Mathematik 1 für Wirtschaftsinformatik
|
|
|
- Johannes Schulz
- vor 8 Jahren
- Abrufe
Transkript
1 Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg
2 Berechnung von Eigenwerten und Eigenvektoren Mathematik 1 Bestimmung von Eigenwerten und Eigenvektoren Jedes λ, das det(a λe) = 0 löst ist ein Eigenwert von A. Anschließend: Für jedes erhaltene λ Lösen des Gleichungssystems (A λe)x = o mit x o Damit hat man für jedes λ mindestens einen reellen Eigenvektor x. Satz: Mit x o ist auch jeder Vektor rx (r R, r 0) Eigenvektor zum Eigenwert λ von A. Beispiele A = D = ( ) 0,8 0,2, B = 0 1,1 ( ) 1 3, E = 1 2 ( ) 1 0,2, C = , 0,1 0, Grundlegende Bausteine 2. Grundlegende Werkzeuge 3. Aussagenlogik 4. Komplexe Zahlen 5. Lineare Algebra 5.1. Matrizen und Vektoren 5.2. Matrixalgebra 5.3. Punktmengen im R n 5.4. Lineare Gleichungssysteme 5.5. Inverse Matrizen 5.6. Determinanten 5.7. Eigenwerte 6. Lineare Programme 102
3
4
5
6 Sätze über Eigenwertprobleme Mathematik 1 Gegeben: A ist eine reelle, symmetrische n n-matrix Es gilt: Die Eigenwerte sind alle reell und nicht notwendigerweise verschieden und ist der Rang von A gleich k n, so ist λ = 0 ein (n k)-facher Eigenwert Zu den reellen Eigenwerten λ 1,..., λ n existieren genau n reelle, linear unabhängige Eigenvektoren x 1,..., x n Diese Eigenvektoren kann man so wählen, dass X = (x 1,..., x n ) orthogonale Matrix wird, also XX T = E λ 1 0 Gegeben zusätzlich: L = die Diagonalmatrix der 0 λ n Eigenwerte von A und A m = A... A mit m N Dann gilt: L = X T AX und A = XLX T 1. Grundlegende Bausteine 2. Grundlegende Werkzeuge 3. Aussagenlogik 4. Komplexe Zahlen 5. Lineare Algebra 5.1. Matrizen und Vektoren 5.2. Matrixalgebra 5.3. Punktmengen im R n 5.4. Lineare Gleichungssysteme 5.5. Inverse Matrizen 5.6. Determinanten 5.7. Eigenwerte 6. Lineare Programme außerdem gilt: A m besitzt die Eigenwerte λ m 1,..., λ m n 103
7 Mathematik 1: Gliederung 1 Grundlegende Bausteine 2 Grundlegende Werkzeuge 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 6 Lineare Programme Nebenbedingungen und Zulässigkeitsbereich Zielfunktion Graphische Lösung
8 Lineare Programe: Beispiel Mathematik 1 Ein holzverarbeitender Betrieb möchte ein Produktionsprogramm für Spanplatten festlegen. Dabei sind folgende Restriktionen zu berücksichtigen: Es werden zwei Typen von Spanplatten hergestellt: Typ A in der Quantität x 1 für den Außenbereich und Typ B in der Quantität x 2 für den Innenbereich. Zur Herstellung der Spanplatten werden zwei Arten von Furnierblättern F 1 bzw. F 2 unterschiedlicher Qualität benutzt. Die Spanplatten werden mittels einer Presse, in der die Furniere verleimt werden, hergestellt. Zur Herstellung einer Platte vom Typ A wird ein Blatt von F 1 und zwei Blätter von F 2 benötigt, während bei Typ B drei Blätter von F 1 und ein Blatt von F 2 benutzt werden. Von F 1 bzw. F 2 stehen 1500 bzw Stück zur Verfügung. Die Presse steht insgesamt 700 Minuten zur Verfügung, wobei zur Verleimung beider Plattentypen pro Stück jeweils eine Minute benötigt wird. 1. Grundlegende Bausteine 2. Grundlegende Werkzeuge 3. Aussagenlogik 4. Komplexe Zahlen 5. Lineare Algebra 6. Lineare Programme 6.1. Nebenbedingungen und Zulässigkeitsbereich 6.2. Zielfunktion 6.3. Graphische Lösung 105
9 Lineare Produktionsplanung: Beispiel Mathematik 1 Tabellarische Darstellung der Problemdaten: Einheiten Einheiten Pressminuten Produkt Menge von F 1 von F 2 pro Stück Typ A x Typ B x Kapazitäten Zusammenhang von Daten und Variablen durch System von linearen Ungleichungen beschreibbar: Restriktionen: (1) x 1 + 3x (Vorrat F 1 ) (2) 2x 1 + x (Vorrat F 2 ) (3) x 1 + x (Kapazität Presse) (4)(5) x 1, x 2 0 (nicht-negative Mengen) 1. Grundlegende Bausteine 2. Grundlegende Werkzeuge 3. Aussagenlogik 4. Komplexe Zahlen 5. Lineare Algebra 6. Lineare Programme 6.1. Nebenbedingungen und Zulässigkeitsbereich 6.2. Zielfunktion 6.3. Graphische Lösung 106
10
11 Lineare Produktionsplanung: Beispiel, Zulässigkeitsbereich Mathematik 1 Begriffe und Beobachtungen Jede (x 1, x 2 )-Kombination, die alle Restriktionen (1) bis (5) erfüllt, bezeichnet man als zulässige Lösung. Die Menge Z = ( x1 x 2 ) R 2 + : x 1 + 3x ; 2x 1 + x ; x 1 + x nennt man Zulässigkeitsbereich des Problems. Wegen Restriktion x R 2 +: Erster Quadrant des Koordinatensystems genügt für graphische Darstellung des Zulässigkeitsbereiches. 1. Grundlegende Bausteine 2. Grundlegende Werkzeuge 3. Aussagenlogik 4. Komplexe Zahlen 5. Lineare Algebra 6. Lineare Programme 6.1. Nebenbedingungen und Zulässigkeitsbereich 6.2. Zielfunktion 6.3. Graphische Lösung 107
12 Beispiel: Graphische Darstellung Zulässigkeitsbereich Mathematik 1 Ungleichung (1) mit x 1 + 3x entspricht dreieckigem Bereich in R 2 + Begrenzung durch die drei Geraden mit x 1 + 3x 2 = 1500, x 1 = 0 und x 2 = 0 Also: Grenzpunkte (0,500), (1500,0), (0,0) Analog für die übrigen Nebenbedingungen 1. Grundlegende Bausteine 2. Grundlegende Werkzeuge x (1) x 1 + 3x x 1, x 2 0 (2) 2x 1 + x (3) x 1 + x x x 1, x 2 0 x 1, x x Aussagenlogik 4. Komplexe Zahlen 5. Lineare Algebra 6. Lineare Programme 6.1. Nebenbedingungen und Zulässigkeitsbereich 6.2. Zielfunktion 6.3. Graphische Lösung x 1 x 1 x Beispiel: Graphische Darstellung der Restriktionen 108
Wirtschaftsmathematik für International Management (BA)
Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6
Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens
in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis
Mathematik 1 für Wirtschaftsinformatik
für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 5 Lineare Algebra
9. Übungsblatt zur Mathematik I für Maschinenbau
Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2012/2013
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Aussagenlogik. 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl. C: 2 ist eine Primzahl D: 7 7. F: 3 ist Teiler von 9
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 2
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 25): Lineare Algebra und analytische Geometrie 2 2. (Frühjahr 29, Thema 3, Aufgabe 3) Gegeben sei die reelle 3 3 Matrix 4 2 A = 2 7 2 R 3 3. 2 2 a)
Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016
Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert
Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie und Erziehungswissenschaften Blatt 2
Fakultät Mathematik WS 27/8 Institut für Mathematische Stochastik / Institut für Analysis Dr. W. Kuhlisch, Dr. F. Morherr Mathematik für Studierende der Fachrichtungen Biologie, Chemie, Lebensmittelchemie
Orientierung der Vektoren b 1,..., b n. Volumen des von den Vektoren aufgespannten Parallelotops
15. DETERMINANTEN 1 Für n Vektoren b 1,..., b n im R n definiert man ihre Determinante det(b 1,..., b n ) Anschaulich gilt det(b 1,..., b n ) = Orientierung der Vektoren b 1,..., b n Volumen des von den
Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 3
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 205/6): Lineare Algebra und analytische Geometrie 3 3. (Herbst 997, Thema 3, Aufgabe ) Berechnen Sie die Determinante der reellen Matrix 0 2 0 2 2
Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1:
WS 99/99 Aufgabe : Bestimmen Sie Zahlen a b,, für die 6 b a und gleichzeitig a + b + gilt. Lösung zu Aufgabe : WS 99/99 Aufgabe : Ein Unernehmen stellt aus ohstoffen (,,, ) Zwischenprodukte ( Z, Z, Z )
1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von
1.11 Eigenwertproblem Anwendungen von Eigenwerten und Eigenvektoren Lineare Rekursionen Lineare Differentialgleichungssysteme Bestimmung von Wachstumsraten Bestimmung von Maximal- und Minimalwerten von
Eigenwerte (Teschl/Teschl 14.2)
Eigenwerte (Teschl/Teschl 4.2 Ein Eigenvektor einer quadratischen n nmatrix A ist ein Vektor x R n mit x, für den Ax ein skalares Vielfaches von x ist, es also einen Skalar λ gibt mit Ax = λ x Ax λ x =
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Betrachtet wird eine (n,n)-matrix A. Eine Zahl λ heißt Eigenwert von A, wenn ein Vektor v existiert, der nicht der Nullvektor ist und für den gilt: A v = λ v.
D-ITET. D-MATL, RW Lineare Algebra HS 2017 Dr. V. Gradinaru T. Welti. Online-Test 2. Einsendeschluss: Sonntag, den
D-ITET. D-MATL, RW Lineare Algebra HS 7 Dr. V. Gradinaru T. Welti Online-Test Einsendeschluss: Sonntag, den..7 : Uhr Dieser Test dient, seriös bearbeitet, als Repetition des bisherigen Vorlesungsstoffes
Eigenwerte und Eigenvektoren von Matrizen
Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt
Mathematik 1 Bachelorstudiengang Maschinenbau
Mathematik 1 Bachelorstudiengang Maschinenbau Prof Dr Stefan Etschberger Hochschule Augsburg Sommersemester 2012 Übersicht 4 Lineare Algebra 1 Grundlegendes 2 Aussagenlogik 3 Mengen 4 Lineare Algebra Lernziele
Mathematik II Frühjahrssemester 2013
Mathematik II Frühjahrssemester 213 Prof. Dr. Erich Walter Farkas Kapitel 7: Lineare Algebra Kapitel 7.5: Eigenwerte und Eigenvektoren einer quadratischen Matrix Prof. Dr. Erich Walter Farkas Mathematik
Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10)
Vorlesung Mathematik für Ingenieure 3 (Wintersemester 2009/10) Kapitel 15: Eigenwerte und -vektoren Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 5. November 2009) Diagonalisierbarkeit
Lineare Algebra für PhysikerInnen
Universität Wien, SS 2015 Lineare Algebra für PhysikerInnen Beispiele für Multiple-Choice-Fragen Punkteschlüssel: [Typ 1 aus 4] und [Typ 3 aus 4]... 0.8 Punkte [Typ 2 aus 4]... 1 Punkt Bei der schriftlichen
Wirtschafts- und Finanzmathematik
Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Organisation Termine, Personen, Räume Gliederung 1 Grundlegende
Kapitel 5. Eigenwerte. Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich der Produktion ist, d.h. wenn.
Kapitel 5 Eigenwerte Josef Leydold Mathematik für VW WS 2016/17 5 Eigenwerte 1 / 42 Geschlossenes Leontief-Modell Ein Leontief-Modell für eine Volkswirtschaft heißt geschlossen, wenn der Konsum gleich
Henning Krause Lineare Algebra Julia Sauter SS 2017 Klausur mit Lösungsvorschlag Jan Geuenich
Henning Krause Lineare Algebra Julia Sauter SS 27 Klausur 2.9.27 mit Lösungsvorschlag Jan Geuenich Aufgabe (4 Punkte: Sei n N und seien A und B zwei (n n-matrizen über einem Körper K. Wahr Falsch (a Es
Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren
Mathematik II Frühlingsemester 215 Kapitel 8: Lineare Algebra 8.5 Eigenwerte und Eigenvektoren www.math.ethz.ch/education/bachelor/lectures/fs215/other/mathematik2 biol Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/
MC-Serie 11: Eigenwerte
D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung
Klausurenkurs zum Staatsexamen (SS 2013): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag
Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 23): Lineare Algebra und analytische Geometrie 3 Lösungsvorschlag 3. Mit Hilfe elementarer Zeilenumformungen sowie der Tatsache, daß sich die Determinante
Aufgaben und Lösungen zur Abschlußklausur zur Mathematik 1 (Wiederholer und Nachzügler) vom
Aufgaben und Lösungen zur Abschlußklausur zur Mathematik (Wiederholer und Nachzügler) vom 6.3.8. In der Menge M n n aller quadratischen Matrizen vom Format n n mit Einträgen aus R werden die folgenden
3.6 Eigenwerte und Eigenvektoren
3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse
Klausur HM I H 2005 HM I : 1
Klausur HM I H 5 HM I : 1 Aufgabe 1 4 Punkte): Zeigen Sie mit Hilfe der vollständigen Induktion: n 1 1 + 1 ) k nn k n! für n. Lösung: Beweis mittels Induktion nach n: Induktionsanfang: n : 1 ) 1 + 1 k
Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren
Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren
1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema
1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und
Tutorium Mathematik II, M Lösungen
Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +
9 Eigenwerte und Eigenvektoren
92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl
9 Eigenwerte und Eigenvektoren
92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl
Berechnung der Determinante
Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,
7.1 Matrizen und Vektore
7.1 Matrizen und Vektore Lineare Gleichungssysteme bestehen aus einer Gruppe von Gleichungen, in denen alle Variablen nur in der 1. Potenz vorkommen. Beispiel Seite 340 oben: 6 x 2 = -1 + 3x 2 = 4 mit
Klausur Lineare Algebra I am Es sind insgesamt 60 Punkte bei der Klausur zu erreichen.
Klausur Lineare Algebra I am 03.02.10 Es sind insgesamt 60 Punkte bei der Klausur zu erreichen. Aufgabe 1. (6 Punkte insgesamt) a.) (3P) Definieren Sie, was eine abelsche Gruppe ist. b.) (3P) Definieren
47 Singulärwertzerlegung
47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar
Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker
TECHNISCHE UNIVERSITÄT BERLIN SS 2001 Fachbereich 3 - Mathematik Pohst / Lusala Prüfungs-/Übungsschein-Klausur (Rechenteil) Lineare Algebra für Ingenieure/E-Techniker Name:................................................................................
Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL
Modulteilprüfung Lineare Algebra L2M-GL/L5M-GL Sommersemester 2015 Universität Frankfurt FB 12, Institut für Mathematik 13.07.2015 Dr. Andreas Maurischat Dauer: 90 Minuten Hilfsmittel: Stifte und ein zweiseitig
5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21
5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11
Singulärwert-Zerlegung
Singulärwert-Zerlegung Zu jeder komplexen (reellen) m n-matrix A existieren unitäre (orthogonale) Matrizen U und V mit s 1 0 U AV = S = s 2.. 0.. Singulärwert-Zerlegung 1-1 Singulärwert-Zerlegung Zu jeder
6 Symmetrische Matrizen und quadratische Formen
Mathematik für Ingenieure II, SS 009 Dienstag 3.6 $Id: quadrat.tex,v.4 009/06/3 4:55:47 hk Exp $ 6 Symmetrische Matrizen und quadratische Formen 6.3 Quadratische Funktionen und die Hauptachsentransformation
Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen.
Definition: Lineare Abbildung Lineare Abbildungen Die wichtigste Klasse von Funktionen zwischen Vektorräumen sind die linearen Abbildungen. 8.1 Definition: Lineare Abbildung Eine Funktion f : V Ñ W zwischen
Serie 12: Eigenwerte und Eigenvektoren
D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie : Eigenwerte und Eigenvektoren Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom 7 und 9 Dezember Finden Sie für folgende
BC 1.2 Mathematik WS 2016/17. BC 1.2 Mathematik Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra. b 2
Zusammenfassung Kapitel II: Vektoralgebra und lineare Algebra 1 Vektoralgebra 1 Der dreidimensionale Vektorraum R 3 ist die Gesamtheit aller geordneten Tripel (x 1, x 2, x 3 ) reeller Zahlen Jedes geordnete
Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 1: Lineare Algebra und Optimierung.
Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil : Lineare Algebra und Optimierung Wintersemester Matrizenrechnung Aufgabe ( 3 0 Gegeben sind die Matrizen A = 2 5 2 4 D =
I) MATRIZEN. 1) Speichern geometrischer Daten: Punkte, Vektoren. j - te Variable (Spalte), j = 1,2,3,..., n
I) MATRIZEN Motivation: 1) Speichern geometrischer Daten: Punkte, Vektoren. 2) Lineare Gleichungen y1 = a11x1+ a12x2 + a13x3 y2 = a21x1+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i
Großes Lehrbuch der Mathematik für Ökonomen
Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg
Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I
Institut für Mathematik Blatt Prof. Dr. B. Martin, H. Süß Abgabe: 0.4. Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Aufgabe : 2 Punkte Stellen Sie die Gleichung der Ebene auf, in
Lösungen zu Mathematik I/II
Prof. Dr. E. W. Farkas ETH Zürich, Februar 11 D BIOL, D CHAB Lösungen zu Mathematik I/II Aufgaben 1. 1 Punkte a Wir berechnen lim x x + x + 1 x + x 3 + x = 1. b Wir benutzen L Hôpital e x e x lim x sinx
Mathematik für Wirtschaftswissenschaftler II
Mathematik für Wirtschaftswissenschaftler II Lineare Wirtschaftsalgebra von Dr. Dietrich Ohse Professor für Betriebswirtschaftslehre, insbesondere Quantitative Methoden, an der Johann Wolfgang Goethe-Universität
Eigenwerte und Eigenvektoren
Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte
Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen
Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können
Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen
Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden
Wirtschafts- und Finanzmathematik
Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Organisation Termine, Personen, Räume Gliederung 1 Grundlegende
8.2 Invertierbare Matrizen
38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Eigenwertprobleme. 25. Oktober Autoren: 1. Herrmann, Hannes ( ) 2. Kraus, Michael ( ) 3. Krückemeier, Paul ( )
Eigenwertprobleme 5. Oktober Autoren:. Herrmann, Hannes (45969). Kraus, Michael (9). Krückemeier, Paul (899) 4. Niedzielski, Björn (7) Eigenwertprobleme tauchen in der mathematischen Physik an Stellen
IV. Matrizenrechnung. Gliederung. I. Motivation. Lesen mathematischer Symbole. III. Wissenschaftliche Argumentation. i. Rechenoperationen mit Matrizen
Gliederung I. Motivation II. Lesen mathematischer Symbole III. Wissenschaftliche Argumentation IV. Matrizenrechnung i. Rechenoperationen mit Matrizen ii. iii. iv. Inverse einer Matrize Determinante Definitheit
KLAUSUR. Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.:
KLAUSUR Lineare Algebra (E-Techniker/Mechatroniker/W-Ingenieure/Informatiker).3. (W. Koepf) Name: Vorname: Matr. Nr./Studiengang: Versuch Nr.: Für jede Aufgabe gibt es Punkte. Zum Bestehen der Klausur
Eigenwerte und Eigenvektoren
Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen
Aufgabe 1: Gleichungssystem mit Parameter ( / 12) Für welche Werte des reellen Parameters α besitzt das lineare Gleichungssystem
1 Hochschule München Fakultät 03 FA SS 2008 Diplomvorprüfung in Mathematik I (Lineare Algebra) Fahrzeugtechnik Arbeitszeit: Hilfsmittel: Aufgabensteller: 90 Minuten Formelsammlung, Skripten, Bücher, Taschenrechner
Lösungen Test 1 - Lineare Algebra
Name: Seite: Fachhochschule Nordwestschweiz (FHNW) Hochschule für Technik Lösungen Test - Lineare Algebra Dozent: R. Burkhardt Büro: 4. Klasse:. Studienjahr Semester: Datum: HS 8/9 Bemerkung Alle Aufgaben
Zusammenfassung und Beispiellösungen. zur Linearen Algebra
Zusammenfassung und Beispiellösungen zur Linearen Algebra Inhaltsverzeichnis TI Taschenrechner Funktionen für Matrizen... n*m Matrix... Diagonal und Dreiecksmatrix... Transponierte der Matrix A (AT)...
Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 2016
Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs 4Q Lineare Algebra/Analytische Geometrie II SoSe 206 Bearbeiten Sie bitte
Rückblick auf die letzte Vorlesung
Rückblick auf die letzte Vorlesung Lineare Differentialgleichungen Ausblick auf die heutige Vorlesung Lineare autonome Differentialgleichungen 2 Bestimmung des Fundamentalsystems 3 Jordansche Normalform
6 Eigenwerte und Eigenvektoren
6.1 Eigenwert, Eigenraum, Eigenvektor Definition 6.1. Es sei V ein Vektorraum und f : V V eine lineare Abbildung. Ist λ K und v V mit v 0 und f(v) = λv gegeben, so heißt die Zahl λ Eigenwert (EW) von f,
Lineare Algebra II 3. Übungsblatt
Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome
f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.
Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales
Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1
D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares
DEUTSCHE SCHULE MONTEVIDEO BIKULTURELLES DEUTSCH-URUGUAYISCHES ABITUR ( AUF SPANISCH )
Grundlegende Bemerkungen : Der Begriff des Vektors wurde in den vergangenen Jahren im Geometrieunterricht eingeführt und das mathematische Modell des Vektors wurde vor allem auch im Physikunterricht schon
Ausgewählte Lösungen zu den Übungsblättern 9-10
Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt
Ökonometrische Analyse
Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der
Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth
Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter
18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive
Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017
Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum
6 Hauptachsentransformation
6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten
Klausurähnliche Aufgaben
Sommersemester 2007/08 Lineare Algebra Klausurähnliche Aufgaben Aufgabe 1 Seien v 1, v 2, v 3, v 4, v 5, v 6 die Vektoren in R 5 mit v 1 = (1, 2, 3, 1, 2), v 2 = (2, 4, 6, 2, 4), v 3 = ( 1, 1, 3, 0, 3),
5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit
ME Lineare Algebra HT 2008 99 5 Eigenwerte, Eigenvektoren und Diagonalisierbarkeit 5.1 Ein Beispiel zur Motivation Als einfachstes Beispiel eines dynamischen Systems untersuchen wir folgendes Differentialgleichungssystem
4 Lineare Abbildungen Basisdarstellungen
4 Lineare Abbildungen Basisdarstellungen (4.1) Seien V,W endlich dimensionale K-Vektorräume, und sei T : V W linear. Sei {v 1,...,v } Basis von V und {w 1,...,w M } Basis von W. Sei T (v j ) = M a kj w
Lineare Algebra und Numerische Mathematik für D-BAUG
P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist
13. Lineare Algebra und Koordinatenwechsel.
3. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation der lineare
Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte
Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung
Klausur zur Mathematik I (Modul: Lineare Algebra I)
Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Anusch Taraz Sommersemester 215 Klausur zur Mathematik I (Modul: Lineare Algebra I) 28.8.215 Sie haben 6 Minuten Zeit zum Bearbeiten
