Lineare Optimierung. Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg

Größe: px
Ab Seite anzeigen:

Download "Lineare Optimierung. Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg"

Transkript

1 Lineare Optimierung Volker Kaibel Fakultät für Mathematik Institut für Mathematische Optimierung Otto-von-Guericke Universität Magdeburg VL 1: Einführung 10. April 2007

2 Überblick Optimierung unter Nebenbedingungen Konvexe Optimierung Konische Optimierung Unbeschränkte Optimierung Semidefinite Optimierung Kontinuierliche lineare Optimierung Ganzzahlige lineare Optimierung Polyeder Kombinatorische Optimierung

3 Überblick Optimierung unter Nebenbedingungen Konvexe Optimierung Konische Optimierung Unbeschränkte Optimierung Semidefinite Optimierung Kontinuierliche lineare Optimierung Ganzzahlige lineare Optimierung Polyeder Kombinatorische Optimierung

4 (Kontinuierliche) Lineare Optimierung max{ c, x : Ax b, x n }

5 Überblick Optimierung unter Nebenbedingungen Konvexe Optimierung Konische Optimierung Unbeschränkte Optimierung Semidefinite Optimierung Kontinuierliche lineare Optimierung Ganzzahlige lineare Optimierung Polyeder Kombinatorische Optimierung

6 Ganzzahlige lineare Optimierung max{ c, x : Ax b, x n }

7 Überblick Optimierung unter Nebenbedingungen Konvexe Optimierung Konische Optimierung Unbeschränkte Optimierung Semidefinite Optimierung Kontinuierliche lineare Optimierung Ganzzahlige lineare Optimierung Polyeder Kombinatorische Optimierung

8 Polyedrische Kombinatorik 1 a 2 b 3 4 c d 5 e

9 Überblick Optimierung unter Nebenbedingungen Konvexe Optimierung Konische Optimierung Unbeschränkte Optimierung Semidefinite Optimierung Kontinuierliche lineare Optimierung Ganzzahlige lineare Optimierung Polyeder Kombinatorische Optimierung

10 Konvexe Optimierung { } min c(x) s.t. g i (x) O m i [m] x n c, g i : n konvex

11 Überblick Optimierung unter Nebenbedingungen Konvexe Optimierung Konische Optimierung Unbeschränkte Optimierung Semidefinite Optimierung Kontinuierliche lineare Optimierung Ganzzahlige lineare Optimierung Polyeder Kombinatorische Optimierung

12 Differenzierbare Optimierung

13 Barrier-Funktionale min 500x + 200y s.t. x 0 x 1 y 0 x 1 x, y n

14 Überblick Optimierung unter Nebenbedingungen Konvexe Optimierung Konische Optimierung Unbeschränkte Optimierung Semidefinite Optimierung Kontinuierliche lineare Optimierung Ganzzahlige lineare Optimierung Polyeder Kombinatorische Optimierung

15 3-dimensionale Polytope

16 Platonische Körper Icosaeder Wasser Dodekaeder Universum Oktaeder Luft Tetraeder Feuer Plato [ ]: Timaeus Euklid [ ]: Elemente XIII Würfel Erde

17 Archimedische Körper Archimedes [ ] Kepler Archimedes [ ] [ ] Bilder: V. Butakov Kepler [ ]

18 Leonardo da Vinci [1509]

19 4-dimensionale Polytope

20 4-dimensionale Polytope

21 Überblick Optimierung unter Nebenbedingungen Konvexe Optimierung Konische Optimierung Unbeschränkte Optimierung Semidefinite Optimierung Kontinuierliche lineare Optimierung Ganzzahlige lineare Optimierung Polyeder Kombinatorische Optimierung

22 Netzwerkrouting / Mehrgüterflüsse Kommunikationsbedarfe: (1) 3 Einheiten 1 5 (2) 5 Einheiten 2 1 Kapazitäten: Kosten: u 1,..., u 10 + c 1,..., c 10 + Variablen: x i a + (i [2], a [10]) Anzahl Einheiten des Bedarfs i, die über Bogen a fließen.

23 Netzwerkrouting / Mehrgüterflüsse Nebenbedingungen: Ziel: x x x 1 8 x 1 3 x 1 10 = 0 x x x 2 8 x 2 3 x 2 10 = 0 x x x 1 10 x 1 7 = 3 x 2 2 x 2 1 x 2 8 x 2 9 = 5 x x 2 1 u 1 x min 10 c a (x 1 a + x 2 a) a=1

24 Formen linearer Optimierungsprobleme max{ c, x : Ax b, x n } max{ c, x : Ax = b, x O n, x n } Auch: Gleichungen und Ungleichungen Nichtnegativitätsbedingungen an einige Variablen -Ungleichungen Minimierung Notationsbeispiel: min c x, x + c y, y s.t. A x x + A y y b B x x + B y y = d y O nx Falls alle (einige) Variablen ganzzahlig sein müssen: (gemischt) ganzzahlige lineare Optimierung (ILP)

25 Graphenfärbung

26 Frequenzzuweisung

27 min s.t. Ganzzahliges lineares Optimierungsmodell q c=1 q c=1 y c x v,c = 1 für alle v V x v,c + x w,c 1 für alle {v, w} E, c [q] x v,c y c x O V [q] x V [q] y [q]

28 Komplexität Optimierungsprobleme: Kontin. lin. Optim. Kont. konvexe Min. Ganzz. lin. Opt. polynomial polynomial NP-schwer Lineare Zulässigkeitsprobleme: x n x n Ax = b polynomial polynomial Ax b polynomial NP-schwer

29 Dualität max{ (1, 1 2 ), (x, y) : 1 x, y 2, x 2 } ( (1, 0), (x, y) 2) ( (0, 1), (0, y) 2) (1, 1 2 ), (x, y) 3

30 X n c : X Optimierungsproblem Nach Kontext: Problem oder Optimalwert Maximum kann auch (nur) Supremum sein Menge der zulässigen Lösungen: Menge der Optimallösungen: Unzulässiges Optimierungsproblem: Unbeschränktes Optimierungsproblem: Minimierungsproblem analog max{c(x) : x X} X X = {x X : c(x) c( x) für alle x X} X = X und X =

31 Inhalt / Aufbau 1. Unbeschränkte Optimierung 2. Optimierung und Konvexität 3. Opt. unter Nebenbedingungen 4. Dualität und konische Optimierung 5. Innere-Punkte Verfahren 6. Geometrie der linearen Optimierung 7. Der Simplex-Algorithmus 8. Ganzzahlige lineare Optimierung 9. Lineare und kombinatorische Optimierung 10. Branch-and-Bound, Schnittebenen WS 07/08: Kombinatorische Optimierung und polyedrische Kombinatorik SS 08: Geometrische und algebraische Aspekte der ganzzahligen linearen Optimierung

32 Literatur 1. R. J. Vanderbei, Linear Programming. Springer, J. Matousek und B. Gärtner, Using and Understanding Linear Programming. Springer, V. Chvatal, Linear Programming. Freeman, D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization. Athena, G. B. Dantzig, Linear Programming and Extensions. Princeton University Press, 1998 (Original: Rand Corporation, 1963). 6. A. Ruszcynski, Nonlinear Optimization. Princeton University Press, A. Schrijver, Theory of Linear and Integer Programming. Wiley, M. Grötschel, L. Lovasz, A. Schrijver, Geometric Algorithms and Combinatorial Optimization. Springer, 1988.

33 Organisatorisches VL: MO 11:15-12:45 (G02-210) DI 7:30-9:00 G Üblicherweise: Montags Beamer, Folien im Netz (montags 8:00) Sprechstunde VK: DO (G02-221b) Übungsgruppen: MI 13:15-14:45 (G05-211, Volker Kaibel) DO 11:15-12:45 (G02-210, Matthias Peinhardt) Scheinkriterium: 50% Übungspunkte (Abgabe in festen Zweiergruppen) und Klausur Erste Übungsgruppen: Nächste Woche (18./19. April) Abgabe Aufgaben, Austeilung neuer Übungsblätter: VL DI Rückgabe korrigierter Aufgaben: Übungsgruppen

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) 1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Optimierung Optimization. Vorlesung 01

Optimierung Optimization. Vorlesung 01 Optimierung Optimization Vorlesung 01 Organisatorisches skopalik@mail.upb.de Büro: F1.209 (Sprechstunde nach Vereinbarung) Vorlesung: Freitags, 11:15 12:45, F0 053 Übungen: Dienstags, 13:15 14:00, F0 053

Mehr

Diskrete Optimierung

Diskrete Optimierung Diskrete Optimierung Mi 10-12, C118, Sand Dr. Stephanie Reifferscheid Universität Tübingen, WSI 12. Oktober 2011 Dr. Stephanie Reifferscheid Diskrete Optimierung 12. Oktober 2011 1 / 17 Technisches Erreichbarkeit

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 6: Die Geometrie der Linearen Optimierung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 15. Juni 2010) Gliederung 2 Das

Mehr

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering

Kap. 3: Exakte Lösungsverfahren für NPschwierige. Optimierungsprobleme VO Algorithm Engineering Kap. 3: Exakte Lösungsverfahren für NPschwierige kombinatorische Optimierungsprobleme VO Algorithm Engineering 3.1 Einführung Professor Dr. Petra Mutzel 3.2 Komb. vs. Ganzzahlige Opt. Lehrstuhl für Algorithm

Mehr

Konvexe Optimierung I Sommersemester Kapitel 0

Konvexe Optimierung I Sommersemester Kapitel 0 Sommersemester 2013 Kapitel 0 Jun.-Prof. Dr. Thorsten Raasch Johannes Gutenberg-Universität Mainz Institut für Mathematik 15. April 2013 Konvexe Optimierung Was ist das? Was bedeutet Optimierung? Was bedeutet

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen Relaxation Inhaltsübersicht für heute: Branch-and-Bound Konvexe Mengen, konvexe Hülle, konvexe Funktionen

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/4) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2007)

Vorlesung Lineare Optimierung (Sommersemester 2007) 1 Vorlesung Lineare Optimierung (Sommersemester 007) Kapitel 9: Ganzzahlige Polyeder und Kombinatorische Dualität Volker Kaibel Otto-von-Guericke Universität Magdeburg Montag, 9. Juli 007 Gliederung Ganzzahlige

Mehr

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen

Inhalt. Problemstellung und Überblick. Allgemeine Problemstellung und Terminologie. Überblick über spezielle Klassen von Optimierungsproblemen Inhalt Problemstellung und Überblick Allgemeine Problemstellung und Terminologie Überblick über spezielle Klassen von Optimierungsproblemen 40: 40 [40,40] 2.1 Das Optimierungsproblem in allgemeiner Form

Mehr

Aufgabensammlung uncf Klausurentrainer zur Optimierung

Aufgabensammlung uncf Klausurentrainer zur Optimierung Karl Heinz Borgwardt unter Mitarbeit von Matthias Tinkl und Thomas Wörle Aufgabensammlung uncf Klausurentrainer zur Optimierung Für die Bachelorausbildung in mathematischen Studiengängen STUDIUM 11 VIEWEG+

Mehr

Der LLL - Algorithmus. Seminar ganzzahlige Optimierung Wintersemester 2006/2007

Der LLL - Algorithmus. Seminar ganzzahlige Optimierung Wintersemester 2006/2007 Der LLL - Algorithmus Seminar ganzzahlige Optimierung Wintersemester 2006/2007 Autor: Konrad Schade Betreuer: Prof. Dr. J. Rambau 1 Einführung 1.1 Motivation In dieser Arbeit soll die Verwendung des LLL-Algotithmuses

Mehr

Das Travelling Salesman Problem Exakte Lösungsverfahren für NP-schwierige kombinatorische Optimierungsprobleme 5. VO

Das Travelling Salesman Problem Exakte Lösungsverfahren für NP-schwierige kombinatorische Optimierungsprobleme 5. VO Das Travelling Salesman Problem Exakte Lösungsverfahren für NP-schwierige kombinatorische Optimierungsprobleme 5. VO 31.10.2005 Überblick Kurz-Wiederholung vom letzten Mal Kombinatorische Optimierungsprobleme

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2009)

Vorlesung Lineare Optimierung (Sommersemester 2009) 1 Vorlesung Lineare Optimierung (Sommersemester 2009) Kapitel 7: Der Simplex-Algorithmus Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 18. Juni 2009) Gliederung 2 Ecken, Kanten, Extremalstrahlen

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Literaturverzeichnis. c Springer-Verlag GmbH Deutschland W. Hochstättler, Lineare Optimierung, DOI /

Literaturverzeichnis. c Springer-Verlag GmbH Deutschland W. Hochstättler, Lineare Optimierung, DOI / Literaturverzeichnis [1] Alfter, M., Kern, W., & Wanka, A. (1990). On adjoints and dual matroids. Journal of Combinatorial Theory: Series B, 50(2), 208 213. [2] Arora, S., & Barak, B. (2009). Computational

Mehr

How To Solve The Linear Ordering Problem (Lop)

How To Solve The Linear Ordering Problem (Lop) Kap. 3: Hierarchische Zeichenverfahren 3.4 Kreuzungsminimierung ffff Exakte Verfahren Prof. Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering LS11 Universität Dortmund 11./12. VO WS07/08 19./20. November

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Körper zum Selberbauen Polydron

Körper zum Selberbauen Polydron Körper zum Selberbauen Polydron Was versteht man unter Polydron? Polydron ist ein von Edward Harvey erfundenes intelligentes Spielzeug, mit dem man verschiedene geometrische Figuren bauen kann. Es ist

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Inhaltsübersicht für heute:

Inhaltsübersicht für heute: Inhaltsübersicht für heute: Dualität Anwendung: Spieltheorie Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? Inhaltsübersicht für heute: Dualität

Mehr

Operations Research I

Operations Research I Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

Einführung in Operations Research

Einführung in Operations Research Wolfgang Domschke Andreas Drexl Einführung in Operations Research Dritte, verbesserte und erweiterte Auflage Mit 79 Abbildungen und 58 Tabellen Springer Votwort Symbolverzeichnis V XIII Kapitel 1: Einführung

Mehr

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }.

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }. alteklausuraufgaben 1 LinOpt Klausur Sommersemester 05 Aufgabe 1 a) Definieren Sie den Begriff der konischen Hülle. b) Sei S R n. Zeigen Sie: Cone S = Lin S x S : x Cone (S \ {x}). Aufgabe 2 a) Definieren

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Kap. 8: Travelling Salesman Problem

Kap. 8: Travelling Salesman Problem Kap. 8: Travelling Salesman Problem Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 15. VO 5.2.07 Überblick 8.1 Einführung Einführung in TSP 8.2 ILP-Formulierung für TSP 8.3 Branch-and-Cut

Mehr

Traveling Salesman Problem (TSP) Exakte Algorithmen für NP-schwere Probleme Integer Lineare Programme Branch-and-Cut

Traveling Salesman Problem (TSP) Exakte Algorithmen für NP-schwere Probleme Integer Lineare Programme Branch-and-Cut Traveling Salesman Problem (TSP) Exakte Algorithmen für NP-schwere Probleme Integer Lineare Programme Branch-and-Cut VO Graphenalgorithmen WiSe 2009/10 Markus Chimani TU Dortmund NP-schwere Probleme 2

Mehr

3.4 Exakte Verfahren für (Gemischt-) Ganzzahlige Optimierung

3.4 Exakte Verfahren für (Gemischt-) Ganzzahlige Optimierung 32KAPITEL 3. NP-SCHWIERIGE KOMBINATORISCHE OPTIMIERUNGSPROBLEME n Anzahl der Ungleichungen 3 8 4 20 5 40 6 910 7 87.472 8 >488.602.996 Tabelle 3.1: Anzahl der Ungleichungen des LOP-Polytops für n 8 3.4

Mehr

Einführung in Operations Research

Einführung in Operations Research Wolfgang Domschke Andreas Drexl Einführung in Operations Research Achte Auflage fyj Springer Inhaltsverzeichnis Vorwort Symbolverzeichnis V XIII Kapitel 1: Einführung 1 1.1 Begriff des Operations Research

Mehr

Vorlesung Lineare Optimierung (Sommersemester 2010)

Vorlesung Lineare Optimierung (Sommersemester 2010) 1 Vorlesung Lineare Optimierung (Sommersemester 2010) Kapitel 2: Konvexe Mengen und Kegel Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 19. April 2010) Gliederung 2 Konvexe Mengen

Mehr

Diskrete Strukturen WS 2010/11. Ernst W. Mayr. Wintersemester 2010/11. Fakultät für Informatik TU München

Diskrete Strukturen WS 2010/11. Ernst W. Mayr. Wintersemester 2010/11.  Fakultät für Informatik TU München WS 2010/11 Diskrete Strukturen Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2010ws/ds/ Wintersemester 2010/11 Diskrete Strukturen Kapitel 0 Organisatorisches Vorlesungen:

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Approximationsalgorithmen. Wintersemester 2013/14 HERZLICH WILLKOMMEN!

Approximationsalgorithmen. Wintersemester 2013/14 HERZLICH WILLKOMMEN! Approximationsalgorithmen Wintersemester 2013/14 HERZLICH WILLKOMMEN! 1 / 39 Worum geht s? Eine Bemerkung von Vasek Chvatal In den kommunistischen Ländern des Ostblocks in den 60 er und 70 er Jahren war

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS200/ / 29Lineare Optimierung 30Der Simplex-Algorithmus 3Das Heiratsproblem 32Ganzzahligkeit von Polyedern 33Ne Inhaltsübersicht 29Lineare Optimierung

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i )

Wir gewichten die Kanten von G wie folgt: Kante e 1 e 2 e 3 e 4 e 5 e 6 e 7 e 8 d(e i ) Prof. Dr. U. Faigle J. Voss SS 2011 12. Übung zur Einführung in die Mathematik des Operations Research Dieses Übungsblatt wird nicht mehr gewertet. Aufgabe 1: Sei G = (V, E) ein gerichteter Graph und x

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

Index. Algorithmus 13 effizient 85 Arboreszenzen 164. Grad 178 Aus- 239 In- 239 Graph 24 gerichtet 34 vollständig 216 Greedy-Algorithmen 152

Index. Algorithmus 13 effizient 85 Arboreszenzen 164. Grad 178 Aus- 239 In- 239 Graph 24 gerichtet 34 vollständig 216 Greedy-Algorithmen 152 Last but not least Wir danken allen, die uns bei unserem mathematischen Abenteuer unterstützt und ermutigt haben, unseren Familien und Freunden, Kolleginnen und Kollegen, den Mitarbeitern des Springer-Verlags,

Mehr

Diskrete und kombinatorische Optimierung

Diskrete und kombinatorische Optimierung Prof. Dr. Gerhard Reinelt Institut für Informatik Mathematikon 1.329 Im Neuenheimer Feld 205 Studieninformation zum Gebiet Diskrete und kombinatorische Optimierung 1. Beschreibung des Gebiets Diskrete

Mehr

8. Lineare Optimierung

8. Lineare Optimierung 8. Lineare Optimierung 1 Einführung (1) Praktische Probleme sind oft Probleme mit Nebenbedingungen, z.b.: Ein Produktionsprozess hängt von Lieferterminen ab Die Menge der verstaubaren Güter ist durch die

Mehr

Stabilität gemischt-ganzzahliger linearer Optimierungsprobleme

Stabilität gemischt-ganzzahliger linearer Optimierungsprobleme Stabilität gemischt-ganzzahliger linearer Optimierungsprobleme Überblick und oene Fragen Stefan Vigerske 8.2.2006 Forschungsseminar Numerik stochastischer Modelle Humboldt-Universität zu Berlin Optimierungsproblem

Mehr

Grundlagen der Optimierung. Übung 6

Grundlagen der Optimierung. Übung 6 Technische Universität Chemnitz Chemnitz, 2. November 24 Prof. Dr. R. Herzog, J. Blechschmidt, A. Schäfer Abgabe am 28. November 24 Grundlagen der Optimierung Übung 6 Aufgabe 2: Verschiedene Verfahren

Mehr

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen Kapitel 4 Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen 1 Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1) (Die Thesen zur Vorlesung 1) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Grundlegende Annahmen der linearen Programmierung) Prof. Dr. Michal Fendek Institut für Operations

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

4.4 Quadratische Optimierungsprobleme

4.4 Quadratische Optimierungsprobleme 4.4 Quadratische Optimierungsprobleme 1. Quadratische Programme (QP) 1 2 xt P x + q T x + r s.t. Gx h (4.34) wobei P S n +, G R (m n) und A R (p n) Zielfunktion (ZF) ist (konvex) quadratisch Nebenbedingungen

Mehr

lineare Programmierung

lineare Programmierung lineare Programmierung Viele Probleme sind durch lineare Gleichungssysteme charakterisiert lineare Programmiermethoden Der Lösungsraum ist häufig auf ganze Zahlen oder gar natürliche Zahlen eingeschränkt!

Mehr

Schnittebenenverfahren für das symmetrische

Schnittebenenverfahren für das symmetrische Schnittebenenverfahren für das symmetrische TSP Sebastian Peetz Mathematisches Institut Universität Bayreuth 19. Januar 2007 / Blockseminar Ganzzahlige Optimierung, Bayreuth Gliederung 1 Das symmetrische

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Wie schreibe ich einen Kürzester Kruzester

Wie schreibe ich einen Kürzester Kruzester Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 5 Vorlesung Algorithmentechnik im WS 8/9 Ausgabe 16. Dezember 8 Abgabe 13. Januar 9, 15:3 Uhr (im Kasten vor Zimmer 319, Informatik-Hauptgebäude,

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA Mögliche Fälle für Z Etschberger - WS2016 1 Z =, d.h., es existiert keine zulässige (x 1, x 2 )-Kombination. 2

Mehr

Lineare Programmierung

Lineare Programmierung Seminar: Intelligente Algorithmen Stefan Kopp, Alfred Kranstedt, Nadine Leßmann Lineare Programmierung Frank Schönmann WS 2003/04 Inhaltsverzeichnis 1 Motivation 3 2 Lineare Programmierung (LP) 4 2.1 Einführendes

Mehr

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen

Mehr

10. Komplexität der Linearen Optimierung und Innere Punkte Methoden

10. Komplexität der Linearen Optimierung und Innere Punkte Methoden 56 10.1 LP ist in NP! conp... 57 10.2 Zur Laufzeit des Simplexalgorithmus... 58 10.3 Die Ellipsoidmethode... 59... 60 10.1 LP ist in NP! conp 57-1 Wichtigste Aussagen dieses Kapitels (alle ohne vollständigen

Mehr

Optimierung Operations Research Spieltheorie

Optimierung Operations Research Spieltheorie 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Karl Heinz Borgwardt Optimierung Operations Research Spieltheorie

Mehr

Diskrete Strukturen WS Ernst W. Mayr. Wintersemester Fakultät für Informatik TU München

Diskrete Strukturen WS Ernst W. Mayr. Wintersemester Fakultät für Informatik TU München WS 2011 Diskrete Strukturen Ernst W. Mayr Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2011ws/ds/ Wintersemester 2011 Diskrete Strukturen Kapitel 0 Organisatorisches Vorlesung: Di 13:45

Mehr

Algorithmische Geometrie: Einstimmung

Algorithmische Geometrie: Einstimmung Algorithmische Geometrie: Einstimmung Nico Düvelmeyer WS 2009/2010, 20.10.2009 Überblick 1 Organisatorisches 2 Fachgebiet Typische Untersuchungsgegenstände Typische Anwendungsgebiete 3 Inhalte der Vorlesung

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

1 Einleitung Optimierung in Technik-, Natur- und Wirtschaftswissenschaften Optimierung mit dem Computer

1 Einleitung Optimierung in Technik-, Natur- und Wirtschaftswissenschaften Optimierung mit dem Computer 1 Einleitung...1 1.1 Optimierung in Technik-, Natur- und Wirtschaftswissenschaften... 4 1.2 Optimierung mit dem Computer... 5 1.2.1 Anwendung von Computeralgebrasystemen... 6 1.2.2 Anwendung von EXCEL...

Mehr

Der Eulersche Polyedersatz

Der Eulersche Polyedersatz Der Eulersche Polyedersatz Def Die Anzahl der k Seiten eines konvexen Polytops P bezeichnen wir mit f k (P) oder kurz mit f k. Das n Tupel (f 0,f 1,...,f n 1 ) Z n heißt dann der f Vektor des (n dimensionalen)

Mehr

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25.

Operations Research. Ganzzahlige lineare Programme. ganzzahlige lineare Programme. Ganzzahlige lineare Programme. Rainer Schrader. 25. Operations Research Rainer Schrader Ganzzahlige lineare Programme Zentrum für Angewandte Informatik Köln 25. Juni 2007 1 / 49 2 / 49 Ganzzahlige lineare Programme Gliederung ganzzahlige lineare Programme

Mehr

Kap. 4: Das Handlungsreisendenproblem (TSP)

Kap. 4: Das Handlungsreisendenproblem (TSP) Kap. 4: Das Handlungsreisendenproblem (TSP) VO Algorithm Engineering Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 7./8. VO 24./26. April 2007 Literatur Mutzel: Skript zu Branch

Mehr

Formale Grundlagen der Informatik F3: Berechenbarkeit un

Formale Grundlagen der Informatik F3: Berechenbarkeit un Formale Grundlagen der Informatik F3: Berechenbarkeit und Komplexität Fachbereich Informatik AB Theoretische Grundlagen der Informatik (TGI) Universität Hamburg farwer@informatik.uni-hamburg.de 14. Dezember

Mehr

Chinese Postman Problem Hamiltonsche Graphen und das Traveling Salesman Problem Max-Flow-Min-Cut...151

Chinese Postman Problem Hamiltonsche Graphen und das Traveling Salesman Problem Max-Flow-Min-Cut...151 Inhaltsverzeichnis 1 Kernkonzepte der linearen Optimierung... 1 1.1 Einführung... 1 1.2 Grundlegende Definitionen... 8 1.3 Grafische Lösung... 10 1.4 Standardform und grundlegende analytische Konzepte...

Mehr

Optimierung. Vorlesung 02

Optimierung. Vorlesung 02 Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j

Mehr

LinOpt - Tool zur Visualisierung eines multikriteriellen Optimierungsproblems

LinOpt - Tool zur Visualisierung eines multikriteriellen Optimierungsproblems LinOpt Tool zur Visualisierung eines multikriteriellen Optimierungsproblems Erstellt von Michael Berklmeir, Michael Haarnagell, Stefan Kraus, Stephan Roser im Rahmen einer Seminararbeit am Lehrstuhl für

Mehr

Lineare und kombinatorische Optimierung

Lineare und kombinatorische Optimierung Lineare und kombinatorische Optimierung Theorie, Algorithmen und Anwendungen Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2017/18 Peter Becker (H-BRS) Lineare

Mehr

Polyeder und Platonische Körper

Polyeder und Platonische Körper Polyeder und Platonische Körper Ausarbeitung zum 30.11.2016 Linus Leopold Boes Matrikelnummer: 2446248 Algorithmen für planare Graphen Institut für Informatik HHU Düsseldorf Inhaltsverzeichnis 1 Einleitung

Mehr

Dynamische Optimierung

Dynamische Optimierung Dynamische Optimierung Mike Hüftle 28. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Dynamisches Optimierungmodell 3 2.1 Grundmodell der dynamischen Optimierung............

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO A&D WS 08/09 14. Oktober 2008 1 bevor wir thematisch beginnen: Kapitel

Mehr

Methoden der linearen Optimierung

Methoden der linearen Optimierung Methoden der linearen Optimierung Mike Hüftle 31. Juli 2006 Inhaltsverzeichnis 1 Einleitung 2 1.1.................................... 2 2 Lineare Optimierung 3 2.1 Lineares Modell............................

Mehr

Freie Universität Berlin. Diskrete Mathematik. Ralf Borndörfer, Stephan Schwartz. Freie Universität. 08. April 2013

Freie Universität Berlin. Diskrete Mathematik. Ralf Borndörfer, Stephan Schwartz. Freie Universität. 08. April 2013 Diskrete Mathematik Ralf Borndörfer, Stephan Schwartz 08. April 2013 FUB VL Diskrete Mathematik SS 2013 1 Leonhard Euler (1707-1783) e i sin cos f(x) FUB VL Diskrete Mathematik SS 2013 2 Das Königsberger

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Abschätzung der Suchbaumgröße

Abschätzung der Suchbaumgröße Effiziente Algorithmen Lösen NP-vollständiger Probleme 263 Abschätzung der Suchbaumgröße Der Schätzwert für die Suchbaumgröße war 3529. Lassen wir das Programm laufen, ergibt sich, daß 1830 gültige Positionen

Mehr

Die historische Betrachtung der Platonischen Körper

Die historische Betrachtung der Platonischen Körper Die historische Betrachtung der Platonischen Körper Christian Hartfeldt Otto-von-Guericke Universität Magdeburg Fakultät für Mathematik Institut für Algebra und Geometrie christian.hartfeldt@t-online.de

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung:

VIII Inhaltsverzeichnis 4 Innere - Punkte - Methoden für Lineare Programme Exkurs: Newton -Verfahren,Konvergenzraten Anwendung: Inhaltsverzeichnis 1 Einleitung... 1 1.1 Modellbildung,mathematische Formulierung............... 1 1.2 Nichtlineare Programme................................. 2 1.3 Einteilung von nichtlinearen Programmen...

Mehr

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1)

Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Seminar Ausgewählte Kapitel des Operations Research Die Allgegenwärtigkeit von Lagrange (Teil 1) Anna Raaz 21.12.2007 Einführung Die Relaxierung von Lagrange wird in der stochastischen Optimierung meistens

Mehr

DISKRETE OPTIMIERUNG. Robert Weismantel

DISKRETE OPTIMIERUNG. Robert Weismantel MATHEMATIK DISKRETE OPTIMIERUNG Robert Weismantel Unter einer Optimierungsaufgabe im mathematischen Sinne versteht man die Problemstellung, den maximalen oder minimalen Wert einer Funktion über einem zulässigen

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie c NASA (earthasart.gsfc.nasa.gov/ganges.html) 1 Algorithmische Graphentheorie Sommersemester 2015 2. Vorlesung Flüsse Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Gewinnmaximierung Sie sind Chef

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

NP-schwierige kombinatorische Optimierungsprobleme

NP-schwierige kombinatorische Optimierungsprobleme Kapitel 3 NP-schwierige kombinatorische Optimierungsprobleme Optimierungsprobleme sind Probleme, die im Allgemeinen viele zulässige Lösungen besitzen. Jeder Lösung ist ein bestimmter Wert (Zielfunktionswert,

Mehr

Zu Modellierungs- und Lösungs-Techniken für Frequenz-Zuweisungs-Probleme

Zu Modellierungs- und Lösungs-Techniken für Frequenz-Zuweisungs-Probleme Universität zu Köln Mathematisch-Naturwissenschaftliche Fakultät Zentrum für Angewandte Informatik Seminar: Ausgewählte Kapitel des Operations Research WS 07/ 08 Dozent: Prof. Dr. R. Schrader Referent:

Mehr

Algorithmische Geometrie: Lineare Optimierung (I)

Algorithmische Geometrie: Lineare Optimierung (I) Algorithmische Geometrie: Lineare Optimierung (I) Nico Düvelmeyer WS 2009/2010, 17.11.2009 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus Überblick 1 Geometrie

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 1: Facetten des Knapsack-Polytops Diskutieren Sie folgende Fragen

Mehr

Standard-/kanonische Form Simplex Dualität Kompl./Sensitivität Spaltengen. Schnittebenen Welchen? Inhalt

Standard-/kanonische Form Simplex Dualität Kompl./Sensitivität Spaltengen. Schnittebenen Welchen? Inhalt Inhalt Lineare Optimierung Standardform und kanonische Form Der Simplex-Algorithmus Dualität Komplementarität und Sensitivitätsanalyse Spaltengenerierung Schnittebenenverfahren Welchen Simplex wann? 54:

Mehr