Extrema mit Nebenbedingungen
|
|
|
- Cornelia Brauer
- vor 9 Jahren
- Abrufe
Transkript
1 Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst und die Zielfunktion als Funktion einer Variablen dargestellt werden. x+y = = y = x, f(x, x) = x +x+, f = = x =, y = Die Untersuchung der notwendigen Bedingung soll hier genügen. Wie ist nun vorzugehen, falls die Nebenbedingung nicht oder nur sehr schwer nach einer Variablen aufgelöst werden kann? In der Grafik ist die Idee enthalten.
2 Lagrange-Funktion Joseph Louis Lagrange 76-8 Im Extremum berührt eine Niveaulinie f(x, y) = c die Nebenbedingungskurve g(x, y) =. y x Um die Berührbedingungen zu ermitteln, denken wir uns eine Niveaulinie in Parameterdarstellung x(t), y(t) gegeben, d. h. es gilt: f(x(t), y(t)) = c. verallgemeinerte Kettenregel = f x (...) x (t) + f y (...) y (t) = Skalarprodukt = ( fx f y ) ( x ) (t) y (t) Der Gradient von f steht also senkrecht auf dem Tangentialvektor der Niveaulinie. An der Berührstelle (x, y ) muss daher der Gradient von f kollinear zum Normalenvektor der Nebenbedingung sein: ( ) ( ) fx gx = λ f y g y Um Extrema aufzuspüren, ist daher das Gleichungssystem zu lösen: f x λg x = f y λg y = g(x,y) = Dieses Gleichungssystem erhält man auch, indem man die sogenannte Lagrange-Funktion L(x,y,λ) = f(x,y)+λg(x,y) aufstellt und die partiellen Ableitungen L x, L y, L λ null setzt. λ heißt Lagrange-Multiplikator. Für das Beispiel ist dann: L(x,y,λ) = 5 x y + λ(x+y ) x+λ = y +λ = x+y = = x =, y =, λ =
3 Extrema mit zwei Nebenbedingungen Gesucht sind die Extrema der Funktion f(x,y,z) = x+y z unter den Nebenbedingungen g (x,y,z) = x +y 8 = und g (x,y,z) = x+z =. Die Nebenbedingungen beinhalten, dass die Funktion nur auf dem Schnitt eines Zylinders mit einer Ebene betrachtet wird, also auf einer Ellipse. Die Lagrange-Funktion lautet nun: L(x,y,z,λ,λ ) = f(x,y,z)+λ g (x,y,z)+λ g (x,y,z) L λ = und L λ = ergeben die Nebenbedingungen. L x =, L y =, L z = besagen, dass sich der Gradient von f(x,y,z) als Linearkombination der Normalenvektoren der Nebenbedingungs-Flächen darstellen lässt. Das ist offensichtlich. Werden die Nebenbedingungs-Flächen an der Stelle des Extremums durch Tangentialebenen approximiert, so steht die Schnittgerade der Tangentialebenen senkrecht auf den Normalen der Nebenbedingungen. Der Gradient von f steht dann senkrecht auf der Schnittgeraden, d.h. dass eine Niveaufläche von f die Schnittgerade berührt. Für das Beispiel erhalten wir: E ( ) mit λ =, λ = E ( 6) mit λ =, λ = Tangentialebene des Zylinders im Punkt E ( ): x = Nebenbedingungsebene: x = Gradient als Linearkombination der Normalenvektoren: = ( ) Schnittgerade: x = + λ, = Die Niveauflächen (nicht dargestellt) x c = verlaufen in diesem Fall parallel zur Schnittgeraden. 6
4 (Ökonomische) Interpretation der Lagrange-Multiplikatoren Wenden wir im Ringen um Einsicht die Lagrange-Methode auf ein lineares Problem an: Gesucht ist das Maximum der Funktion f(x,y) = x+y unter den Nebenbedingungen. x + y =. x+y = 5 y Für die Lagrange-Funktion (in der gleichwertigen Form) L(x,y,λ,λ ) = x+y λ (x+y ) λ (x+y 5) 5. ergeben L x = L y = die Gleichungen λ +λ = λ +λ =. mit den Lösungen: λ = 9 und λ = x Diese Gleichungen kommen uns vielleicht bekannt vor. Hätten wir das Maximum-Problem als lineares Optimierungsproblem formuliert, so würde das duale Problem auf diese Gleichungen führen, vom Gleichheitszeichen einmal abgesehen (möglicherweise wurde so die Dualität entdeckt). Es ist zu vermuten, dass die Lösungen etwas über die Änderung des maximalen Funktionswerts bei Änderung der Kapazitätsgrenzen in den Nebenbedingungen (hier und 5) aussagen. Eine leichte Rechnung stützt diese Vermutung. Die Maximumstelle ( ) ergibt sich aus L λ = und L λ =. Wird nun z.b. der Wert um verringert (die Kapazität wird nicht voll ausgenutzt), so verringert sich das Maximum 7 an der Stelle ( ) um λ = 9, der neue Wert wird in (8 7 9 ) angenommen. In den Wirtschaftswissenschaften werden λ, λ als Schattenpreise bezeichnet. Bei nichtlinearen Optimierungsproblemen besteht näherungsweise dieser Zusammenhang. Die Zielfunktion f(x,y) = 5 (x +y ) nimmt an der Stelle ( ) bei gleichen Nebenbedingungen den maximalen Wert 5 an, λ = 9 =, und λ = 5 =,. Wird z.b. der Wert 5 um verringert, so beträgt das Maximum nur noch,75 an der Stelle ( 9 ). Bei zusätzlicher Verminderung des Werts um ist nun das Maximum,9 an der Stelle ( ). Allgemein formuliert: Gesucht ist das Optimum der Funktion f(x, y) unter der Nebenbedingung g(x, y) = b. Für jedes b gebe es eine Optimumstelle: (x(b), y(b)), für die dann gilt (siehe Lagrange-Funktion): ( ) ( fx (x(b), y(b)) gx (x(b), y(b)) = λ f y (x(b), y(b)) b g y (x(b), y(b)) ) x ( ) (b) y (b) (Skalarprodukt) = d db f(x(b), y(b)) = λ b, beachte: g(x(b), y(b)) = b nach b abgeleitet ergibt rechts, kürzer: d db f Optimum(b) = λ b oder als Differential df Optimum (b) = λ b db
5 Extremwertaufgabe mit Nebenbedingungen f(x,x,x ) Max! (oder Min!) Nebenbedingungen in die gleich-null-form bringen: g (x,x,x ) = g (x,x,x ) = Lagrange-Funktion notieren, für jede Nebenbedingung eine neue Variable λ i : L(x,x,x,λ,λ ) = f(x,x,x )+λ g (x,x,x )+λ g (x,x,x ) Gleichungssystem aufstellen und lösen: L( ) = x x L( ) = x L( ) = g ( ) = g ( ) = d.h. f( )+λ x g x ( )+λ g x ( ) = 5
6 Extremwertaufgaben mit Nebenbedingungen. Man bestimme denjenigen Punkt in der Ebene z = x+y, der vom Punkt P( ) den kleinsten Abstand hat. L(x,y,z,λ) = (x ) +y +z +λ(x+y z) d minimal gdw. d minimal. (x )+λ =. y +λ =. z λ =. x+y z =.+. = z = y mit. = y = x mit. = λ = x mit. = x =, y =, z =. Man bestimme die Extremwerte der Funktion f(x,y) = x y auf dem Einheitskreis. L(x,y,λ) = x y +λ(x +y ). y +λx =. x+λy =. x +y =. x. y = x = y mit. = x / = ±, y / = ± f(x,y ) = f(x,y ) = f(x,y ) = f(x,y ) =. Man bestimme die Punkte auf der Fläche z = xy zum Nullpunkt des Koordinatensystems. L(x,y,z,λ) = x +y +z +λ(z xy ) mit geringstem Abstand d minimal gdw. d minimal. x+ λ x y =. y + λ xy =. z +λ =. z xy = x / = ±, y / = ± 6
7 Hinreichende Bedingung Bei Extremwertaufgaben ohne Nebenbedingungen wird die Art der Extrema über die Definitheit der Hesse-Matrix bestimmt (positiv definit lokales Minimum, negativ definit lokales Maximum). Dieses Vorgehen kann übertragen werden. Die zu untersuchende kritische Stelle wird in die Matrix (z. B.) ( ) Lxx L xy L xy L yy Das ist die Hesse-Matrix einer geänderten Lagrange-Funktion L(x, y). Die λ-variablen wurden zu Parametern. eingesetzt, die dann auf Definitheit überprüft wird. L x, L y wurden bereits für die kritische Stelle ermittelt. Man bestimme die Extremwerte der Funktion f(x,y) = x+y auf dem Einheitskreis x +y =. L(x,y,λ) = x+y +λ(x +x ). +λx =. +λy =. x +y = x =, y =, λ = x =, y =, λ = ( ) ( ) Lxx L xy λ = λ L xy L yy = Max(x y ), Min(x y ) Aufgrund der Funktionswerte f(x,y ) =, f(x,y ) = lag das Ergebnis ohnehin auf der Hand..5 x.5 y Der Einheitskreis wurde nach unten verschoben. 7
10 Extremwerte mit Nebenbedingungen
10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen
Optimieren unter Nebenbedingungen
Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht
Lagrange-Multiplikatoren
Lagrange-Multiplikatoren Ist x eine lokale Extremstelle der skalaren Funktion f unter den Nebenbedingungen g i (x) = 0, dann existieren Lagrange-Multiplikatoren λ i, so dass grad f (x ) = λ i grad g i
Kapitel 12. Lagrange-Funktion. Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28. f (x, y) g(x, y) = c. f (x, y) = x y 2
Kapitel 12 Lagrange-Funktion Josef Leydold Mathematik für VW WS 2017/18 12 Lagrange-Funktion 1 / 28 Optimierung unter Nebenbedingungen Aufgabe: Berechne die Extrema der Funktion unter der Nebenbedingung
Extrema von Funktionen mit zwei Variablen
Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser
3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z
R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des
Musterlösung zu Blatt 1
Musterlösung zu Blatt Analysis III für Lehramt Gymnasium Wintersemester 0/4 Überprüfe zunächst die notwendige Bedingung Dfx y z = 0 für die Existenz lokaler Extrema Mit x fx y z = 8x und y fx y z = + z
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009
UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe
6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode
6 Extremwerte mit Nebenbedingungen: Die Lagrange-Multiplikatoren-Methode In diesem Kapitel orientieren wir uns stark an den Büchern: 1. Knut Sydsæter, Peter Hammond, Mathematik für Wirtschaftswissenschaftler,
Mehrdimensionale Differentialrechnung Übersicht
Mehrdimensionale Differentialrechnung Übersicht Partielle und Totale Differenzierbarkeit Man kann sich mehrdimensionale Funktionen am Besten für den Fall f : R 2 M R vorstellen Dann lässt sich der Graph
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar
Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8. Übungsblatt. ). 12x 3 Die Hessematrix von f ist gegeben durch H f (x, y) =
Karlsruher Institut für Technologie (KIT Institut für Analysis Priv-Doz Dr P C Kunstmann Dipl-Math D Roth SS 0 7060 Höhere Mathematik II für die Fachrichtung Physik Lösungsvorschläge zum 8 Übungsblatt
Rückblick auf die letzte Vorlesung
Rückblick auf die letzte Vorlesung 1. Anwendungen des Satzes über implizite Funktionen 2. Stationäre Punkte implizit definierter Funktionen 3. Reguläre Punkte 4. Singuläre Punkte Ausblick auf die heutige
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger. Lösung - Serie 15
D-MAVT/D-MATL Analysis II FS 2017 Dr. Andreas Steiger Lösung - Serie 15 1. Der Wert einer Funktion f : R R fällt am schnellsten in die Richtung (a) (b) (c) der minimalen partiellen Ableitung. entgegengesetzt
0.1 Hauptsatz über implizite Funktionen
0.1 Hauptsatz über implizite Funktionen 0.1 Hauptsatz über implizite Funktionen Ein lineares homogenes Gleichungssystem von q Gleichungen in r + q Unbekannten kann bekanntlich verwendet werden um q Unbekannte
Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung
TU Bergakademie Freiberg Sommersemester Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik II für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 5 - Lösung Differentialrechnung für Funktionen
Übung 5, Analytische Optimierung
Übung 5, 5.7.2011 Analytische Optimierung Aufgabe 5.1 Bei der Herstellung von Konserven werden für Boden und Deckel bzw. für den Konservenmantel verschiedene Materialien verwendet, die g 1 = bzw. g 2 =
Serie 3. z = f(x, y) = 9 (x 2) 2 (y 3) 2 z 2 = 9 (x 2) 2 (y 3) 2, z 0 9 = (x 2) 2 + (y 3) 2 + z 2, z 0.
Analysis D-BAUG Dr Cornelia Busch FS 2016 Serie 3 1 a) Zeigen Sie, dass der Graph von f(x, y) = 9 (x 2) 2 (y 3) 2 eine Halbkugel beschreibt und bestimmen Sie ihren Radius und ihr Zentrum z = f(x, y) =
Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015
Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum
Extremwerte von Funktionen mehrerer reeller Variabler
Extremwerte von Funktionen mehrerer reeller Variabler Bei der Bestimmung der Extrema von (differenzierbaren) Funktionen f : R n R ist es sinnvoll, zuerst jene Stellen zu bestimmen, an denen überhaupt ein
1 Übungsaufgaben zu Kapitel 1
Übungsaufgaben zu Kapitel. Übungsaufgaben zu Abschnitt... Aufgabe. Untersuchen Sie die nachstehend definierten Folgen ( a k ) k und ( b k ) k auf Konvergenz und bestimmen Sie ggf. den jeweiligen Grenzwert:
Funktionen mehrerer Variabler
Inhaltsverzeichnis 8 Funktionen mehrerer Variabler 8. Einführende Definitionen und Bemerkungen....................... 8. Graphische Darstellungsmöglichkeiten.......................... 8. Grenzwert und
Multivariate Analysis
Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle
42 Lokale Extrema mit Nebenbedingungen
4 Lokale Extrema mit Nebenbedingungen 09 4 Lokale Extrema mit Nebenbedingungen Lernziele: Resultate: Kriterien für lokale Extrema mit Nebenbedingungen Methoden: Lagrange-Multiplikatoren Kompetenzen: Bestimmung
f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.
Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit
TECHNISCHE UNIVERSITÄT MÜNCHEN
Prof Dr M Keyl M Kech TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker (Analysis ) MA90 http://www-m5matumde/allgemeines/ma90 06S Sommersem 06 Lösungsblatt (606) Zentralübung Z
Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen. Graphentheorie
Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Graphentheorie Differenzialrechnung für Funktionen mit mehreren unabhängigen Variablen Def.: eine Funktion n f :D mit D,x (x,...x
8 Extremwerte reellwertiger Funktionen
8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang. Sommersemester
Karlsruher Institut für Technologie Institut für Analysis Dr. Andreas Müller-Rettkowski Dr. Vu Hoang Sommersemester 03 6.06.03 Höhere Mathematik II für die Fachrichtungen Elektrotechnik und Informationstechnik
2 Extrema unter Nebenbedingungen
$Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen
Übungen zur Ingenieur-Mathematik III WS 2011/12 Blatt Aufgabe 25: Berechnen Sie den kritischen Punkt der Funktion
Übungen zur Ingenieur-Mathematik III WS 11/1 Blatt 8 3.11.11 Aufgabe 5: Berechnen Sie den kritischen Punkt der Funktion fx, y 3x 5xy y + 3 und entscheiden Sie, ob ein Maximum, Minimum oder Sattelpunkt
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra
Folgerungen aus dem Auflösungsatz
Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und
9 Differentialrechnung für Funktionen in n Variablen
$Id: diff.tex,v.7 29/7/2 3:4:3 hk Exp $ $Id: ntaylor.tex,v.2 29/7/2 3:26:42 hk Exp $ 9 Differentialrechnung für Funktionen in n Variablen 9.6 Lagrange Multiplikatoren Die Berechnung von Maxima und Minima
Anwendungen der Differentialrechnung
KAPITEL 3 Anwendungen der Differentialrechnung 3.1 Lokale Maxima und Minima Definition 16: Sei f : D R eine Funktion von n Veränderlichen. Ein Punkt x heißt lokale oder relative Maximalstelle bzw. Minimalstelle
Kuhn-Tucker Bedingung
Kapitel 13 Kuhn-Tucker Bedingung Josef Leydold Mathematik für VW WS 017/18 13 Kuhn-Tucker Bedingung 1 / Optimierung unter Nebenbedingungen Aufgabe: Berechne das Maximum der Funktion f (x, y) g(x, y) c,
MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE
Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik MATHEMATIK 2 FÜR DIE STUDIENGÄNGE CHE- MIE UND LEBENSMITTELCHEMIE Differentialrechnung für Funktionen mehrerer
f(x, y) = x 2 4x + y 2 + 2y
7. Februar Lösungshinweise Theorieteil Aufgabe : Bestimmen Sie die Niveaumengen (Höhenlinien) der Funktion f(x, y) = x 4x + y + y und skizzieren Sie das zugehörige Höhenlinienbild im kartesischen Koordinatensystem
(3D-)Extrema unter Nebenbedingungen. Problemstellung (lokale Optimierung)
(3D-)Extrema unter Nebenbedingungen Wir beschränken uns wieder (meistens) auf Funktionen von zwei Variablen x, y. Bei drei oder mehr Variablen x 1,..., x n sind die gleichen Techniken analog anwendbar,
Kuhn-Tucker-Bedingung
Kuhn-Tucker-Bedingung Ist x ein lokales Minimum einer skalaren Funktion f unter den Nebenbedingungen g i (x) 0 und sind die Gradienten der aktiven Gleichungen g i (x ) = 0, i I, linear unabhängig, dann
Musterlösung. Aufgabe 1 a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [0, 1] R, die folgendermaßen definiert ist:
Musterlösung Aufgabe a) Die Aussage ist falsch. Ein Gegenbeispiel ist die Funktion f : [, ] R, die folgendermaßen definiert ist: f(x) := { für x R \ Q für x Q f ist offensichtlich beschränkt. Wir zeigen,
Extrema von Funktionen mit Nebenbedingung
Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen mit Nebenbedingung Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,
Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen
Aufgabenkomplex 5: Hauptachsentransformation, Lineare Optimierung, Differentialrechnung in mehreren Veränderlichen 1. Bestimmen Sie für die folgenden Funktionen zunächst die kritischen Stellen und entscheiden
Kurvendiskussion für Funktionen mit einer Variablen
Kurvendiskussion für Funktionen mit einer Variablen Unter der Kurvendiskussion einer Funktionsgleichung versteht man die Zusammenstellung der wichtigsten Eigenschaften ihres Bildes mit anschließender Zeichnung.
Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher
Technische Universität Chemnitz 1. Juli 20 Fakultät für Mathematik Höhere Mathematik I.2 Übung 22: Gradient und Richtungsableitung; Extremwertaufgaben für Funktionen mehrerer Veränderlicher 1. Durch ein
Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel
Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität
Die Tangentialebene. {(x, y, z) z = f(x 0, y 0 )+ f x (x 0, y 0 )(x x 0 )+ f. y (x 0, y 0 )(y y 0 )}
Die Tangentialebene Der Graph der linearen Approximation ist Tangentialebene an den Graph der Funktion. In Symbolen: Es sei D R 2. Es sei f : D R, (x, y) f(x, y) differenzierbar. Dann ist {(x, y, z) z
TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik 1. Dr. M. Herrich SS 2017
TU Dresden Fachrichtung Mathematik Institut für Numerische Mathematik Prof. Dr. K. Eppler Institut für Numerische Mathematik Dr. M. Herrich SS 207 Aufgabe Gegeben sei die Funktion f : R 2 R mit Übungen
Rückblick auf die letzte Vorlesung. Bemerkung
Bemerkung 1) Die Bedingung grad f (x 0 ) = 0 T definiert gewöhnlich ein nichtlineares Gleichungssystem zur Berechnung von x = x 0, wobei n Gleichungen für n Unbekannte gegeben sind. 2) Die Punkte x 0 D
Probeklausur. 1 Stetigkeit [7 Punkte] 2 Differenzierbarkeit [10 Punkte] Ferienkurs Analysis 2 für Physiker SS Karolina Stoiber Aileen Wolf
Karolina Stoiber Aileen Wolf Ferienkurs Analysis 2 für Physiker SS 26 A Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar
Teil 6. Differentialrechnung mehrerer Veränderlicher
Teil 6 Differentialrechnung mehrerer Veränderlicher 95 96 6.1 Topologie von Mengen Umgebung ε-umgebung eines Punktes x R n : B ε (x) = {y : y x < ε} Umgebung U von x: Menge, die eine ε-umgebung von x enthält
D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler. Übungsblatt 6. f(x, y, z) = xyz + 3e x y
D-MATH, D-PHYS, D-CHAB Analysis II FS 2018 Prof. Manfred Einsiedler Übungsblatt 6 1. Es seien f : R 2 R 3 und g : R 3 R 3 die Funktionen definiert durch x cos(y) 2 y 2 f(x, y) = x sin(y) und g(x, y, z)
Kapitel 6 Vektoranalysis. 6.1 Glatte Kurven und Flächen in R 3
Kapitel 6 Vektoranalysis 6. Glatte Kurven und Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.
Extremalprobleme mit Nebenbedingungen
Extremalprobleme mit Nebenbedingungen In diesem Abschnitt untersuchen wir Probleme der folgenden Form: g(x 0 ) = inf{g(x) : x Ω, f(x) = 0}, (x 0 Ω, f(x 0 ) = 0). (1) Hierbei sind Ω eine offene Menge des
3.2 Implizite Funktionen
3.2 Implizite Funktionen Funktionen können explizit als y = f(x 1, x 2,..., x n ) oder implizit als F(x 1, x 2,..., x n ;y) = 0 gegeben sein. Offensichtlich kann man die explizite Form immer in die implizite
z 2 + 2z + 10 = 0 = 2 ± 36 2 Aufgabe 2 (Lineares Gleichungssystem) Sei die reelle 3 4 Matrix
Mathematik für Wirtschaftswissenschaftler im WS 03/04 Lösungsvorschläge zur Klausur im WS 03/04 Aufgabe (Komplexe Zahlen (4 Punkte a Berechnen Sie das Produkt der beiden komplexen Zahlen + i und 3 + 4i
Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt
Übungen zur Ingenieur-Mathematik III WS 2012/13 Blatt 9 19.12.2012 Aufgabe 35: Thema: Differenzierbarkeit a) Was bedeutet für eine Funktion f : R n R, dass f an der Stelle x 0 R n differenzierbar ist?
Wirtschaftsmathematik II
WMS: Wirtschaftsmathematik 2 :: WS 2009/10 Wirtschaftsmathematik II Reinhard Ullrich http://homepage.univie.ac.at/reinhard.ullrich Basierend auf Folien von Dr. Ivana Ljubic October 11, 2009 1 Funktionen
K l a u s u r N r. 1 G K M 12
K l a u s u r N r. G K M 2 Aufgabe Bestimmen Sie die Ableitungsfunktion zu den folgenden Funktionen! a) f (x) (sin x) 2 (cos x) 2 b) f (x) (6 x 2 5) sin (2 x 3 + 5 x) c) f (x) 2 x 6 4 2 x 3 d) f (x) 4
Übungen zum Ferienkurs Analysis II 2014
Übungen zum Ferienkurs Analysis II 4 Probeklausur Allgemein Hinweise: Die Arbeitszeit beträgt 9 Minuten. Falls nicht anders angegeben, sind alle en ausführlich und nachvollziehbar zu begründen. Schreiben
Konvexe Menge. Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, d.h.
Konvexe Menge Eine Menge D R n heißt konvex, wenn für zwei beliebige Punkte x, y D auch die Verbindungsstrecke dieser Punkte in D liegt, dh Kapitel Extrema konvex: h x + h y D für alle h [0, ], und x,
Serie 4: Gradient und Linearisierung
D-ERDW, D-HEST, D-USYS Mathematik II FS 5 Dr. Ana Cannas Serie 4: Gradient und Linearisierung Bemerkungen: Die Aufgaben der Serie 4 bilden den Fokus der Übungsgruppen vom 7./9. März.. Wir betrachten die
2 Funktionen in mehreren Variablen: Differentiation
Satz 2. (Richtungsableitung) Für jede auf der offenen Menge D R n total differenzierbaren Funktion f (insbesondere für f C 1 (D, R) und für jeden Vektor v R n, v 0, gilt: n v f(x) = f(x) v = f xi (x)v
Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 6.5 (das agraökonomische Schaf )
Mathematische Grundlagen für Wirtschaftswissenschaftler Leseprobe - Abschnitt 65 (das agraökonomische Schaf ) Sascha Kurz Jörg Rambau 25 November 2009 2 66 Die Karush-Kuhn-Tucker-Methode Die Erkenntnisse
10. Übungsblatt zur Analysis II
Fachbereich Mathematik Prof. Dr. Steffen Roch Nada Sissouno WS 2009/2010 17.12.2009 10. Übungsblatt zur Analysis II Gruppenübung Aufgabe G1 Gegeben sei die Funktion g : R 2 R, g(x,y) = sin 2 y + x 3 1.
16. FUNKTIONEN VON MEHREREN VARIABLEN
16. FUNKTIONEN VON MEHREREN VARIABLEN 1 Reelle Funktionen auf dem R 2 Wir betrachten Funktionen f(x 1, x 2 ) von zwei reellen Variablen x 1, x 2, z.b. f(x 1, x 2 ) = x 2 1 + x2 2, g(x 1, x 2 ) = x 2 1
Substitutionsverfahren
Substitutionsverfahren 1 Motivation Wir stehen vor folgendem Problem: In unserem Betrieb kann unsere einzige Maschine Produkt A in zwei Stunden und Produkt B in einer Stunde produzieren. Die Maschine läuft
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung
Prüfungsklausur Höhere Mathematik II (20. Juli 2005) - Lösungen zum Theorieteil - für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM
Prüfungsklausur Höhere Mathematik II (2. Juli 25) für MB, EC, TeM, FWK, KGB, BGi, WiW, GtB, Ma, WWT, ESM - Lösungen zum Theorieteil - Aufgabe : Sei f(x, y) eine in einem Gebiet zweimal stetig differenzierbare
Mathematik. für das Ingenieurstudium. 10 Funktionen mit mehreren Variablen. Jürgen Koch Martin Stämpfle.
10 Funktionen mit mehreren Variablen www.mathematik-fuer-ingenieure.de 2010 und, Esslingen Dieses Werk ist urheberrechtlich geschützt. Alle Rechte, auch die der Übersetzung, des Nachdruckes und der Vervielfältigung
3 Optimierung mehrdimensionaler Funktionen f : R n R
3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)
Mathematik I ITB. Funktionen mit mehreren reellen Variablen. Prof. Dr. Karin Melzer
Funktionen mit mehreren reellen Variablen 11.05.09 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel Kegelschnitte Schnittkurve: Kurve, die aus dem Schnitt
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler
Kommentierte Musterlösung zur Klausur HM II für Naturwissenschaftler Sommersemester 7 (7.8.7). Gegeben ist die Matrix A 3 3 3 (a) Bestimmen Sie sämtliche Eigenwerte sowie die zugehörigen Eigenvektoren.
Klausurrepetitorium ABWL
Klausurrepetitorium ABWL Planungs- und Südwestfälische Industrie- und Handelskammer 9. August 5 Dr. Friedhelm Kulmann, Sandra Rudolph 9.8.5 Gliederung. Nichtlineare Optimierungsprobleme.. Quadratisches
Mathematik 3 für Informatik
Gunter Ochs Wintersemester 5/6 Mathematik 3 für Informatik Lösungen zum Hausaufgabenblatt Lösungshinweise ohne Garnatie auf Fehlerfreiheit c 5. Berechnen Sie die folgenden unbestimmten Integrale: a x 4
Mathematik I Internationales Wirtschaftsingenieurwesen
Mathematik I Internationales Wirtschaftsingenieurwesen Funktionen mit mehreren reellen Variablen 18.11.08 Beispiel: Funktionsgebirge Das Beispiel zeigt die Funktion z = y sin(x 2 ) Schnittkurven: Beispiel
B Lösungen. Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R 2 Berechnen Sie zur Abbildung. f(x, y) := x sin(xy) f : R 2 R,
B en Aufgabe 1 (Begriffe zur Differenziation) Sei (x, y) R Berechnen Sie zur Abbildung f : R R, f(x, y) : x sin(xy) das totale Differenzial f df, die Jacobi-Matrix J f (x, y) und den Gradienten ( f)(x,
Nachklausur zur Analysis 2, SoSe 2017
BERGISCHE UNIVERSITÄT WUPPERTAL 18.9.17 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis 2, SoSe 217 Aufgabe
Musterlösungen Aufgabenblatt 2
Jonas Kindervater Ferienkurs - Höhere Mathematik III für Physiker Musterlösungen Aufgabenblatt Dienstag 17. Februar 009 Aufgabe 1 (Implizite Funktionen) f(x, y) = x 1 xy 1 y4 = 0 Man bestimme die lokale
Technische Universität Berlin Fakultät II Institut für Mathematik WS 12/13 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch
Technische Universität Berlin Fakultät II Institut für Mathematik WS /3 Prof. Dr. G. Bärwolff, Prof. Dr. F. Tröltzsch 6.4.3 Rechenteil April Klausur Analysis II für Ingenieure. Aufgabe Punkte a Es gilt:
Mathematik für Wirtschaftswissenschaftler im WS 12/13 Lösungen zu den Übungsaufgaben Blatt 12
Mathematik für Wirtschaftswissenschaftler im WS /3 Lösungen zu den Übungsaufgaben Blatt Aufgabe 5 Welche der folgenden Matrizen sind positiv bzw negativ definit? A 8, B 3 7 7 8 9 3, C 7 4 3 3 8 3 3 π 3
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II. x 2
Musterlösung zu den Übungen zur Vorlesung Mathematik für Physiker II Wiederholungsblatt: Analysis Sommersemester 2011 W. Werner, F. Springer erstellt von: Max Brinkmann Aufgabe 1: Untersuchen Sie, ob die
