 5.1)

Relationen (Teschl/Teschl 5.1) Relationen (Teschl/Teschl 5.1) Eine (binäre) Relation zwischen den Mengen M und N ist eine Teilmenge R der Produktmenge M N. Beispiele M Menge aller Studierenden, N Menge aller Vorlesungen, R : {(x, y)

Mehr

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen

Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Mathematische Grundlagen der Computerlinguistik Relationen und Funktionen Dozentin: Wiebke Petersen 2. Foliensatz Wiebke Petersen math. Grundlagen 25 n-tupel und Cartesisches Produkt Mengen sind ungeordnet,

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Grundlagen der Mathematik Übungsaufgaben zu Kapitel 1 Einführung 1.1.1 Für reelle Zahlen a und b gilt (a+b) (a-b) = a 2 -b 2. Was ist die Voraussetzung? Wie lautet die Behauptung? Beweisen Sie die Behauptung.

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 89 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

Vorlesung Diskrete Strukturen Relationen

Vorlesung Diskrete Strukturen Relationen Vorlesung Diskrete Strukturen Relationen Bernhard Ganter WS 2009/10 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Mathematische Grundbegriffe Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr,

Mehr

Vorlesung Diskrete Strukturen Relationen

Vorlesung Diskrete Strukturen Relationen Vorlesung Diskrete Strukturen Relationen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de WS 2009/10 1 Bernhard Ganter, TU Dresden Modul Einführung in die Mathematik

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom

Mathematik für Informatiker I Mitschrift zur Vorlesung vom Mathematik für Informatiker I Mitschrift zur Vorlesung vom 18.11.2004 Zur Wiederholung: Das Kartesische Produkt dient dem Ordnen von Mengen. A B = {(a, b) : a A, b B)} Spezialfall A = Äquivalenzrelation

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2013/14 Relationalstrukturen 59 Definition Sei A eine nichtleere Menge, R ist eine k-stellige

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 1: Grundlagen, Sprachen, Automaten schulz@eprover.org Software Systems Engineering Definition Eine Definition ist eine genaue Beschreibung eines Objektes

Mehr

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011.

Technische Universität München. Ferienkurs Lineare Algebra 1. Mengenlehre, Aussagen, Relationen und Funktionen. 21. März 2011. Technische Universität München Ferienkurs Lineare Algebra 1 Mengenlehre, Aussagen, Relationen und Funktionen 21. März 2011 Tanja Geib Inhaltsverzeichnis 1 Aussagen 1 2 Mengenlehre 3 2.1 Grundlegende Definitionen

Mehr

Bemerkungen zur Notation

Bemerkungen zur Notation Bemerkungen zur Notation Wir haben gerade die Symbole für alle und es gibt gebraucht. Dies sind so genannte logische Quantoren, und zwar der All- und der Existenzquantor. Die Formel {a A; ( b B)[(a, b)

Mehr

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen

mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Einführung in die Logik - 6 mathematische Grundlagen der Modelltheorie: Mengen, Relationen, Funktionen Modelltheoretische / Denotationelle Semantik der Prdikatenlogik Ein Modell ist ein künstlich geschaffenes

Mehr

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik &

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

aller Vornamen (oder nur die Vornamen, die in der Datenbank auftreten). Dann ist jede Zeile wie etwa

aller Vornamen (oder nur die Vornamen, die in der Datenbank auftreten). Dann ist jede Zeile wie etwa Kapitel 2 Relationen Im vorigen Kapitel haben wir n-stellige, kartesische Produkte M 1 M 2 M n kennen gelernt. Jetzt betrachten wir Teilmengen von kartesischen Produkten. Definition 2.1. Eine Teilmenge

Mehr

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb.

Eine Relation R in einer Menge M ist eine Teilmenge von M x M. Statt (a,b) R schreibt man auch arb. 4. Relationen 4.1 Grundlegende Definitionen Relation R in einer Menge M: Beziehung zwischen je 2 Elementen von M. Beispiel

Mehr

3 Werkzeuge der Mathematik

3 Werkzeuge der Mathematik 3.1 Mengen (18.11.2011) Definition 3.1 Die Menge heißt leere Menge. :=»x M x x Definition 3.2 Es seien N und M Mengen. Wir definieren: und analog M N : (x M x N). N M : (x N x M). Wir sagen M ist Teilmenge

Mehr

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen

Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Mathematische Grundlagen der Computerlinguistik Ordnungsrelationen Dozentin: Wiebke Petersen 4. Foliensatz Wiebke Petersen math. Grundlagen 86 starke / schwache Ordnungen Eine Ordnung R einer Menge A ist

Mehr

Formale Sprachen und Automaten

Formale Sprachen und Automaten Mengen Eine Menge ist eine Gruppe von Elementen, die eine Einheit bilden (siehe z.b. Halmos 1976). Formale Sprachen und Automaten Mathematisches Rüstzeug Mengen können verschiedene Typen von Elementen

Mehr

Relationen können als spezielle Mengen verstanden werden.

Relationen können als spezielle Mengen verstanden werden. 4.3 Relationen Relationen können als spezielle Mengen verstanden werden. Hierfür muss zunächst der Begriff eines weiteren mengentheoretischen Objektes der des geordneten n-tupels eingeführt werden. Johannes

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 24.11.2016 (Teil 2) 23. November 2016 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler 23. November 2016

Mehr

Diskrete Mathematik für Informatiker

Diskrete Mathematik für Informatiker Diskrete Mathematik für Informatiker Rebecca Busch Universität Siegen Wintersemester 2016/2017 Busch (Universität Siegen) Diskrete Mathematik Wintersem. 2016/2017 1 / 16 Übersicht über die Themen Mengentheoretische

Mehr

2 Mengen, Abbildungen und Relationen

2 Mengen, Abbildungen und Relationen Vorlesung WS 08 09 Analysis 1 Dr. Siegfried Echterhoff 2 Mengen, Abbildungen und Relationen Definition 2.1 (Mengen von Cantor, 1845 1918) Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohl

Mehr

Relationen und Funktionen

Relationen und Funktionen Vorkurs Mathematik Dr. Regula Krapf Sommersemester 018 Relationen und Funktionen Definition. Seien M und N Mengen. Eine Relation auf M N ist eine Teilmenge R M N. Falls (x,y) R, so schreibt man auch x

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Induktion und Rekursion 3.3 Boolsche Algebra Peer Kröger (LMU München) Einführung in die Programmierung WS 14/15 48 / 155 Überblick

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten:

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre. Referenzen zum Nacharbeiten: DM2 Slide 1 Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10)

Mehr

Eine Relation zwischen M und N ist eine Teilmenge R M N. Im Fall M = N sagen wir: R ist Relation auf M.

Eine Relation zwischen M und N ist eine Teilmenge R M N. Im Fall M = N sagen wir: R ist Relation auf M. 1.5 Relationen Es seien M und N Mengen. Definition Eine Relation zwischen M und N ist eine Teilmenge R M N. Im Fall M = N sagen wir: R ist Relation auf M. Terminologie und Notation Es sei R M N eine Relation

Mehr

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre

Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kapitel 2: Mengenlehre Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kapitel 2: Mengenlehre Lang 3 Meinel 2, 4, 5, 10.2-10.4 (zur Vertiefung: Meinel 10.5-10.8 und Beutelspacher 10) Dean 2, 5-7

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 Mengen und Abbildungen 3.2 Induktion und Rekursion 3.3 Ausdrücke 3 Mathematische Grundlagen Einf. Progr. (WS 08/09) 102 Überblick 3.

Mehr

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3.

3. Relationen. 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen. Rolf Linn. 3. 3. Relationen 3.1 Kartesische Produkte 3.2 Zweistellige Relationen 3.3 Äqivalenzrelationen 3.4 Halbordnungen 3.5 Hüllen 3. Relationen GM 3-1 Wozu Relationen? Mathematik Theoretische Informatik Kryptographie

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 23. November 2017 1/40 Satz 4.27 (Multinomialsatz) Seien r, n N 0. Dann gilt für

Mehr

Finden Sie eine Relation R und eine Menge A so dass

Finden Sie eine Relation R und eine Menge A so dass Relationen Aufgabe 1. Überlegen Sie, wie man folgende Relationen R grafisch darstellen könnte und entscheiden Sie, ob die Relationen reflexiv auf A, symmetrisch bzw. transitiv sind. Geben Sie eine kurze

Mehr

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung

Kapitel 2. Mathematische Grundlagen. Skript zur Vorlesung Einführung in die Programmierung LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS DATABASE Kapitel 2 Mathematische Grundlagen Skript zur Vorlesung Einführung in die Programmierung im Wintersemester 2012/13 Ludwig-Maximilians-Universität

Mehr

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar).

Algebra. Eine Menge A heißt abzählbar, wenn A gilt. Insbesondere sind, und abzählbar, und sind nicht abzählbar (überabzählbar). Algebra 1 Mengen 1.1 Operationen A Anzahl der Elemente von A (Mächtigkeit, Betrag, Kardinalität) (A) Potenzmenge von X ( (A) = 2 A ) A B wenn jedes Element von A auch Element von B ist. A = B (A B und

Mehr

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen

Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Grundbegriffe der Informatik Kapitel 3: Mengen, Alphabete, Abbildungen Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker 1 2 Mengen, Relationen, Funktionen 2.1 Mengen Definition 2.1 [Georg Cantor 1895] Eine Menge ist eine Zusammenfassung bestimmter, wohlunterschiedener Dinge unserer

Mehr

2 Mengen, Relationen, Funktionen

2 Mengen, Relationen, Funktionen Grundlagen der Mathematik für Informatiker Grundlagen der Mathematik für Informatiker Mengen, Relationen, Funktionen. Mengen Definition. [Georg Cantor 895] Eine Menge ist eine Zusammenfassung bestimmter,

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 1 Mengen 2 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen Mehrstellige Relationen 3 Abbildungen 4

Mehr

Grundbegriffe der Informatik Tutorium 14

Grundbegriffe der Informatik Tutorium 14 Grundbegriffe der Informatik Tutorium 14 Tutorium Nr. 16 Philipp Oppermann 11. Februar 2015 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Johannes Köbler Institut für Informatik Humboldt-Universität zu Berlin WS 2011/12 Relationalstrukturen Definition Sei A eine nichtleere Menge, R ist eine k-stellige

Mehr

Lösungen zur Übungsserie 1

Lösungen zur Übungsserie 1 Analysis 1 Herbstsemester 2018 Prof. Peter Jossen Montag, 24. September Lösungen zur Übungsserie 1 Aufgaben 1, 3, 4, 5, 6, 8 Aufgabe 1. Sei X eine endliche Menge mit n Elementen, und sei Y eine endliche

Mehr

17 Lineare Abbildungen

17 Lineare Abbildungen Chr.Nelius: Lineare Algebra II (SS2005) 1 17 Lineare Abbildungen Wir beginnen mit der Klärung des Abbildungsbegriffes. (17.1) DEF: M und N seien nichtleere Mengen. Eine Abbildung f von M nach N (in Zeichen:

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4)

FU Berlin: WiSe (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5. Aufgabe 18. Aufgabe 20. (siehe Musterlösung Zettel 4) FU Berlin: WiSe 13-14 (Analysis 1 - Lehr.) Übungsaufgaben Zettel 5 Aufgabe 18 (siehe Musterlösung Zettel 4) Aufgabe 20 In der Menge R der reellen Zahlen sei die Relation 2 R 2 definiert durch: x 2 y :

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19

Übersichtsblatt Hertrampf/Bahrdt. 1 Mathematische Aussagen. Theoretische Informatik I WS2018/19 Theoretische Informatik I WS2018/19 Übersichtsblatt Hertrampf/Bahrdt Institut für Formale Methoden der Informatik Theoretische Informatik Universität Stuttgart 1 Mathematische Aussagen Um mathematische

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 16. April 2013 Kartesisches Produkt Das kartesische Produkt (benannt nach René Descartes) von n Mengen M 1,..., M n ist M 1 M n := {(x 1,..., x n )

Mehr

Eigenschaften von Relationen. Relationen können rechtseindeutig linkseindeutig rechtstotal linkstotal sein.

Eigenschaften von Relationen. Relationen können rechtseindeutig linkseindeutig rechtstotal linkstotal sein. Eigenschaften von Relationen w d a c b x z y u Relationen können rechtseindeutig linkseindeutig rechtstotal linkstotal sein. Rechtseindeutige Relationen d M a c b N w x z y u Eine Relationen heißt rechtseindeutig,

Mehr

Kapitel 5: Strukturen. 1.1 Zweistellige Relationen 1.2 Graphen 1.3 Algebren 1.4 Strukturen

Kapitel 5: Strukturen. 1.1 Zweistellige Relationen 1.2 Graphen 1.3 Algebren 1.4 Strukturen 344 Kapitel 5: Strukturen 1.1 Zweistellige Relationen 1.2 Graphen 1.3 Algebren 1.4 Strukturen 5.1 Zweistellige Relationen 345 346 Erinnerung: Relationen Definition Seien k 1 und A eine Menge. 1. A k ist

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

Relationen. Ein wichtiger Spezialfall ist der, dass die Mengen identisch sind:

Relationen. Ein wichtiger Spezialfall ist der, dass die Mengen identisch sind: Relationen Es seien zwischen und und Mengen. Eine (binäre) Relation ist eine Teilmenge von. Ein wichtiger Spezialfall ist der, dass die Mengen identisch sind: und Eine binäre Relation auf einer Menge ist

Mehr

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier

Diskrete Strukturen und Logik WiSe 2006/07 in Trier. Henning Fernau Universität Trier Diskrete Strukturen und Logik WiSe 2006/07 in Trier Henning Fernau Universität Trier fernau@informatik.uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik &

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Vorlesung 4. Tilman Bauer. 13. September 2007

Vorlesung 4. Tilman Bauer. 13. September 2007 Vorlesung 4 Universität Münster 13. September 2007 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Definition Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische)

Mehr

Logik und Künstliche Intelligenz

Logik und Künstliche Intelligenz Logik und Künstliche Intelligenz Kurze Zusammenfassung (Stand: 14. Januar 2010) Prof. Dr. V. Stahl Copyright 2007 by Volker Stahl. All rights reserved. V. Stahl Logik und Künstliche Intelligenz Zusammenfassung

Mehr

Diskrete Mathematik I

Diskrete Mathematik I Diskrete Mathematik I Alexander May Fakultät für Mathematik Ruhr-Universität Bochum Wintersemester 08/09 DiMa I - Vorlesung 01-13.10.2008 Mengen, Relationen, Funktionen, Indirekter Beweis 1 / 59 Organisatorisches

Mehr

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen.

Vorlesung 4. Tilman Bauer. 13. September Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Vorlesung 4 Universität Münster 13. September 2007 1 Kartesische Wir befassen uns in dieser Vorlesung noch einmal mit Mengen. Seien M und N zwei Mengen. Dann bezeichnen wir mit M N das (kartesische) Produkt

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen Bestimmung der Umkehrfunktionen c) bei reellen Funktionen geometrisch durch Spiegelung des Funktionsgraphen an der Winkelhalbierenden y = x. y = x 3 y = x y = x y = (x+1)/2 y = x 1/3 y = 2x 1 Seite 27

Mehr

Abschnitt 3: Mathematische Grundlagen

Abschnitt 3: Mathematische Grundlagen Abschnitt 3: Mathematische Grundlagen 3. Mathematische Grundlagen 3.1 3.2 Boolsche Algebra 3.3 Induktion und Rekursion Peer Kröger (LMU München) Einführung in die Programmierung WS 16/17 46 / 708 Überblick

Mehr

4. Funktionen und Relationen

4. Funktionen und Relationen 4. Funktionen und Relationen Nikolaus von Oresmes Richard Dedekind (1831-1916) René Descartes 1596-1650 Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 4: Funktionen und Relationen 4.1 Funktionen:

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 1: Wiederholung 1 Mengen 2 Abbildungen 3 Exkurs Beweistechniken 4 Relationen Definition Operationen Eigenschaften Äquivalenzrelationen

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen

1. Mengentheoretische Grundbegriffe. naiver Mengenbegriff : Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen 1. Mengentheoretische Grundbegriffe Cantors (1845 1918) naiver Mengenbegriff : Slide 1 Eine Menge ist eine Zusammenfassung M von bestimmten, wohlunterschiedenen Objekten unserer Anschauung oder unseres

Mehr

Grundlagen. Kapitel Mengen

Grundlagen. Kapitel Mengen Kapitel 1 Grundlagen 1.1 Mengen Grundobjekte mathematischer Theorien sind Mengen. Zwar stellt man sich darunter Gesamtheiten von gewissen Dingen (den Elementen der Menge) vor, doch führt die uneingeschränkte

Mehr

Kapitel 2 Mathematische Grundlagen

Kapitel 2 Mathematische Grundlagen Kapitel 2 Mathematische Grundlagen Ziel: Einführung/Auffrischung einiger mathematischer Grundlagen 2.1 Mengen, Relationen, Ordnungen Definition: Eine Menge ist eine Zusammenfassung von wohlbestimmten und

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Einführung in die Programmierung Teil 2: Mathematische Grundlagen Prof. Dr. Peer Kröger, Florian Richter, Michael Fromm Wintersemester 2018/2019 Übersicht 1. Mengen 2. Relationen und Abbildungen 3. Boolsche

Mehr

2 Lösungen zu Kapitel 2

2 Lösungen zu Kapitel 2 2 Lösungen zu Kapitel 2 2. Lösung. Die Funktion f ist nicht injektiv. So gibt es (unendlich) viele Paare (x, y) mit f(x, y) = 0, etwa (0, 0) und (/2, ). Die Funktion f ist surjektiv. Zum Beispiel gilt

Mehr

Diskrete Mathematik I Wintersemester 2007 A. May

Diskrete Mathematik I Wintersemester 2007 A. May Diskrete Mathematik I Wintersemester 2007 A. May Literatur Vorlesung richtet sich nach A. Steger: Diskrete Strukturen Band 1: Kombinatorik-Graphentheorie- Algebra Springer Verlag T. Schickinger, A. Steger:

Mehr

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B.

Relationen. Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Mathematik I für Informatiker Relationen auf einer Menge p. 1 Relationen Es seien A und B Mengen. Eine (binäre) Relation zwischen A und B ist eine Teilmenge von A B. Ein wichtiger Spezialfall ist der,

Mehr

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016

Analysis I - Notizen 1. Daniel Lenz Jena - Wintersemester 2016 Analysis I - Notizen 1 Daniel Lenz Jena - Wintersemester 2016 1 Es handelt sich nicht um ein Skriptum zur Vorlesung. Besten Dank an alle, die zu Verbesserungen früherer Notizen zur Analysis I beigetragen

Mehr

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge)

Übung: Teilmengen. Beweis: Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) 15 Übung: Teilmengen seien Mengen. Zu zeigen ist: wenn Beweis: dann auch Für alle Elemente einer Menge, die Teilmenge einer Menge ist, gilt, dass auch Element von ist. (Definition der Teilmenge) für alle

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 10: Einführung Reduktionssysteme schulz@eprover.org Reduktionssysteme Definition: Reduktionssystem Ein Reduktionssystem ist ein Tupel (A, ) Dabei gilt:

Mehr

Lösungen zu Kapitel 2

Lösungen zu Kapitel 2 Lösungen zu Kapitel 2 Lösung zu Aufgabe 1: Wir zeigen die Behauptung durch vollständige Induktion über n. Die einzige Menge mit n = 0 Elementen ist die leere Menge. Sie besitzt nur sich selbst als Teilmenge,

Mehr

Skriptum EINFÜHRUNG IN DIE ALGEBRA

Skriptum EINFÜHRUNG IN DIE ALGEBRA Skriptum EINFÜHRUNG IN DIE ALGEBRA 1 Günter Lettl SS 2016 1. Algebraische Grundbegriffe 1.1 Verknüpfungen Definition 1. Es sei M eine nicht leere Menge. a) Eine Verknüpfung (oder (binäre) Operation) auf

Mehr

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren

Grundlagen: 1. Logik. Aussagen und Aussagenformen Wahrheitstabellen; Tautologien und Kontradiktionen Logische Äquivalenz. Prädikate und Quantoren Zusammenfassung Grundlagen Logik, Mengen, Relationen, Folgen & Mengenfamilien, Kardinalitäten Techniken Mathematisches Beweisen, Induktion, Kombinatorische Beweise Strukturen Graphen 1 Grundlagen: 1. Logik

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Grundlagen der linearen Algebra und analytischen Geometrie

Grundlagen der linearen Algebra und analytischen Geometrie Grundlagen der linearen Algebra und analytischen Geometrie Sascha Trostorff 27. Oktober 2017 Inhaltsverzeichnis I. Einführung in die Mengenlehre 3 1. Grundlagen der Aussagenlogik 4 2. Naive Mengenlehre

Mehr

Formale Methoden 1. Gerhard Jäger 7. November Uni Bielefeld, WS 2007/2008 1/18

Formale Methoden 1. Gerhard Jäger 7. November Uni Bielefeld, WS 2007/2008 1/18 1/18 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 7. November 2007 2/18 Geordnete Paare Mengen sind ungeordnet: {a, b} = {b, a} für viele Anwendungen braucht

Mehr

Vorkurs Mathematik für Informatiker

Vorkurs Mathematik für Informatiker Vorkurs Mathematik für Informatiker 6. Ordnungsrelationen Thomas Huckle, Kilian Röhner Technische Universität München 9.10.2017 Graphen Graph besteht aus Knoten (Ecken) und Kanten (Verbindungen zwischen

Mehr

Übungen zur Vorlesung Einführung in die Mathematik

Übungen zur Vorlesung Einführung in die Mathematik Übungen zur Vorlesung Einführung in die Mathematik von G. Greschonig und L. Summerer, WS 2017/18 Aufgabe 1. Zeige, dass das Quadrat einer ungeraden Zahl, vermindert um 1, stets durch 4 teilbar ist. Folgere

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 1-14. Sitzung Dennis Felsing dennis.felsing@student.kit.edu http://www.stud.uni-karlsruhe.de/~ubcqr/2010w/tut gbi/ 2011-02-07 Äquivalenzrelationen 1 Äquivalenzrelationen

Mehr

Diskrete Strukturen in der Informatik

Diskrete Strukturen in der Informatik Diskrete Strukturen in der Informatik Markus Lohrey Universität Leipzig Wintersemester 2012/2013 Lohrey (Universität Leipzig) Diskrete Strukturen Wintersem. 2012/2013 1 / 287 Organisatorisches zur Vorlesung

Mehr