Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)

Größe: px
Ab Seite anzeigen:

Download "Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)"

Transkript

1 Beispiel: Produktionsplanung Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Produktionskapazität Ressourcenmenge bei als fest angenommenem Preis und unbegrenztem Absatz. Etwa im Beispiel 1.16: Ist beispielsweise bekannt, dass je Mengeneinheit von Produkt 1 ein Gewinn von 3 Euro und bei Produkt von 4 Euro pro Mengeneinheit, erzielt wird, so lautet der Ansatz zur Bestimmung des gewinnoptimalen Plans: Maximiere 3 a[1] + 4 a[] in (a[1], a[]) : Schreibweise 3a[1] + 4a[] über (a[1], a[]) T A, also a[1] + a[] 1 5a[1] + 1a[] 3.5a[] 15 a[1] a[] max a[1],a[] In der Tat handelt es sich um ein lineares Programm; sowohl die Zielfunktion als auch die Restriktionen sind linear in den zwei Variablen a[1] und a[]. Grundlegende Idee zur graphischen Lösung von Optimierungsproblemen: Höhenlinie, also Bereiche mit gleichem Wert der Zielfunktion suchen. Höhenlinie c 1 a[1] + c a[] = c Hyperebene mit Senkrechter λ ( c1 c ) Von oben nach unten schieben, bis sie zum ersten Mal berührt (in Ecke, oder an Kante) Maximiere 3 a[1] + 4 a[] in (a[1], a[]) : 3a[1] + 4a[] max a[1],a[] 1

2 3a[1] + a[] 1 5a[1] + 1a[] 3.5a[] 15 a[1] a[] d = 3 a[1] + 4 a[] d = a[1], a[] = ; Punkte im Verhältnis 3 : 4, z.b. (3, 4) senkrechte runterschieben: schneidet bei C = (3, 15), also lautet die Optimallösung a[1] = 3, a[] = 15. Als optimaler Wert der Zielfunktion (maximaler Gewinn) ergibt sich = 15. In der Tat ist C ein Extremalpunkt, vgl. Bsp. 1. und Bem... Man bilde das duale Problem zu dem Optimierungsproblem aus Beispiel Das duale Standard-Minimum-Problem zu dem Standard-Maximum-Problem 3a[1] + 4a[] max a

3 3a[1] + a[] 1 5a[1] + 1a[] 3 a[1] +.5 a[] 15 a[1] a[] lautet 1u[1] + 3u[] + 15u[3] min 3u[1] + 5u[] + u[3] 3 (I) u[1] + 1u[] +.5u[3] 4 (II) u[1] (III) u[] (VI) u[3] (V) Eine Möglichkeit, das Dualitätsproblem zu lösen, besteht daran, alle ( 5 3) Extremalpunkte zu bestimmen und die Zielfunktion dort auszuwerten. Man kann die Suche abkürzen, wenn man die Lösung des Primalproblems bereits kennt. Gemäß.5 ergibt sich ja für das Optimum der Zufallsfunktion des dualen Problems der selbe Wert. Die späteren Überlegungen zu Schattenpreisen und komplementärem Schlupf zeigen ferner, dass für das Optimum u [3] = gelten muss: Startet man glücklicherweise gleich mit dem Eckpunkt aus den Gleichungen (I), (II), (V ), so erhält man I : 3u [1] + 5u[] = 3 II : u [1] + 1u[] = 4 ( ) I : 6u [1] 1u[] = 6 ( ) I + II : 4u [1] = u 1 [1] = 1u [] = 4 1 u 3 [] = 1 ( ) I + II : 4u [1] = u [1] = 1 1u [] = 4 1 u [] = 3 1 Dies liefert u [1] = 1, u [] = 3, 1 u [3] =, was einen Wert der Zielfunktion von = 15 produziert. Da dies das Optimum darstellt (vgl. Primzalproblem), ist 1 3

4 u [1] = 1, u [] = 3 1, u [3] = eine Optimallösung. Im Beispiel.6 erkennt man also mit u [1] = 1, u [] = 3 1, u[3] =, dass eine weitere Maschinenstunde den Gewinn um eine halbe Einheit erhöht und eine Erhöhung der Rohstoffmenge um eine Einheit eine Gewinnerhöhung von.3 Einheiten mit sich bringt, während eine Erhöhung der Arbeitszeit ohne Effekt bliebe, da diese Nebenbedingung ohnehin die Optimallösung nicht scharf restringiert. ( klar: wird im Optimum die Arbeitskapazität ohnehin nicht ausgeschöpft, so würde man natürlich nicht bereit sein, für eine Lockerung dieser Restriktion zu bezahlen.) (Hingegen sind die anderen beiden Restriktionen in der Tat scharf, vgl. den späteren Satz vom komplementären Schlupf.) Betrachtet man wieder das Beispiel.6, so lautet das Standard-Maximum-Problem in kanonischer Form 3a[1] + a[] max u[1],u[] Für die Optimallösung ergibt sich gemäß oben: und damit 3a[1] + a[] + a s [1] = 1 5a[1] + 1a[] + a s [] = 3.5a[] + a s [3] = 15 a[1] a[] a s [1] a s [] a s [3]. a[1] = 3, a[] = 15 a s[1] = = a s[] = = a s[3] = = 5 Man erkennt also, dass die dritte Restriktion an der Optimallösung nicht ausgeschöpft wird. Die Firma könnte also die verbleibende Arbeitskraft in anderen Bereichen einsetzen. Für die Optimallösung des primalen-problems gilt: a[1] 3 a[] a s[1] a s[] = 15. a s[3] 5 4

5 Bringt man das duale Problem 1u[1] + 3u[] + 15u[3] min u[1],u[],u[3] 3u[1] + 5u[] + u[3] 3 u[1] + 1u[] +.5u[3] 4 in die kanonische Form, so ergibt u[1] u[] u[3] 1u[1] + 3u[] + 15u[3] min u[1],u[],u[3] 3u[1] + 5u[] + u[3] u s [1] = 3 u[1] + 1u[] +.5u[3] u s [] = 4. u[1] u[] u[3] u s [1] u s [] Mit den Optimallösungen u[1] = 1, u[] = 3 1 und u[3] = erhält man also u[1] u[] u[3] u s[1] u s[] = In der Tat ist damit: ( a[1] a[]. ( ) ( us [1] u s [] ) ( 3 1 u s[1] = 4 u s [1] = u s [] = 3 ) + ) + u s [] =, a s[1] a s[] a s[3] 5 u[1] u[] u[3] 1/ 3/1 = =. 5

6 w su = klar bei Interpretation über Schattenpreise. Dort wo bei der optimalen Aktion bei der Restriktion noch Spiel ist, ist der Schattenpreis. Da das duale Problem des dualen Problems wieder das primale Problem bildet, gilt die analoge Aussage für die Schattenpreise des dualen, also die Optimallösung des primalen Problems. 6

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

2 Entscheidungskriterien

2 Entscheidungskriterien 2 Entscheidungskriterien 82 83 2.1 Vorbereitende Überlegungen Entscheidungsregeln Entscheidungsprinzipien Bem. 2.1 (Entscheidungsregeln und Entscheidungsprinzipien) Eine Menge ist linear geordnet bzw.

Mehr

Substitutionsverfahren

Substitutionsverfahren Substitutionsverfahren 1 Motivation Wir stehen vor folgendem Problem: In unserem Betrieb kann unsere einzige Maschine Produkt A in zwei Stunden und Produkt B in einer Stunde produzieren. Die Maschine läuft

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Einführung in einige Teilbereiche der Wintersemester 2016 Prof. Dr. Stefan Etschberger HSA Mögliche Fälle für Z Etschberger - WS2016 1 Z =, d.h., es existiert keine zulässige (x 1, x 2 )-Kombination. 2

Mehr

Dualitätssätze der linearen Optimierung

Dualitätssätze der linearen Optimierung Kapitel 9 Dualitätssätze der linearen Optimierung Sei z = c T x min! Ax = b 9.1 x 0 mit c, x R n, b R m, A R m n ein lineares Programm. Definition 9.1 Duales lineares Programm. Das lineare Programm z =

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse

Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Fachbereich Wirtschaftswissenschaften Professur f. Quantitativen Methoden Prof. Dr. Dietrich Ohse Diplomprüfung / Sommersemester 24 Quantitative Methoden der BWL Musterlösung der Prüfungsklausur vom. Juli

Mehr

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 14 Lineare Optimierung, Dualität (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 96 H. Meyerhenke: Kombinatorische Optimierung Dualität bei linearen Programmen Def.: Es sei (L): c T x max

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005

Schnittebenenverfahren von Gomory. Stefan Allescher 30. Juni 2005 Schnittebenenverfahren von Gomory Stefan Allescher 30. Juni 2005 Inhaltsverzeichnis 1. Grundprinzip 2. Das Verfahren von Gomory 2.1. Vorgehen 2.2. Beweis der Endlichkeit 2.3. Algorithmische Durchführung

Mehr

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sandro Grunert WS 08/09 Seminar Optimierung Technische Universität Chemnitz 1 Inhaltsverzeichnis 0 Grundlegende Situation

Mehr

Das Lagrange-duale Problem

Das Lagrange-duale Problem Das Lagrange-duale Problem Tobias Kulke 29. April 2010 1 Einführung Für jedes Paar (λ, ν) mit λ 0 liefert die Langrange-duale Funktion ( ) p g(λ, ν) = inf L(x, λ, ν) = inf f 0 (x) + λ i f i (x) + ν i h

Mehr

Extrema mit Nebenbedingungen

Extrema mit Nebenbedingungen Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst

Mehr

Verfahren des Operations Research

Verfahren des Operations Research Verfahren des Operations Research Blatt 1 (WS 2018/19) wird bearbeitet am 31.10.2018 1. Ein Rohstoff kann zu drei Gütern G 1, G 2 und G 3 verarbeitet werden. Man benötigt für G 1 60 kg/stk, für G 2 80

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

Verfahren des Operations Research

Verfahren des Operations Research Verfahren des Operations Research Blatt 1 (WS 2017/18) wird bearbeitet am 23.10.2017 1. Ein Rohstoff kann zu drei Gütern G 1, G 2 und G 3 verarbeitet werden. Man benötigt für G 1 60 kg/stk, für G 2 80

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

2.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

2.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 2.2 Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = 1 (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die

Mehr

Sattelpunkt-Interpretation

Sattelpunkt-Interpretation Sattelpunkt-Interpretation Vinzenz Lang 14. Mai 2010 Die Sattelpunkt-Interpretation befasst sich mit der Interpretation der Lagrange- Dualität. Sie wird im weiteren Verlauf des Seminars nicht noch einmal

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Sätze PLUS Es gilt für A, B R n n : det(ab) = det A det B (Determinantenmultiplikationssatz)

Mehr

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung

Inhalt. 8.1 Motivation. 8.2 Optimierung ohne Nebenbedingungen. 8.3 Optimierung unter Nebenbedingungen. 8.4 Lineare Programmierung 8. Optimierung Inhalt 8.1 Motivation 8.2 Optimierung ohne Nebenbedingungen 8.3 Optimierung unter Nebenbedingungen 8.4 Lineare Programmierung 8.5 Kombinatorische Optimierung 2 8.1 Motivation Viele Anwendungen

Mehr

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen

10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen 10. Die Berücksichtigung nicht vorzeichenbeschränkter Variablen Bisher haben wir immer vorausgesetzt, dass alle Variablen eines LOP der Bedingung x i 0 liegen. Im Folgenden wollen wir auch sogenannte freie

Mehr

Klausurrepetitorium ABWL

Klausurrepetitorium ABWL Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches

Mehr

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1

1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme. Duales Problem. a i u i + i=1. j=1 1. Transport- und Zuordnungsprobleme Optimierungsalgorithmus für Transportprobleme Duales Problem Lemma 1.4. Das zum Transportproblem duale Problem lautet: max unter den Nebenbedingungen m a i u i + i=1

Mehr

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme

Computer Science Department - High Performance and Web Computing Group. Optimierungsprobleme Optimierungsprobleme Häufig in Alltagssituationen anzutreffen (z.b. Kauf eines Gerätes) Optimierungsprobleme (OPs) sind Probleme, die i.a. viele zulässige Lösungen besitzen Jeder Lösung ist ein bestimmter

Mehr

Probeklausur Optimierung

Probeklausur Optimierung Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Dr. Nico Düvelmeyer Hamburg, 4. Juli 2011 Probeklausur Optimierung Bitte selber ausfüllen: Name: (darf anonymisiert werden)

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Optimierung I, SS 2008

Optimierung I, SS 2008 Aufgabe. ca. 4 Punkte Technische Universität München Zentrum Mathematik Prof. Dr. P. Gritzmann, Dipl.-Math. M. Ritter, Dipl.-Inf. Dipl.-Math. S. Borgwardt Optimierung I, SS 2008 Übungsblatt Um gegen die

Mehr

Optimierung unter Nebenbedingungen

Optimierung unter Nebenbedingungen Optimierung unter Nebenbedingungen Kapitel 7: Optimierung unter Nebenbedingungen Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 1. Juli 2009 1 / 18 7.1 Bemerkung

Mehr

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen

Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Beispiel: Graphische Darstellung Zulässigkeitsbereich Ungleichung (1) mit

Mehr

Eigenschaften von LPs

Eigenschaften von LPs 2 Lineare Programmierung Eigenschaften von LPs Eigenschaften von LPs Definition 24 Eine Menge K IR n heißt konvex gdw für je zwei Punkte Punkte x (1) K und x (2) K auch jeder Punkt mit 0 λ 1 zu K gehört

Mehr

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen

Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sattelpunkte und Optimalitätsbedingungen bei restringierten Optimierungsproblemen Sandro Grunert WS 08/09 Seminar Optimierung Technische Universität Chemnitz Inhaltsverzeichnis 2 Inhaltsverzeichnis 0 Grundlegende

Mehr

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel:

Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Kapitel 7 : Lineare Programmierung Die Simplexmethode (G.B.Dantzig, 1947) Beispiel: Eine Firma produziert die Produkte P 1, P 2,..., P q aus den Rohstoffen R 1, R 2,..., R m. Dabei stehen b j Einheiten

Mehr

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2

Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2 Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung

Mehr

7.1 Matrizen und Vektore

7.1 Matrizen und Vektore 7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit

Mehr

Kap. 4: Lineare Programmierung

Kap. 4: Lineare Programmierung Kap. 4: Lineare Programmierung Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 13./14. VO A&D WS 08/09 27.11./2.12.2008 Petra Mutzel Alg. & Dat.

Mehr

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8

FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 FK WMS: Wirtschaftsmathematik 2, Einheit 7/8 Markus Sinnl 1 markus.sinnl@univie.ac.at http://homepage.univie.ac.at/markus.sinnl basierend auf Folien von Dr. Ivana Ljubic, Mag. Christian Spreitzer und Mag.

Mehr

Optimierung. Vorlesung 02

Optimierung. Vorlesung 02 Optimierung Vorlesung 02 LPs in kanonischer Form Für i = 1,, m und j = 1,, d seien c j, b i und a ij reele Zahlen. Gesucht wird eine Belegung der Variablen x 1,, x d, so das die Zielfunktion d c j x j

Mehr

Aufgaben zu Kapitel 23

Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Aufgaben zu Kapitel 23 Verständnisfragen Aufgabe 23 Bestimmen Sie grafisch die optimale Lösung x der Zielfunktion z = c T x unter den Nebenbedingungen mit dem Zielfunktionsvektor

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Lineare Optimierung Dantzig 1947

Lineare Optimierung Dantzig 1947 Lineare Optimierung Dantzig 947 Lineare Optimierungs-Aufgaben lassen sich mit Maple direkt lösen: with(simplex): g:= 4*x + x2

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Technische Universität München. Grundlagen der konvexen Optimierung

Technische Universität München. Grundlagen der konvexen Optimierung Technische Universität München Fakultät für Mathematik Lehrstuhl für Mathematische Optimierung Grundlagen der konveen Optimierung Michael Ulbrich April 2012 Gliederung der Vorlesung 1. Einführung Konvee

Mehr

14. Das Minimumprinzip

14. Das Minimumprinzip H.J. Oberle Variationsrechnung u. Optimale Steuerung SoSe 2008 14. Das Minimumprinzip In diesem Abschnitt behandeln wir die Idee der dynamischen Programmierung, die auf Bellmann 31 (1957) zurückgeht und

Mehr

neue Aspekte - Konsumenten achten auf die Haltbarkeit und den Wiederverkaufswert

neue Aspekte - Konsumenten achten auf die Haltbarkeit und den Wiederverkaufswert 14. Dauerhafte Konsumgüter neue Aspekte - Konsumenten achten auf die Haltbarkeit und den Wiederverkaufswert eines Gutes. - Firmen beachten die Auswirkung der Haltbarkeit auf die Produktionskosten und den

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

10 Extremwerte mit Nebenbedingungen

10 Extremwerte mit Nebenbedingungen 10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen

Mehr

Aufgabe 3.1: LP-Problem mit allen Bedingungstypen

Aufgabe 3.1: LP-Problem mit allen Bedingungstypen Johann Wolfgang Goethe-Universität Frankfurt am Main Lehrst.f.BWL, insb. Quant. Methoden Prof. Dr. Dietrich Ohse Interpretation, zulässige Lösung, Dualität 18. Mai 2004 Aufgabe 3.1: LP-Problem mit allen

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

LinOpt - Tool zur Visualisierung eines multikriteriellen Optimierungsproblems

LinOpt - Tool zur Visualisierung eines multikriteriellen Optimierungsproblems LinOpt Tool zur Visualisierung eines multikriteriellen Optimierungsproblems Erstellt von Michael Berklmeir, Michael Haarnagell, Stefan Kraus, Stephan Roser im Rahmen einer Seminararbeit am Lehrstuhl für

Mehr

1 Zielfunktionen und Restriktionen. Beispiel 1 Beispiel 2 Anna Berta Cäsar Dirk Zielfunktion U A Y A U B =X B Y B X B

1 Zielfunktionen und Restriktionen. Beispiel 1 Beispiel 2 Anna Berta Cäsar Dirk Zielfunktion U A Y A U B =X B Y B X B Seite 1 Ausführliche formal-analytische Herleitungen anhand von zwei Beispielen zum Kapitel 3.2 zum Kurs 42110 Preisbildung auf unvollkommenen Märkten und allgemeines Gleichgewicht Inhaltsverzeichnis 1

Mehr

Kuhn-Tucker Bedingung

Kuhn-Tucker Bedingung Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,

Mehr

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 11 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 3 Wiederholung! Lineare Programme häufig geeignete Modellierung von Optimierungsproblemen! Verschiedene Darstellungen sind

Mehr

- 2 - Wir legen um den Betrachtungspunkt einen Einheitskreis. Geometrisch hat das in etwa folgendes

- 2 - Wir legen um den Betrachtungspunkt einen Einheitskreis. Geometrisch hat das in etwa folgendes - -. Zum Gradienten Daß man aus den Richtungsableitungen schließen kann, daß die Funktion in einer Zwischenrichtung, nämlich in Richtung des Gradienten den steilsten Anstieg hat, will einem trotz Beweises

Mehr

Kurseinheit 2»Dualität und weiterführende Methoden«

Kurseinheit 2»Dualität und weiterführende Methoden« Inhaltsübersicht 1 Gliederung Kurseinheit 1»Simpleverfahren«1. Einleitung 1.1. Einordnung und Übersicht des Stoffes 1.2. Einführendes Beispiel und Grundlagen 2. Lineare Gleichungssysteme 2.1. Die allgemeine

Mehr

Optimierungstheorie Scheinklausur Sommersemester Juli 2007

Optimierungstheorie Scheinklausur Sommersemester Juli 2007 Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Prof. Dr. Christian Wieners, Dipl.-Math. techn. Martin Sauter Institut für Angewandte und Numerische Mathematik Optimierungstheorie Scheinklausur

Mehr

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe

Abbildung 1: Graphische Lösung der ersten Übungsaufgabe Lösungen zu den Übungsaufgaben im Kapitel 1 des Lehrbuches Operations Research Deterministische Modelle und Methoden von Stephan Dempe und Heiner Schreier 1. Lösen Sie die folgende lineare Optimierungsaufgabe

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Die duale Simplexmethode

Die duale Simplexmethode Kapitel 0 Die duale Simplexmethode Bei der dualen Simplexmethode ist eine Startlösung oftmals leichter angebbar als bei der Simplexmethode für das ursprüngliche lineare Programm, da man keine Nichtnegativitätsanforderungen

Mehr

Optimierung. Vorlesung 08

Optimierung. Vorlesung 08 Optimierung Vorlesung 08 Heute Dualität Ganzzahligkeit Optimierung der Vorlesung durch Evaluierung 2 Das duale LP Das primale LP Maximiere c T x unter Ax b, x R d 0. wird zu dem dualen LP Minimiere b T

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Größter Kreis in konvexem Polygon [vgl. Kapitel 6

Mehr

11 Grafische Lösung eines linearen Optimierungsproblems 1

11 Grafische Lösung eines linearen Optimierungsproblems 1 Grafische Lösung eines linearen Optimierungsproblems Die grafische Lösung beliebiger Probleme ist zeitaufwendig und ungenau, auch ergeben sich Beschränkungen in der Lösbarkeit solcher Probleme in Folge

Mehr

Technische Universität München

Technische Universität München Technische Universität München Zentrum Mathematik Fallstudien Diskrete Optimierung Dipl.-Math.Oec Melanie Bestle Dr. Michael Ritter Dienstag, 10. Mai 2011: Dualität 1 Dualität: Geometrische Herleitung

Mehr

Systeme von linearen Ungleichungen

Systeme von linearen Ungleichungen Systeme von linearen Ungleichungen ALGEBRA Kapitel 6 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 28. Februar 2016 Überblick über die bisherigen ALGEBRA

Mehr

16. FUNKTIONEN VON MEHREREN VARIABLEN

16. FUNKTIONEN VON MEHREREN VARIABLEN 16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009

Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Einführung in die Wirtschaftsinformatik VO WS 2008 / 2009 Daten Modelle Steuerung Wilfried Grossmann Teil 3: Steuerung Mathematische Modelle werden häufig dazu verwendet um ein optimales Verhalten zu bestimmen

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

Lineare Optimierung Teil 2

Lineare Optimierung Teil 2 Lineare Optimierung Teil 2 Primale Degeneration Duale Degeneration = Mehrdeutigkeit Normalform kanonische Form Duale Simplexmethode HTW-Berlin FB3 Prof. Dr.F. Hartl 1 Primale Degeneration/1 Besitzt eine

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Das Matching Polytop

Das Matching Polytop Das Matching Polytop Manuel Schneider Institut für Mathematik, TU Berlin Seminar: Algorithmische Diskrete Mathematik 27. Mai 2008 Überblick 1 Beschreibungen durch Ungleichungen Das Perfekte Matching Polytop

Mehr

Optimalitätsbedingungen

Optimalitätsbedingungen Optimalitätsbedingungen Nadja Irmscher 28. Mai 2010 1 Nachweis von Suboptimalität und Abbruchkriterien Über das gegebene Programm minimiere f 0 (x) über x D sodass f i (x) 0, i = 1,..., m h i (x) = 0,

Mehr

3.1. Existenzsatz und Struktur der Lösungsmenge

3.1. Existenzsatz und Struktur der Lösungsmenge 3. EXISTENZ UND DUALITÄT 3.1. Existenzsatz und Struktur der Lösungsmenge Nach dem Satz von Weierstraß besitzt eine lineare Funktion auf einem Polytop stets ein Minimum und ein Maximum. Im allgemeinen Fall

Mehr

Übungsbuch Beschaffung, Produktion und Logistik

Übungsbuch Beschaffung, Produktion und Logistik Vahlens Übungsbücher der Wirtschafts- und Sozialwissenschaften Übungsbuch Beschaffung, Produktion und Logistik Aufgaben, Lösungen und Implementierung in Excel von Prof. Dr. Dr. h.c. Hans-Ulrich Küpper,

Mehr

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }.

ist ein Polyeder. c) Sei F eine Seite von P. Wann ist f 1 (F ) eine Seite von f 1 (P )? Begründen Sie Ihre Antwort. x 1. x = max{ x i i N n }. alteklausuraufgaben 1 LinOpt Klausur Sommersemester 05 Aufgabe 1 a) Definieren Sie den Begriff der konischen Hülle. b) Sei S R n. Zeigen Sie: Cone S = Lin S x S : x Cone (S \ {x}). Aufgabe 2 a) Definieren

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Berechnung von Eigenwerten und Eigenvektoren Mathematik 1 Bestimmung von Eigenwerten und Eigenvektoren Jedes λ, das det(a

Mehr

Mikroökonomik. Das Haushaltsoptimum. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Das Haushaltsoptimum 1 / 37

Mikroökonomik. Das Haushaltsoptimum. Harald Wiese. Universität Leipzig. Harald Wiese (Universität Leipzig) Das Haushaltsoptimum 1 / 37 Mikroökonomik Das Haushaltsoptimum Harald Wiese Universität Leipzig Harald Wiese (Universität Leipzig) Das Haushaltsoptimum 1 / 37 Gliederung Einführung Haushaltstheorie Das Budget Präferenzen, Indi erenzkurven

Mehr

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie

Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x

Mehr

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung

Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Mathematische Grundlagen für Wirtschaftswissenschaftler Übungsaufgaben aus Kapitel 3 - Lineare Optimierung Sascha Kurz Jörg Rambau 24. November 2009 2 Aufgabe 3.1. Ein in m Depots gelagertes homogenes

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Lineare Optimierung Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 1. Juli 2012 Outline Lineares Programm (LP) in Standardform

Mehr

1 Einführung in Lineare Programme und Dualität

1 Einführung in Lineare Programme und Dualität Gliederung Inhaltsverzeichnis 1 Einführung in Lineare Programme und Dualität 1 1.1 Lineare Programme......................... 1 1.2 Dualität............................... 2 2 Grundlegende Sätze und Definitionen

Mehr

Optimierung für Nichtmathematiker

Optimierung für Nichtmathematiker Optimierung für Nichtmathematiker Prof. Dr. R. Herzog WS2010/11 1 / 1 Teil IV Konvexe und ganzzahlige Optimierung Vorlesung 11 IV Konvexe und ganzzahlige Optimierung 2 / 34 Inhaltsübersicht 29Lineare Optimierung

Mehr

Polaren am Kreis. Helmut Frühinsfeld (aka ottogal) September x 2. , usw.) a 2. = a 1 b 1 + a 2 b 2 (1) a = 1 + a 2 2 (2) a 2 a.

Polaren am Kreis. Helmut Frühinsfeld (aka ottogal) September x 2. , usw.) a 2. = a 1 b 1 + a 2 b 2 (1) a = 1 + a 2 2 (2) a 2 a. Polaren am Kreis Helmut Frühinsfeld aka ottogal September 017 1 Vorbemerkungen Wir verwenden ein kartesisches x 1, x -Koordinatensystem. Zu jedem Punkt Xx 1 x gehört der Ortsvektor OX = Analog hat Aa 1

Mehr

Zusatzübungen. Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich).

Zusatzübungen. Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich). Zusatzübungen (Lösungen am Ende) Aufgabe 1: ( ) ( ) 1 1 2 3 1 3 A =, B =, C = 3 1 2 2 5 2 0 Berechne alle Produkte zweier oben genannten Matrizen, die möglich sind (also A B, B A, C B,..., usw., wenn möglich).

Mehr

Geometrische Interpretation

Geometrische Interpretation Geometrische Interpretation Stefanie Riedel 10. Mai 2010 1 Starke und schwache Dualität über Wertemengen Wir betrachten eine einfache geometrische Interpretation dualer Funktionen aus der Menge G: G =

Mehr

Wie schreibe ich einen Kürzester Kruzester

Wie schreibe ich einen Kürzester Kruzester Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 5 Vorlesung Algorithmentechnik im WS 8/9 Ausgabe 16. Dezember 8 Abgabe 13. Januar 9, 15:3 Uhr (im Kasten vor Zimmer 319, Informatik-Hauptgebäude,

Mehr

Über- und unterbestimmte

Über- und unterbestimmte Über- und unterbestimmte Systeme (verallgemeinerte Lösungen) Über- und unterbestimmte Systeme Ax = b ist genau dann für alle b R m eindeutig lösbar, wenn m = n und rk A = n. Falls m n oder rk A < min{m,

Mehr

Modellieren mit AMPL

Modellieren mit AMPL Modellieren mit AMPL Elisabeth Gassner Mathematische Modelle in den Wirtschaftswissenschaften Prof. R. E. Burkard 27. April 2007 E. Gassner (Mathematische Modelle) AMPL 27. April 2007 1 / 21 Überblick

Mehr

Unternehmensplanung (WS 2004/05)

Unternehmensplanung (WS 2004/05) Unternehmensplanung (WS 2004/05) Die Klausur Unternehmensplanung besteht aus drei Teilklausuren im Umfang von je 60 Minuten. Bitte bearbeiten Sie zwei der drei zur Auswahl stehenden Teilklausuren. Je Teilklausur

Mehr

1. Hausaufgabenblatt (16.04./ )

1. Hausaufgabenblatt (16.04./ ) Lehrstuhl Ingenieurmathematik Modul: (Wirtschaftsingenieurwesen/Betriebswirtschaftslehre/Informatik) Sommersemester 2014 1. Hausaufgabenblatt (16.04./23.04.2015) Aufgabe H 1.1 Lösen Sie die linearen Gleichungssysteme

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung

Operations Research. Die Simplexmethode. LP-Dualität. Die Simplexmethode. Rainer Schrader. 18. Juni Zur Erinnerung: Gliederung Operations Research Rainer Schrader Die Simplexmethode Zentrum für Angewandte Informatik Köln 18 Juni 00 1 / 1 / 1 Gliederung LP-Dualität ein lineares Produktionsmodell der Simplexalgorithmus Phase I Endlichkeit

Mehr