Substitutionsverfahren vs. Lagrange-Methode
|
|
|
- Ferdinand Vogt
- vor 8 Jahren
- Abrufe
Transkript
1 Substitutionsverfahren vs. Lagrange-Methode 1 Motivation Substitutionsverfahren und Lagrange-Methode sind Verfahren, die es ermöglichen, Optimierungen unter Nebenbedingungen durchzuführen. Die folgende Ausführung soll beide Varianten anhand derselben Aufgabenstellung verdeutlichen. 2 Aufgabenstellung Saskia Scheu möchte ein Portfolio aus den Wertpapieren WP 1 und WP 2 erstellen und dabei so wenig Risiko eingehen wie möglich. Die Renditen der Wertpapiere in den möglichen Zuständen s und deren Eintrittswahrscheinlichkeiten q s werden durch die Tabelle dargestellt. s = 1 s = 2 s = 3 s = 4 q 1 = 0,1 q 2 = 0,5 q 3 = 0,2 q 4 = 0,2 WP 1 0,01 0,05 0,12 0,20 WP 2 0,20 0,14 0,08 0,02 Auÿerdem sind folgende Werte bekannt: Varianz WP 1 : σ 2 1 = 0,00404 Varianz WP 2 : σ 2 2 = 0,00306 Kovarianz WP 1 und WP 2 : Cov 12 = 0,00348 Korrelationskoezient WP 1 und WP 2 : ρ 12 = 0, (Sollten Sie Hilfe bei der Berechnung von Varianz, Kovarianz und Korrelationskoezient benötigen, nden Sie die entsprechenden Artikel im Mathematischen Kompendium.) Helfen Sie Saskia, indem Sie die jeweiligen Anteile der Wertpapiere (w 1, w 2 ) des Minimum-Varianz- Portfolio (MVP) ermitteln. Es geht also darum, das Risiko des Portfolios unter der Nebenbedingung, dass das Portfolio aus WP 1 und WP 2 besteht, zu minimieren. Die Formel für das MVP lautet: σ 2 M = w 2 1σ w 2 2σ w 1 w 2 σ 1 σ 2 ρ 12 1
2 3 Substitutionsverfahren Das Substitutionsverfahren ist nahezu selbsterklärend. Es werden Bestandteile der zu optimierenden Gleichung, zu denen Nebenbedingungen existieren, durch die Nebenbedingungen substituiert, also ersetzt. Ein einfaches Beispiel: y = x + b und die Nebenbedingung ist: b = 2x. Dann ergibt sich für die Ausgangsgleichung: y = 3x, was dann dierenziert wird. Aber: Umso komplexer und vielseitiger die Variablen werden, umso gröÿer wird der Term! Schritt 1: Formel des MVP: σ 2 M = w 2 1σ w 2 2σ w 1 w 2 σ 1 σ 2 ρ 12 Schritt 2: Die Nebenbedingung lautet: w 1 + w 2 = 1, da das Portfolio aus WP 1 und WP 2 besteht und daher die Summe der Anteile 1 sein muss. Schritt 3: Umstellen der Nebenbedingung nach w 2 : w 2 = 1 w 1 Schritt 4: Einsetzen in Formel des MVP: σ 2 M = w 2 1σ (1 w 1 ) 2 σ w 1 (1 w 1 )σ 1 σ 2 ρ 12 Schritt 5: Ausmultiplizieren der Klammern: σ 2 M = w 2 1σ (1 2w 1 + w 2 1)σ (2w 1 2w 2 1)(σ 1 σ 2 ρ 12 ) σ 2 M = w 2 1σ (1 2w 1 + w 2 1)σ w 1 σ 1 σ 2 ρ 12 2w 2 1σ 1 σ 2 ρ 12 σ 2 M = w 2 1σ σ 2 2 2w 1 σ w 2 1σ w 1 σ 1 σ 2 ρ 12 2w 2 1σ 1 σ 2 ρ 12 Schritt 6: Ableiten nach w 1 und gleich null setzen (notwendige Bedingung, da wir das Minimum suchen): δσ 2 M δw 1 = 2w 1 σ 2 1 2σ w 1 σ σ 1 σ 2 ρ 12 4w 1 σ 1 σ 2 ρ 12 = 0 2
3 Schritt 7: 2w 1 ausklammern: 2w 1 (σ σ 2 2 2σ 1 σ 2 ρ 12 ) + 2σ 1 σ 2 ρ 12 2σ 2 2 = 0 Schritt 8: 2σ 1 σ 2 ρ 12 2σ 2 2 auf die andere Seite des Gleichheitszeichens bringen: 2w 1 (σ σ 2 2 2σ 1 σ 2 ρ 12 ) = 2σ 1 σ 2 ρ σ 2 2 Schritt 9: Alles durch 2 dividieren: w 1 (σ σ 2 2 2σ 1 σ 2 ρ 12 ) = σ 1 σ 2 ρ 12 + σ 2 2 Schritt 10: Durch σ σ 2 2 2σ 1 σ 2 ρ 12 teilen: σ2 2 σ 1 σ 2 ρ 12 w 1 = σ1 2 + σ2 2 2σ 1σ 2 ρ 12 Schritt 11: Die folgende Formel wird benötigt: ρ ij = Cov ij σ i σ j Cov ij = σ i σ j ρ ij Schritt 12: Setzt man die Formel ein, ergibt sich der Term: σ2 2 Cov 12 w 1 = σ1 2 + σ2 2 2Cov 12 Schritt 13: Einsetzen der Werte für σ1, 2 σ2 2 und Cov 12 : w 1 = 0,00306 ( 0,00348) 0, , ( 0,00348) w 1 0, Schritt 14: w 2 berechnen: w 2 = 1 0,46149 w 2 = 0, (Auf den Nachweis, dass die hinreichende Bedingung für ein Minimum erfüllt ist, wird hier verzichtet.) 3
4 4 Lagrange-Methode Bei der Lagrange-Methode wird ein Multiplikator λ eingeführt. Die Gleichung der Nebenbedingung wird nach 0 umgestellt und mit λ multipliziert. Dieser Term wird dann mit der zu optimierenden Funktion (Zielfunktion) addiert. Die Lagrange-Funktion ergibt sich also wie folgt: L(x, λ) = f(x) + λ (NB). Die Lagrange-Funktion wird nun nach allen unabhängigen Variablen und λ abgeleitet. So entsteht ein Gleichungssystem, welches entsprechend gelöst werden kann. Die Lagrange-Methode sollte dem Substitutionsverfahren vorgezogen werden, wenn mehr als drei Variablen zu dierenzieren sind. Schritt 1: Formel des MVP: σ 2 M = w 2 1σ w 2 2σ w 1 w 2 σ 1 σ 2 ρ 12 Schritt 2: Die Nebenbedingung (N B) lautet: w 1 + w 2 = 1, da das Portfolio aus WP 1 und WP 2 besteht und daher die Summe der Anteile 1 sein muss. Schritt 3: Umstellen, sodass die Nebenbedingung 0 ergibt: 0 = 1 w 1 w 2 Schritt 4: Aufstellen der Lagrange-Funktion: L = w 2 1σ w 2 2σ w 1 w 2 σ 1 σ 2 ρ 12 + λ(1 w 1 w 2 ) Schritt 5: Ableitung nach w 1, w 2 und λ: I II III δl δw 1 = 2w 1 σ w 2 σ 1 σ 2 ρ 12 λ = 0 δl δw 2 = 2w 2 σ w 1 σ 1 σ 2 ρ 12 λ = 0 δl δλ = 1 w 1 w 2 = 0 Schritt 6: I und II nach λ umstellen: 4
5 I II 2w 1 σ w 2 σ 1 σ 2 ρ 12 = λ 2w 2 σ w 1 σ 1 σ 2 ρ 12 = λ Schritt 7: Gleichsetzen von I und II: 2w 1 σ w 2 σ 1 σ 2 ρ 12 = 2w 2 σ w 1 σ 1 σ 2 ρ 12 Schritt 8: Alles durch 2 teilen: w 1 σ w 2 σ 1 σ 2 ρ 12 = w 2 σ w 1 σ 1 σ 2 ρ 12 Schritt 9: Alle Terme mit w 1 auf die linke Seite, alle Terme mit w 2 auf die rechte Seite bringen: w 1 σ 2 1 w 1 σ 1 σ 2 ρ 12 = w 2 σ 2 2 w 2 σ 1 σ 2 ρ 12 Schritt 10: Ausklammern von w 1 und w 2 : w 1 (σ 2 1 σ 1 σ 2 ρ 12 ) = w 2 (σ 2 2 σ 1 σ 2 ρ 12 ) Schritt 11: Durch σ 2 1 σ 1 σ 2 ρ 12 teilen: w 1 = w 2 σ 2 2 σ 1 σ 2 ρ 12 σ 2 1 σ 1σ 2 ρ 12 Schritt 12: Einsetzen der Werte wie oben: w 1 = 0,869681w 2 Schritt 13: Einsetzen in die Nebenbedingung: 1 = 0,869681w 2 + w 2 1 = 1,869681w 2 w 2 0, Schritt 14: w 1 berechnen: w 1 = 1 0, w 1 0,
6 5 Ergebnis Die beiden unterschiedliche Optimierungsverfahren führen zum gleichen Ergebnis. Die geringen Unterschiede in der sechsten Nachkommastelle ergeben sich durch die Rundung. (Auch hier wird auf die Überprüfung der hinreichenden Bedingung verzichtet.) 6
Optimieren unter Nebenbedingungen
Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht
Mathematik 2 für Wirtschaftsinformatik
für Wirtschaftsinformatik Sommersemester 2012 Hochschule Augsburg Hinreichende Bedingung für lokale Extrema Voraussetzungen Satz D R n konvex und offen Funktion f : D R zweimal stetig partiell differenzierbar
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R
9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass
3 Optimierung mehrdimensionaler Funktionen f : R n R
3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)
Quadratische Funktion
Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion
1. Funktionen. 1.3 Steigung von Funktionsgraphen
Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine
Extrema gebrochen rationaler Funktionen
Übungen zum Thema: Extrema gebrochen rationaler Funktionen Hier angewandte Lösungsmethode: Grenzwertmethode Versionsnummer: Version in Arbeit vom 6.09.007 / 19.00 Uhr Finde lokale Extrema der gebrochen
f f(x ɛξ) f(x) 0, d.h. f (x)ξ = 0 für alle ξ B 1 (0). Also f (x) = 0. In Koordinaten bedeutet dies gerade, dass in Extremstellen gilt: f(x) = 0.
Mehrdimensionale Dierenzialrechnung 9 Optimierung 9 Optimierung Definition Seien U R n oen, f : U R, x U x heiÿt lokales Maximum, falls eine Umgebung V U von x existiert mit y V : fx fy x heiÿt lokales
Outline. 1 Funktionen von mehreren Veränderlichen. 2 Grenzwert und Stetigkeit. 3 Partielle Ableitungen. 4 Die verallgemeinerte Kettenregel
Outline 1 Funktionen von mehreren Veränderlichen 2 Grenzwert und Stetigkeit 3 Partielle Ableitungen 4 Die verallgemeinerte Kettenregel 5 Das totale Differential 6 Extremstellen Roman Wienands (Universität
Grundlagen der Mathematik von Ansgar Schiffler - Seite 1 von 7 -
- Seite von 7 -. Wie lautet die allgemeine Geradengleichung? (Mit Erklärung). Ein Telefontarif kostet 5 Grundgebühr und pro Stunde 8 cent. Wie lautet allgemein die Gleichung für solch einen Tarif? (Mit
Lineare Gleichungssysteme
Lineare Gleichungssysteme Dr. H. Macholdt 7. September 2005 1 Motivation Viele Probleme aus dem Bereich der Technik und der Naturwissenschaften stellen uns vor die Aufgabe mehrere unbekannte Gröÿen gleichzeitig
UND MOSES SPRACH AUCH DIESE GEBOTE
UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)
Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Lineare Algebra
Mathematik EF. Bernhard Scheideler
Mathematik EF Bernhard Scheideler Stand: 7. September 20 Inhaltsverzeichnis Die Kurvendiskussion. Stetigkeit und Differenzierbarkeit:....................2 Standardsymmetrie:............................
(Unvollständige) Zusammenfassung Analysis Grundkurs
(Unvollständige) Zusammenfassung Analysis Grundkurs. Ableitungs und Integrationsregeln (Folgende 0 Funktionen sind alles Funktionen aus dem Zentralabitur Grundkurs.) a) f(t) = 0,0t e 0,t b) f(t) = t 3
Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Sommersemester Teil / 2 und 7 Univ. Ass. Dr. Matthias G.
Universität Wien Institut für Betriebswirtschaftslehre ABWL IV: Finanzwirtschaft 400 026/2+7 Univ. Ass. Dr. M.G. Schuster Foliensatz Vertiefungskurs aus ABWL: Finanzwirtschaft im Sommersemester 2004 3.
Abiturprüfung Mathematik 0 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f() = ( sin() + 7) 5. Aufgabe : ( VP) Berechnen Sie eine Stammfunktion
Extrema mit Nebenbedingungen
Extrema mit Nebenbedingungen Gesucht ist das Extremum der Funktion f(x,y) = 5 x y unter der Nebenbedingung g(x,y) = x+y =. 5 y x In diesem einfachen Fall kann die Nebenbedingung nach einer Variablen aufgelöst
Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher
Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse
AUTOMATISIERTE HANDELSSYSTEME
UweGresser Stefan Listing AUTOMATISIERTE HANDELSSYSTEME Erfolgreich investieren mit Gresser K9 FinanzBuch Verlag 1 Einsatz des automatisierten Handelssystems Gresser K9 im Portfoliomanagement Portfoliotheorie
Mathematik GK 11 m3, AB 07 Hochwasser Lösung
Aufgabe 1: Hochwasserwelle Während einer Hochwasserwelle wurde in einer Stadt der Wasserstand h des Flusses in Abhängigkeit von der Zeit t gemessen. Der Funktionsterm der Funktion, die den dargestellten
Corinne Schenka Vorkurs Mathematik WiSe 2012/13
4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:
Folgerungen aus dem Auflösungsatz
Folgerungen aus dem Auflösungsatz Wir haben in der Vorlesung den Satz über implizite Funktionen (Auflösungssatz) kennen gelernt. In unserer Formulierung lauten die Resultate: Seien x 0 R m, y 0 R n und
Klausur Entscheidungstheorie WS 2010/2011 S. 1 von 11
Klausur Entscheidungstheorie WS 2010/2011 S. 1 von 11 Fach: Prüfer: Veranstaltung: Finanzierung und Investition Prof. Dr. Dr. A. Löffler W2263 Entscheidungstheorie Name Vorname Matrikelnummer Punkte Beachten
Repetitionsaufgaben: Lineare Gleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Gleichungen Zusammengestellt von Hannes Ernst, KSR Lernziele: - Lineare Gleichungen von Hand auflösen können. - Lineare Gleichungen mit Parametern
Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015
Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum
( ) ( ) Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0. y s s
R. Brinkmann http://brinkmann-du.de Seite 07.0.0 Achsenschnittpunkte ganzrationaler Funktionen Schnittpunkt mit der y Achse P 0 y : Bedingung: y = f 0 y s s f = f 0 = 0 0 = 0 0 = P ( 0 ) oder P ( 0 f(0)
55 Lokale Extrema unter Nebenbedingungen
55 Lokale Extrema unter Nebenbedingungen Sei f : O R mit O R n differenzierbar. Notwendige Bescheinigung für ein lokales Extremum in p 0 ist dann die Bedingung f = 0 (siehe 52.4 und 49.14). Ist nun F :
Musterlösungen Lehrbrief 01 Technik (Mathematische Grundlagen) Seite 1 von 7
Musterlösungen Lehrbrief 0 Technik (Mathematische Grundlagen) Seite von 7 Bei diesen, wie auch bei allen folgenden Musterlösungen, zeigen wir in der egel nur einen Weg zum Ziel. Alle anderen Wege, die
Unterthema 2 Funktionen aufstellen nach Bedingungen
Unterthema 2 Funktionen aufstellen Eingangsbeispiel Datum 28 Funktionen aufstellen ährend es in dem vorangegangenen Kapitel darum ging, eine gegebene Funktion so genau zu untersuchen, dass man deren wichtigen,
Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%
Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen
Das Skalarprodukt zweier Vektoren
Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
Lösen von linearen Gleichungen und Gleichungssystemen
- 1 - VB 2004 Lösen von linearen Gleichungen und Gleichungssystemen Inhaltsverzeichnis Lösen von linearen Gleichungen und Gleichungssystemen... 1 Inhaltsverzeichnis... 1 Einführung... 2 Lösen einfacher
Multivariate Analysis
Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle
Differenzialrechnung
Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =
Basistext: Gleichungen lösen
Basistext: Gleichungen lösen Was versteht man unter der Lösung einer Gleichung? Lösen einer linearen Gleichung Lösen einer quadratischen Gleichung Lösen einer Gleichung vom Grad 3 Andere Fälle Übungen
Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!
Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright
Aufgabenblatt 1: Rechenbeispiel zu Diamond/Dybvig (JPE 1983)
Aufgabenblatt 1: Rechenbeispiel zu Diamond/Dybvig (JPE 1983) Prof. Dr. Isabel Schnabel The Economics of Banking Johannes Gutenberg-Universität Mainz Wintersemester 2009/2010 1 Aufgabe Betrachten Sie den
12.4 Berechnung und Darstellung betriebswirtschaftlicher Funktionen
1. Berechnung und Darstellung betriebswirtschaftlicher Funktionen 1..1 Kostenfunktion a) Vorgaben und Fragestellung Die Materialkosten für die Herstellung eines Stücks belaufen sich auf CHF 1.--. Die anteilmässigen
Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium
Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze
Die Taylorreihe einer Funktion
Kapitel 6 Die Taylorreihe einer Funktion Dieser Abschnitt beschäftigt sich mit Taylorreihen, Taylorpolynomen und der Restgliedabschätzung für Taylorpolynome. Die Taylorreihe einer reellen Funktion ist
= * 281 = : 25 = oder 7x (also 7*x) oder (2x + 3) *9 oder 2a + 7b (also 2*a+ 7*b)
GLEICHUNGEN Gleichungslehre Bisher haben Sie Aufgaben kennen gelernt, bei denen eine Rechenoperation vorgegeben war und Sie das Ergebnis berechnen sollten. Nach dem Gleichheitszeichen war dann das Ergebnis
Analytische Geometrie
Analytische Geometrie Übungsaufgaben Lineare Gleichungssysteme Oberstufe Alexander Schwarz www.mathe-aufgaben.com Oktober 05 Pflichtteilaufgaben (ohne GTR) Aufgabe : Löse die folgenden linearen Gleichungssysteme:
8 Extremwerte reellwertiger Funktionen
8 Extremwerte reellwertiger Funktionen 34 8 Extremwerte reellwertiger Funktionen Wir wollen nun auch Extremwerte reellwertiger Funktionen untersuchen. Definition Es sei U R n eine offene Menge, f : U R
f(x) f(x 0 ) lokales Maximum x U : gilt, so heißt x 0 isoliertes lokales Minimum lokales Minimum Ferner nennen wir x 0 Extremum.
Fabian Kohler Karolina Stoiber Ferienkurs Analsis für Phsiker SS 4 A Extrema In diesem Abschnitt sollen Extremwerte von Funktionen f : D R n R diskutiert werden. Auch hier gibt es viele Ähnlichkeiten mit
Aufgabe des Monats Mai
Aufgabe des Monats Mai 2013 1 Ein Monopolist produziere mit folgender Kostenfunktion: K(x) = x 3 12x 2 + 60x + 98 und sehe sich der Nachfragefunktion (Preis-Absatz-Funktion) p(x) = 10, 5x + 120 gegenüber.
Repetitionsaufgaben: Quadratische Funktionen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist
Tipps und Tricks für die Abschlussprüfung
Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und
Polynominterpolation
Polynominterpolation In der numerischen Mathematik versteht man unter Polynominterpolation die Suche nach einem Polynom, welches exakt durch vorgegebene Punkte (z. B. aus einer Messreihe) verläuft. Dieses
3 Anwendungen der Differentialrechnung. (x 1, x 2,..., x n 1, x n ) f xn (x 1, x 2,..., x n 1, x n ), 1 i n 1. y + cos z
R Es sei f : R n D R eine einmal stetig differenzierbare Funktion, für die in einer Umgebung eines Punkte a = a 1, a,, a n D gilt: fa 1, a,, a n = 0, f xn a 1, a,, a n 0 Dann gibt es eines Umgebung U des
Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen
3. Algebraische Grundlagen 3.1. Termumformungen Begriff Term: mathematischer Ausdruck, der aus Zahlen, Variablen, Rechenzeichen oder Klammern besteht Termumformungen dienen der Vereinfachung von komplexen
Musterlösung Höhere Mathematik I/II Di. Aufgabe 1 (11 Punkte) Geben Sie die Matrixbeschreibung der Quadrik
Aufgabe Punkte Geben Sie die Matrixbeschreibung der Quadrik {x R 3x 3x 8x x +x +4x +7 = 0} an Berechnen Sie die euklidische Normalform der Quadrik und ermitteln Sie die zugehörige Koordinatentransformation
Anleitung für dengleichungsrahmen
Anleitung für dengleichungsrahmen - 1 Einerstab +1 linke Seite der Gleichung - 10 Zehnerstab +10 Gleichheitszeichen - rechte Seite der Gleichung -1 Einerstab +1-10 Zehnerstab +10 Mit den roten Kugeln und
Aufgabe des Monats Januar 2012
Aufgabe des Monats Januar 2012 Ein Unternehmen stellt Kaffeemaschinen her, für die es jeweils einen Preis von 100 Euro (p = 100) verlangt. Die damit verbundene Kostenfunktion ist gegeben durch: C = 5q
1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe
Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem
7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften
195 7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften In der Kurvenuntersuchung werden von einer gegebenen Funktionsgleichung ausgehend die Graphen von Funktionen auf ganz bestimmte
10 Extremwerte mit Nebenbedingungen
10 Extremwerte mit Nebenbedingungen 49 10 Extremwerte mit Nebenbedingungen Wir betrachten nun Extremwertaufgaben, bei denen nach dem Extremwert einer fx 1,, x n gesucht wird, aber die Menge der zulässigen
Neoklassische Produktions- und Kostenfunktion Mathematische Beschreibung zu einer Modellabbildung mit Excel
Neoklassische Produktions- und Kostenfunktion Mathematische Beschreibung zu einer Modellabbildung mit Excel Dieses Skript ist die allgemeine Basis eines Modells zur Simulation der ökonomischen Folgen technischer
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser
Vorlesung Gesamtbanksteuerung Mathematische Grundlagen III / Marktpreisrisiken Dr. Klaus Lukas Stefan Prasser 1 Agenda Rendite- und Risikoanalyse eines Portfolios Gesamtrendite Kovarianz Korrelationen
Grundlagen der Astronomie und Astrophysik. Andre Knecht. [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze
2009 Grundlagen der Astronomie und Astrophysik Andre Knecht [HIMMELSMECHANIK] 3 Erhaltungssätze und die Herleitung der drei Kepler-Gesetze 2-Körperproblem-Gravitationsgesetz 3 Newton schen Axiome Trägheitsgesetz:
Lösen linearer Gleichungssysteme
Lösen linearer Gleichungssysteme W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Die beschriebenen Verfahren 2 2 Einsetzungsverfahren 3 3 Additions-/Subtraktionsverfahren 5 4 Gleichsetzungsverfahren 8
Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen
Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c
Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre
Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, SS 2008 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit
Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften
Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................
3. Übungsblatt Aufgaben mit Lösungen
. Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen
Höhere Mathematik III WS 05/06 Lösungshinweis Aufgabe G 11 Blatt 2
Höhere Mathematik III WS 5/6 Lösungshinweis Aufgabe G 11 Blatt Die zu optimierende Zielfunktion ist der Abstand zum Ursprung. Ein bekannter Trick (Vereinfachung der Rechnung) besteht darin, das Quadrat
Quadratische Gleichungen
Quadratische Gleichungen Grundlage für das Lösen von Quadratischen Gleichungen ist die Lösungsformel, auch als p-q-formel bekannt. Diese Formel bezieht sich auf die Quadratische Gleichung in Normalform:
Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie)
(Die Thesen zur Vorlesung 1_Fallstudie) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Lineares Optimierungsmodell der Wahl der Produktionsstrategie des ) Prof. Dr. Michal Fendek
11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen
11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des
Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:
Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an
Terme, Rechengesetze, Gleichungen
Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =
Welche Nullstellen hat der Graph der Funktion a)
Aufgabe 1 Welche Nullstellen hat der Graph der Funktion a) f (x)= (x 7)² (x+3)² Die Nullstellen sind 7 und -3. Beide Nullstellen sind doppelt, d.h. der Graph wechselt nicht die Seite der x-achse. b) Multipliziere
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS
ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung
Extrema von Funktionen mit zwei Variablen
Extrema von Funktionen mit zwei Variablen Es gilt der Satz: Ist an einer Stelle x,y ) f x x,y ) = und f y x,y ) = und besteht außerdem die Ungleichung f xx x,y )f yy x,y ) f xy x,y ) >, so liegt an dieser
11.4 Korrelation. Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient
11.4 Korrelation Def. 44 Es seien X 1 und X 2 zwei zufällige Variablen, für die gilt: 0 < σ X1,σ X2 < +. Dann heißt der Quotient (X 1,X 2 ) = cov (X 1,X 2 ) σ X1 σ X2 Korrelationskoeffizient der Zufallsgrößen
(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren
Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene
Gott hat für kleine Mädchen die Barbie Puppe erfunden und für Realschüler die Bruchgleichungen. Vielen Dank, lieber Gott.
Gott hat für kleine Mädchen die Barbie Puppe erfunden und für Realschüler die. Vielen Dank, lieber Gott. Bei gibt es drei wichtige Begriffe, die man errechnen muss: ) die Definitionsmenge 2) den Hauptnenner
9.2 Invertierbare Matrizen
34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen
Aufgabensammlung Klasse 8
Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................
Übungsaufgaben zur Linearen Funktion
Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der
Erfolg im Mathe-Abi 2014
Gruber I Neumann Erfolg im Mathe-Abi 2014 Schleswig-Holstein Übungsbuch Prüfungsaufgaben mit Tipps und Lösungen Inhaltsverzeichnis 1. Aufgabensatz... 7 2. Aufgabensatz... 12 3. Aufgabensatz... 17 4. Aufgabensatz...
Musterlösung. für die Klausur MA1_06.1 vom 08. Februar Labor für Mathematik und Statistik. Prof. Norbert Heldermann.
Fachbereich Produktion und Wirtschaft Musterlösung für die Klausur MA1_06.1 vom 08. Februar 006 Labor für Mathematik und Statistik Prof. Norbert Heldermann Richard Münder Bei dem vorliegenden Dokument
Repetitionsaufgaben: Bruchtermgleichungen
Kantonale Fachschaft Mathematik Repetitionsaufgaben: Bruchtermgleichungen Zusammengestellt von Caroline Schaepman, KSR Lernziele: - Eine Bruchgleichung erkennen und durch Multiplikation mit dem Hauptnenner
Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model
Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Matthias Eltschka 13. November 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitung 4 2.1 Diversifikation...........................
Übungsbeispiel 1: Quadratische Modellierung
Übungsbeispiel 1: Quadratische Modellierung Ein Uhrenhersteller möchte den Preis für sein neues Modell festlegen und führt dazu eine Marktanalyse durch. Das Ergebnis lautet: Bei einem Preis von 60 ist
Parabeln - quadratische Funktionen
Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer
In Arbeit! Bruchungleichungen. Aufgaben mit Lösungsweg zur Webseite 2008 by Josef Raddy. 1
In Arbeit! Bruchungleichungen Aufgaben mit Lösungsweg zur Webseite www.mathematik.net 8 by Josef Raddy Version:..8 6.5 Uhr www.mathematik.net Aufgaben. Bruchungleichungen mit einem Bruch: Lösen durch Fallunterscheidung
Geraden in R 2 Lösungsblatt Aufgabe 17.16
Aufgabenstellung: Berechne den Umkreismittelpunkt und den Umkreisradius des Dreiecks ABC. a. A 2 1, B 8 3, C 5 6 b. A 1 3, B 9 3, C 11 19 c. A 2 3, B 3 3, C 4 5 d. A 5 3, B 7 9, C 1 15 Lösung der Aufgabe:
Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Extremstellen-Bedingungen
Arbeitsblatt 4: Kurvendiskussion - Von Skizzen zu Etremstellen-Bedingungen Häufig sind Ableitungsfunktionsterme leichter zu handhaben als die Terme der Ausgangsfunktonen, weil sie niedrigere Eponenten
Vorbereitungskurs Mathematik
Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...
Extrema (Funktionen mit zwei Variablen)
Extrema (Funktionen mit zwei Variablen) Vorzeigeaufgaben: WS04/05 Aufgabe 4 HS11 Aufgabe 4 a) + b) Empfohlene Bearbeitungsreihenfolge: WS05/06 Aufgabe 5 b) WS06/07 Aufgabe 4 HS10 Aufgabe 1 b) + c) HS1
9x x + 7 = 10a 6 a b 14,5 = ordnen 9x 5x = 10a 12a 6 14,5 + 7b = zusammenfassen 4x a 20,5 + 7b
D Gleichungen 1 Terme umformen Terme sind Rechenausdrücke mit verschiedenen/mehreren Rechenzeichen, Zahlen und Variablen (Platzhaltern), z. B. 3 1 2 + 2x 6 4 0,8x. Erst wenn Zahlen für die Variablen eingesetzt
Kurvendiskussion für Funktionen mit einer Variablen
Kurvendiskussion für Funktionen mit einer Variablen Unter der Kurvendiskussion einer Funktionsgleichung versteht man die Zusammenstellung der wichtigsten Eigenschaften ihres Bildes mit anschließender Zeichnung.
Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.
Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,
Einige grundsätzliche Überlegungen:
Einige grundsätzliche Überlegungen: 1) Die Wahl der Unbekannten, x, y, z, oder a, b, c oder α, β, γ oder m, n, o. etc. richten sich nach den Beispielen und sind so zu wählen, dass sie am besten zu jenen
Erzeugende Funktionen
Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen
1 Fraktale Eigenschaften der Koch-Kurve
Anhang Inhaltsverzeichnis Fraktale Eigenschaften der Koch-Kurve iii. Einführung.................................. iii.2 Defintion.................................... iii.3 Gesamtlänge der Koch-Kurve........................
Nichtlineare Gleichungssysteme
Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung
