Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Größe: px
Ab Seite anzeigen:

Download "Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung"

Transkript

1 8. Optimierung

2 Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2

3 8.1 Motivation Viele Anwendungen erfordern das Minimieren oder Maximieren einer Zielfunktion unter Berücksichtigung einer oder mehrerer Nebenbedingungen Beispiele: Bestimmen der optimalen Alternative (vgl. Kapitel 2) Bestimmen der optimalen Regressionsgerade (vgl. Kapitel 3) Bestimmen einer optimalen Abdeckung (SET COVER) Bestimmen eines optimalen Produktionsplans 3

4 Motivation Das Gebiet der mathematischen Optimierung beschäftigt sich allgemein mit solchen Optimierungsproblemen In der Betriebswirtschaftslehre kümmert sich das Gebiet Operations Research darum, Entscheidungen herbeizuführen, indem betriebswirtschaftliche Fragestellungen mit Methoden der Optimierung modelliert und gelöst werden 4

5 8.2 Optimierung ohne Nebenbedingungen Aus den Mathematikvorlesungen ist bekannt, wie man die Extremstellen einer reellen Funktion f : R æ R bestimmen kann Vorgehensweise: bestimme Nullstellen der ersten Ableitung f Õ (x) =0 überprüfe zweite Ableitung an den ermittelten Nullstellen x* (lokales) Minimum, falls f ÕÕ (x ú ) > 0 (lokales) Maximum, falls f ÕÕ (x ú ) < 0 5

6 Beispiel: Optimierung ohne Nebenbedingungen Beispiel: Betrachte die Funktion 0.5 x2 f(x) = xe f Õ (x) = (1 x x2 ) e damit -1 und +1 als Nullstellen f ÕÕ (x) =x (3 x x2 ) e f(x) x damit ist -1 ein Maximum und +1 ein Minimum 6

7 Lokale und globale Minima und Maxima Wir finden so alle lokale und globale Minima (Maxima) lokal, d.h. die Funktion nimm in der Nachbarschaft keinen kleineren (größeren) Wert an global, d.h. die Funktion nimmt nirgendwo einen kleineren (größeren) Wert an f(x) = x 2 + e 0.15 x + e 0.19x f(x) x 7

8 Funktionen mehrerer Variablen Vorgehensweise verallgemeinerbar für Funktionen f : R R æ R mehrerer Variablen (hier: x und y) Vorgehensweise: bestimme gemeinsame Nullstellen der partiellen Ableitungen ˆf ˆx =0 ˆf ˆy =0 überprüfe zweite partielle Ableitungen an den Nullstellen x* 8

9 8.3 Optimierung unter Nebenbedingungen Häufig gilt es, ein Minimum (Maximum) unter Einhaltung einer oder mehrerer Nebenbedingungen zu finden Beispiel: Produktionsplanung in einem Unternehmen Produkt x erzielt Erlös von 10 pro verkaufter Einheit Produkt y erzielt Erlös von 25 pro verkaufter Einheit Beide Produkte benötigten ein gemeinsames Bauteil hiervon sind 50 Einheiten verfügbar Produkt x benötigt eine Einheit; Produkt y benötigt drei Einheiten Es kann eine beliebige (reelle) Anzahl der Produkte x und y produziert werden; Ziel ist die Maximierung des Erlös 9

10 Beispiel: Optimierung unter Nebenbedingungen Produktionsplanung formuliert als Optimierungsproblem arg max x,y f(x, y) = 10 x + 25 y s.t. 1 x +3y = 50 Welche Mengen von x und y sollen produziert werden? 10

11 Reduktionsmethode Lässt sich die Nebenbedingung eindeutig nach einer der beiden Variablen x und y auflösen, so können wir die Lösung in die Zielfunktion einsetzen Beispiel: Auflösen der Nebenbedingung nach x 1 x +3y = 50 x = 50 3 y und Einsetzen in die Zielfunktion ergibt F (x, y) = 10 (50 3y) + 25 y = 500 5y 11

12 Reduktionsmethode Die Extremwerte der neuen Zielfunktion F(x,y) lassen sich nun mit der bekannten Vorgehensweise bestimmen Beispiel: Wir stellen fest, dass y* = 0 ein Extremwert ist, d.h. das Unternehmen soll folgende Mengen produzieren: 0 Einheiten des Produkts y 50 Einheiten des Produkts x 12

13 8.4 Lineare Programmierung Lineare Programmierung betrachtet den wichtigen Spezialfall einer linearen Zielfunktion, die unter Berücksichtigung einer Menge linearer Nebenbedingungen optimiert werden soll Beispiel: Produktionsplanung im Unternehmen Produkt x erzielt Erlös von 1, Produkt y einen Erlös von Einheiten von Material a stehen zur Verfügung; jede Einheit von x benötigt 10, jede Einheit von y benötigt Einheiten von Material b stehen zur Verfügung; jede Einheit von x benötigt 4, jede Einheit von y benötigt 8 13

14 Ganzzahlige lineare Programmierung Allgemeine Form eines linearen Programms arg max x 1,...,x n F (x 1,...,x n )=c 1 x c n x n s.t. a i1 x a in x 1 Æ b 1. a m1 x a mn x 1 Æ b m } m Nebenbedingungen Beispiel: arg max x 1,...,x n F (x, y) =1x +2y s.t. 10 x + 10 y Æ x +8y Æ 80 14

15 Graphische Lösung eines linearen Programms Im Fall zweier Variablen lässt sich graphisch eine Lösung bestimmen (ähnlich zu graphischen Modellen in Kapitel 2) Vorgehensweise: jede Nebenbedingung beschreibt eine Gerade (Halbraum) Schnitt dieser Halbräume ist Menge zulässiger Lösungen Zielfunktion beschreibt Menge von Geraden weiter vom Ursprung entfernte Geraden entsprechen einem höheren Wert der Zielfunktion bestimme optimale Lösung durch Geradenverschiebung 15

16 Graphische Lösung eines linearen Programms Beispiel: arg max x 1,...,x n F (x, y) =1x +2y s.t. 10 x + 10 y Æ x +8y Æ 80 Bestimmen der Geraden zu den Nebenbedingungen 10 x + 10 y Æ 150 y = 15 x 4 x +8y Æ 80 y = x 16

17 Graphische Lösung eines linearen Programms 10 x + 10 y Æ 150 y = 15 x 4 x +8y Æ 80 y = x Menge zulässiger Lösungen y x 17

18 Graphische Lösung eines linearen Programms Werte der Zielfunktion entsprechen Geraden der Form y = 0.5 x + c y x 18

19 Graphische Lösung eines linearen Programms Durch Verschiebung der Geraden finden wir die Menge der optimalen Lösungen: der maximale Erlös von 20 wird z.b. mit folgenden Produktionsmengen erzielt x = 0 und y = 10 x = 10 und y = 5 Menge optimaler Lösungen y x 19

20 Ganzzahlige lineare Programmierung Zwei wichtige Spezialfälle der linearen Programmierung: ganzzahlige lineare Programmierung (integer linear programming), wobei Variablen nur ganzzahlige Werte annehmen dürfen 0/1 lineare Programmierung (0/1 linear programming), wobei Variablen nur die Werte 0 und 1 annehmen dürfen Diese Einschränkungen der Variablen machen das Finden einer optimalen Lösung deutlich schwerer 20

21 Solver Bekanntester Algorithmus zum Lösen linearer Programme ist der sogenannte Simplex-Algorithmus Zahlreiche Softwarepakete zum Lösen linearer Programme IBM CPLEX Gurobi LINGO Microsoft Excel (Solver Add-In) diese sogenannten Solver können in der Regel auch ganzzahlige LPs und 0/1-LPs lösen 21

22 8.5 Kombinatorische Optimierung In der Informatik beschäftigen wir uns sehr häufig mit kombinatorischer (d.h. mengenwertiger) Optimierung Beispiel: SET COVER als bekanntes Optimierungsproblem betrachte ein Universum U von Elementen gegeben ist eine Menge S von Teilmengen S i U finde eine möglichst kleine Teilmenge von S, so dass alle Elemente des Universums darin enthalten sind arg min C S C s.t. S i œc S i = U 22

23 Beispiel SET COVER Beispiel: Universum seien die Zahlen 1, 2,, 5 S 1 = {1, 3, 5} S 2 = {4} S 3 = {5} S 4 = {1, 2, 5} S 5 = {1, 5} S 6 = {3, 4} Eine optimale Lösung ist C = {S 4, S 6 } 23

24 SET COVER Wie können wir allgemein eine optimale Lösung finden? SET COVER ist als NP-schweres Problem bekannt Idee 1: Zähle Teilmengen von S in aufsteigender Größe auf und überprüfe, ob sie alle Elemente aus U enthalten Idee 2: Verwende einen gierigen (greedy) Algorithmus, der mit leerer Menge C beginnt und immer die Menge S i hinzufügt, welche die meisten zusätzlichen Elemente aus U beinhaltet 24

25 Approximationsalgorithmus für SET COVER 1 greedysc(u,s,c) { 2 // Initial ist C leer 3 C = ÿ; 4 5 while(fi Sj œc S j = U ) { 6 // Bestimme Teilmenge S ú mit meisten zusätzlichen Elementen 7 S ú = arg max S j fl (U \ fi Si œc S i ) ; S j œs 8 9 // Füge S ú zu C hinzu 10 C = C fi {S ú }; 11 } 12 } Man kann zeigen, dass dieser gierige Algorithmus eine O(log n) Approximation liefert, d.h. die ermittelte Lösung C ist höchstens um einen Faktor O(log n) schlechter als eine optimale Lösung 25

26 SET COVER mittels Simulated Annealing Simulated Annealing ist ein randomisiertes Suchverfahren, welches häufig zur Lösung kombinatorischer Optimierungsproblemen eingesetzt werden kann Idee: beginne mit einer Lösung wiederhole für eine Gesamtzahl von R Runden verändere die aktuelle Lösung zufällig es sei d die erreichte Veränderung der Zielfunktion ist d 0, so übernehme veränderte Lösung ist d > 0, so übernehme veränderte Lösung mit Wahrscheinlichkeit exp(-d/r) mit r als Zahl verbleibender Runden 26

27 SET COVER mittels Simulated Annealing Um Simulated Annealing auf SET COVER anwenden zu können, benötigen wir eine initiale Lösung sowie ein Möglichkeit Lösungen zufällig ändern als initiale Lösung verwenden wir C = S um eine Lösung zu ändern, wählen wir zufällig eine enthaltene Teilmenge, entfernen sie und überprüfen, ob dies noch eine gültige Lösung ist oder eine nicht enthaltene Teilmenge aus und fügen sie hinzu 27

28 SET COVER als ganzzahliges lineares Programm Kombinatorische Optimierungsprobleme lassen sich oft als ganzzahlige lineare Programme formulieren Man kann dann einen verfügbaren Solver (z.b. Gurobi) verwenden, um eine (nahezu) optimale Lösung zu finden und muss sich selbst keine Gedanken über einen geeigneten Algorithmus machen 28

29 SET COVER als ganzzahliges lineares Programm SET COVER als ganzzahliges lineares Programm formuliert eine Variable x i je Teilmenge S i eine Nebenbedingung je Element u j aus U, die sicherstellt dass das Element u j abgedeckt wird; hierzu seien Gewichte c ij definiert als c ij = 1(u j œ S i ) eine Nebenbedingung je Variable x i, die sicherstellt dass deren Wert in {0,1} liegt 29

30 SET COVER als ganzzahliges lineares Programm Damit ergibt sich folgendes ganzzahliges lineares Programm arg min x 1,...,x n ÿ i x i s.t. j : ÿ i c ij x i Ø 0 i : x i Æ 1 30

31 Zusammenfassung Reduktionsmethode zur Optimierung einer Funktion mehrerer Variablen unter einer Nebenbedingung Lineare Programmierung als wichtiger Spezialfall einer linearen Zielfunktion und einer Menge von linearen Nebenbedingungen SET COVER als Beispiel eines kombinatorischen Optimierungsproblems, welches sich auf unterschiedliche Arten lösen lässt 31

32 Literatur [1] M. Papageorgiou, M. Leibold und M. Buss: Optimierung, Springer 2015 (Kapitel 3-5 & 7) [2] W. Domschke, A. Drexl, R. Klein und A. Scholl: Einführung in Operations Research, Springer, 2015 (Kapitel 1 & 2) 32

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

6. Softwarewerkzeuge für die Lineare Programmierung

6. Softwarewerkzeuge für die Lineare Programmierung 6. Softwarewerkzeuge für die Lineare Programmierung Inhalt 6. Softwarewerkzeuge für die Lineare Programmierung GNU Linear Programming Kit Operations Research I Hochschule Bonn-Rhein-Sieg, SS 2013 314 GNU

Mehr

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte

C. Eicher Analysis Study Center ETH Zürich HS Extremwerte C. Eicher Analysis Study Center ETH Zürich HS 05 Extremwerte Gelöste Aufgabenbeispiele:. Bestimme die lokalen und globalen Extrema der Funktion f(x) = x x + x auf dem Intervall [ 4, ]. a. Bestimmung der

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1

Mikroökonomik Prof. Dr. Stefan Klonner SoSe Übungsblatt 1 1 Funktionen Definition 1 (Funktion). Übungsblatt 1 Eine Funktion f(x) einer reellen Variable x mit Definitionsbereich D ist eine Regel, die jeder Zahl x in D eine reelle Zahl f(x) eindeutig zuordnet.

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

8 Extremwerte reellwertiger Funktionen

8 Extremwerte reellwertiger Funktionen 8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R

Mehr

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel

Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

11. Übung zu Algorithmen I 6. Juli 2016

11. Übung zu Algorithmen I 6. Juli 2016 11. Übung zu Algorithmen I 6. Juli 2016 Lisa Kohl lisa.kohl@kit.edu mit Folien von Lukas Barth Roadmap Ausblick: Was sind schwierige Probleme? Travelling Salesman Problem - Reprise ein ILP ein Algorithmus

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Veranstaltung und Übung: Optimierungssysteme Modelle, Software, Praxisanwendungen. Uwe Suhl Veronika Waue SS 2008

Veranstaltung und Übung: Optimierungssysteme Modelle, Software, Praxisanwendungen. Uwe Suhl Veronika Waue SS 2008 Veranstaltung 10033025 und 101053 Übung: Optimierungssysteme Modelle, Software, Praxisanwendungen Uwe Suhl Veronika Waue SS 2008 Organisatorisches Veronika Waue Sprechstunde Mi.11h-12h (R214) E-mail: veronika@waue.net

Mehr

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen

Mehr

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.

f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum. Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-6020 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung In der linearen

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

2. Optimierungsprobleme 6

2. Optimierungsprobleme 6 6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

Aufgabe 5.3 Duale Simplexverfahren

Aufgabe 5.3 Duale Simplexverfahren Aufgabe 5.3 Knut Krause Thomas Siwczyk Stefan Tittel Technische Universität Dortmund Fakultät für Informatik Algorithmen und Datenstrukturen 15. Januar 2009 Gliederung 1 Aufgabenstellung und Motivation

Mehr

Systeme von linearen Ungleichungen

Systeme von linearen Ungleichungen Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 MNProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA

Mehr

Verbesserungsheuristiken

Verbesserungsheuristiken Verbesserungsheuristiken Bestandteile der Lokalen Suche Für schwierige Optimierungsaufgaben haben Verbesserungsheuristiken eine große praktische Bedeutung. Sie starten mit Ausgangslösungen, die von z.b.

Mehr

Operations Research I

Operations Research I Operations Research I Lineare Programmierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2015 Peter Becker (H-BRS) Operations Research I Sommersemester 2015

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra

Mehr

Extremwerte von Funktionen mehrerer reeller Variabler

Extremwerte von Funktionen mehrerer reeller Variabler Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 7. Juni 201 *Aufgabe 1. Gegeben seien fx, y = xy 2 8e x+y und P = 1, 2. Der Gradient von f ist genau an der Stelle P Null. a Untersuchen Sie mit Hilfe der Hesse-Matrix,

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.

f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0. Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales

Mehr

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf.

Produktionsplanung und Lineare Optimierung im Rahmen des Projekts Mathematik und Ökonomie 12./13. November 2003 in Düsseldorf. Übungsaufgaben Aufgabe 1a Medikamentenmischung Ein Pharmaziehersteller möchte ein neues Medikament auf den Markt bringen. Das Medikament kann aus vier verschiedenen Komponenten (K1 K4) zusammengestellt

Mehr

Substitutionsverfahren vs. Lagrange-Methode

Substitutionsverfahren vs. Lagrange-Methode Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende

Mehr

Durchschnitt von Matroiden

Durchschnitt von Matroiden Durchschnitt von Matroiden Satz von Edmonds Dany Sattler 18. Januar 2007/ Seminar zur ganzzahligen Optimierung / Wallenfels Definition: Unabhängigkeitssystem Definition: Ein Mengensystem (S, J ) nennt

Mehr

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Beispiel: Produktionsplanung Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Produktionskapazität Ressourcenmenge bei als fest angenommenem

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik

Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Kombinatorische Optimierung Vorlesung für den Bereich Diplom/Master Informatik Dozent: Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK

Mehr

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler Kapitel 4-6. Universität Trier Wintersemester 2013 / 2014 Mathematik für Kapitel 4-6 Universität Trier Wintersemester 2013 / 2014 Kapitel 4 1. Extremwerte 2. Lokale Optimalpunkte 3. Wendepunkte 2 Kapitel 4.1 EXTREMWERTE 3 Extrempunkte und Extremwerte 4 Strikte

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Lineare Programmierung (2)

Lineare Programmierung (2) Inhalt Rückblick Motivation - linearen Programmierung Flussprobleme Multiple Warenflüsse Fortsetzung Simplex Algorithmus Initialisierung Fundamentalsatz der linearen Programmierung schwache Dualität Dualität

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4) Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4) das Thema der Vorlesung Die Anwendung der Methoden der Mehrkriterienoptimierung bei der Lösung der ökonomischen Entscheidungsprobleme

Mehr

Übungen zur Analysis II Blatt 27 - Lösungen

Übungen zur Analysis II Blatt 27 - Lösungen Prof. Dr. Torsten Wedhorn SoSe 22 Daniel Wortmann Übungen zur Analysis II Blatt 27 - Lösungen Aufgabe 5: 6+6+6* Punkte Bestimme alle lokalen Extrema der folgenden Funktionen: a b c* f : R 3 R g : R 2 R

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Einführung in die Volkswirtschaftslehre

Einführung in die Volkswirtschaftslehre Einführung in die Volkswirtschaftslehre Übung 1: Mathematische Analyseinstrumente Dipl.-Volksw. J.-E.Wesselhöft/ Dipl.-Volksw. J.Freese Bachelor Modul Volkswirtschaftliche Analyse (WS-14-V-03) HT 2009

Mehr

4. Dynamische Optimierung

4. Dynamische Optimierung 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger

Mehr

Operations Research für Logistik

Operations Research für Logistik Operations Research für Logistik Lineare Optimierung (170.202) Ao. Univ. - Prof. Norbert SEIFTER Dipl. - Ing. Stefanie VOLLAND Sommersemester 2012 Lehrstuhl Industrielogistik Lineare Optimierung Inhalte:

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Extrema (Funktionen mit zwei Variablen)

Extrema (Funktionen mit zwei Variablen) Extrema (Funktionen mit zwei Variablen) Vorzeigeaufgaben: WS04/05 Aufgabe 4 HS11 Aufgabe 4 a) + b) Empfohlene Bearbeitungsreihenfolge: WS05/06 Aufgabe 5 b) WS06/07 Aufgabe 4 HS10 Aufgabe 1 b) + c) HS1

Mehr

Mathematik 2 für Wirtschaftsinformatik

Mathematik 2 für Wirtschaftsinformatik für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Musterlösungen Aufgabenblatt 2

Musterlösungen Aufgabenblatt 2 Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale

Mehr

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus 5. Lokale Suchverfahren Lokale Suche 5. Lokale Suchverfahren Beispiel TSP: k-change Nachbarschaft Optimale Lösungen können oft nicht effizient ermittelt werden. Heuristiken liefern zwar zulässige Lösungen,

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Helge Röpcke Markus Wessler Wirtschaftsmathematik Methoden - Beispiele - Anwendungen Mit 84 Bildern, 113 durchgerechneten Beispielen und 94 Aufgaben mit ausführlichen Lösungen im Internet Fachbuchverlag

Mehr

11 Optimierung von Funktionen einer Veränderlichen

11 Optimierung von Funktionen einer Veränderlichen 11 Optimierung von Funktionen einer Veränderlichen In diesem Kapitel werden die bis hier behandelten Grundlagen der Analysis genutzt, um Methoden aus der Optimierungstheorie für eindimensionale Entscheidungsmengen

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Klausur zu Analysis II - Lösungen

Klausur zu Analysis II - Lösungen Mathematisches Institut der Heinrich-Heine-Universität Düsseldorf Dr. Axel Grünrock WS 1/11 11..11 Klausur zu Analysis II - Lösungen 1. Entscheiden Sie, ob die folgenden Aussagen richtig oder falsch sind.

Mehr

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler

Ein Buch. Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler Ein Buch Für Anwendungen des Stoffs in den Wirtschaftswissenschaften: Knut Sydsæter, Peter Hemmond: Mathematik für Wirtschaftswissenschaftler (Aber bei der Mathematik ein bisschen aufpassen!) 4 Extremstellen

Mehr

Übungsbeispiel 1: Quadratische Modellierung

Übungsbeispiel 1: Quadratische Modellierung Übungsbeispiel 1: Quadratische Modellierung Ein Uhrenhersteller möchte den Preis für sein neues Modell festlegen und führt dazu eine Marktanalyse durch. Das Ergebnis lautet: Bei einem Preis von 60 ist

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

3.2 Implizite Funktionen

3.2 Implizite Funktionen 3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite

Mehr

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester

Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik

Mehr

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren A2.1 Lineare Optimierung mit dem Simplexverfahren Wenn ein Unternehmen ermitteln möchte, wie viele Mengeneinheiten von verschiedenen Produkten zu produzieren sind, damit bei gegebenen Verkaufspreisen der

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x.

Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I. f(x) := e x + x. Technische Universität München WS 009/0 Fakultät für Mathematik Prof. Dr. J. Edenhofer Dipl.-Ing. W. Schultz Übung Lösungsvorschlag Mathematische Behandlung der Natur- und Wirtschaftswissenschaften I Aufgabe

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1) (Die Thesen zur Vorlesung 1) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Grundlegende Annahmen der linearen Programmierung) Prof. Dr. Michal Fendek Institut für Operations

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS/ / Inhaltsübersicht 3Einführung in die freie Optimierung 4Orakel und Modellfunktionen 5Optimalitätsbedingungen der freien Optimierung 6Das Newton-Verfahren

Mehr

Überblick Kap. 5: Graph Coloring

Überblick Kap. 5: Graph Coloring Überblick Kap. 5: Graph Coloring Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 10./11. VO 18.12.0 / 8.1.07 5.1 Einführung Definition und Motivation Sudoku 5.2 ILP-Formulierungen

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen

Gliederung. Kapitel 4. Lokale Suchverfahren. Meta-Heuristiken. Simulated Annealing. Lokale Suchverfahren. Optimierungsalgorithmen Kapitel Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

b) Kann eine Funktion in einem Punkt stetig sein, ohne dort differenzierbar zu sein? Bitte zeichnen Sie graphisch ein Beispiel (2 Punkte)!

b) Kann eine Funktion in einem Punkt stetig sein, ohne dort differenzierbar zu sein? Bitte zeichnen Sie graphisch ein Beispiel (2 Punkte)! Mathematik - Antwortblatt Übungsklausur Zugelassene Hilfsmittel: Wörterbuch Muttersprache - Deutsch, Lineal & Stifte Bearbeitungszeit: 120 min Maximal erreichbare Punktzahl: 120 Punkte 1 Aufgabe: 10 Punkte

Mehr

Probabilistische Analyse von Algorithmen

Probabilistische Analyse von Algorithmen Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen 27. Mai 2005 Übersicht Einführung 1 Einführung 2 Exkurs: Wahrscheinlichkeitstheorie Borgwardts 3 Idee 4 Formale Beschreibung des s Motivation

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung

Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Kap. 4.3: Das Dualitätstheorem der linearen Optimierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 18. VO A&D WS 08/09 18.12.2008 1 Literatur

Mehr

Mathematik I Prüfung Frühlingssemester 2014

Mathematik I Prüfung Frühlingssemester 2014 Mathematik I Prüfung Frühlingssemester 2014 Prof. Dr. Enrico De Giorgi 23. Juni 2014 Mathematik II: Prüfung Frühlingssemester 2014 1 Teil I: Offene Fragen (50 Punkte) Allgemeine Anweisungen für offene

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Lösungen zu den Übungsaufgaben aus Kapitel 5

Lösungen zu den Übungsaufgaben aus Kapitel 5 Lösungen zu den Übungsaufgaben aus Kapitel 5 Ü5.1: Die entsprechende Bellman sche Funktionalgleichung kann angegeben werden als: Vct (, ) = max qt D { r rt t ( min{ q t, c} ) min{ q t, c} Vc ( min{ q t,

Mehr

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n

- 1 - zum Extremum macht, wenn y(x) eine bestimmte, genau charakterisierte Funktionenklasse ( n - 1 - Variationsrechnung Die Variationsrechnung spielt in der Physik eine entscheidende Rolle. So kann man die Grundgleichungen der Newtonschen Mechanik aus einem Lagrangeschen Variationsprinzip herleiten.

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Operations Research II

Operations Research II Operations Research II Einführung in die kombinatorische Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2015/16 Peter Becker (H-BRS) Operations Research

Mehr

Optimierung in R. Michael Scholz

Optimierung in R. Michael Scholz N Optimierung in R Fortgeschrittene Mathematik: Optimierung (WiSe 09/10) Michael Scholz Institut für Statistik und Ökonometrie Georg-August-Universität Göttingen Fortgeschrittene Mathematik: Optimierung

Mehr

55 Lokale Extrema unter Nebenbedingungen

55 Lokale Extrema unter Nebenbedingungen 55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :

Mehr

LINGO: Eine kleine Einführung

LINGO: Eine kleine Einführung LINGO: Eine kleine Einführung Jun.-Prof.Dr. T. Nieberg Lineare und Ganzzahlige Optimierung, WS 2009/10 LINDO/LINGO ist ein Software-Paket, mit dessen Hilfe (ganzzahlige) lineare Programme schnell und einfach

Mehr

Lösungsvorschlag - Zusatzaufgaben (2)

Lösungsvorschlag - Zusatzaufgaben (2) HOCHSCHULE KARLSRUHE Sommersemester 014 Elektrotechnik - Sensorik Übung Mathematik I B.Sc. Paul Schnäbele Lösungsvorschlag - Zusatzaufgaben ) a) x ) fx) = D = R \ { } x + Es liegt keine gängige Symmetrie

Mehr