Hamiltonsche Graphen
|
|
|
- Walter Böhme
- vor 8 Jahren
- Abrufe
Transkript
1 Hamiltonsche Graphen Definition 3.2. Es sei G = (V, E) ein Graph. Ein Weg, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Weg. Ein Kreis, der jeden Knoten von G genau einmal enthält, heißt hamiltonscher Kreis. G heißt hamiltonsch gdw. G einen hamiltonschen Kreis enthält. Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 72 Beispiel 3.4. Die Bezeichnung hamiltonsch geht auf Sir William Rowan Hamilton ( ) zurück, der 1859 das Spiel around the world erfand. Die Punkte eines Dodekaeders stellten Städte dar. Die Aufgabe des Spiels bestand darin, entlang der Kanten des Dodekaeders eine Rundreise zu unternehmen, bei der man jede Stadt genau einmal besucht. Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 73
2 Sir William Rowan Hamilton Around the World Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 74 Charakterisierung von hamiltonschen Graphen Satz 3.4. Es sei G = (V, E) ein Graph mit n := V 3. Gilt: v V : deg(v) n/2, dann ist G hamiltonsch. Beweis. Tafel. Bemerkung 3.2. Das Entscheidungsproblem, ob ein Gaph G hamiltonsch ist (HC), ist N P-vollständig. Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 75
3 Crashkurs N P-Vollständigkeit Die Klasse P: Ein Entscheidungsproblem heißt polynomiell lösbar, wenn es einen Algorithmus zur Lösung des Problems gibt, dessen Worst-Case- Laufzeit durch ein Polynom in der Länge der Eingabe beschränkt ist. Die Klasse P ist die Klasse der polynomiell lösbaren Probleme. Beispiel: Ist G zusammenhängend? Hat G einen eulerschen Kreis? Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 76 Die Klasse N P: Die Klasse N P ist die Klasse der Entscheidungsprobleme, für die ein Lösungsvorschlag in polynomieller Rechenzeit überprüft werden kann. Beispiel: Überprüfung, ob eine Knotenfolge eines Graphen einen hamiltonschen Kreis bildet. Beispiel: Überprüfung, ob eine TSP-Tour eine Länge l hat. Es gilt: P N P Gilt sogar P = N P? Man weiß es nicht! Man vermutet, daß dies nicht der Fall ist. Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 77
4 N P-Vollständigkeit: Ein Problem Π aus N P ist N P-vollständig, wenn aus seiner polynomiellen Lösbarkeit P = N P folgt, d.h. alle Probleme in N P sind polynomiell lösbar. Die N P-vollständigen Probleme können anschaulich als die schwersten Probleme in der Klasse N P angesehen werden. Wie kann man zeigen, daß ein Problem Π N P-vollständig ist? Man nimmt sich ein Problem Π, von dem man weiß, daß es N P- vollständig ist und zeigt, daß Π nicht leichter ist. Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 78 Genauer: Man reduziert polynomiell Π auf Π, d.h. man zeigt, daß man Π in polynomieller Zeit lösen könnte, wenn man Π in polynomieller Zeit lösen könnte. Was bringt einem das in der Praxis? Gelingt der Nachweis der N P-Vollständigkeit, so zeigt dies, daß man nicht zu dumm ist, ein polynomielles Lösungsverfahren zu finden. Vermutlich existiert keines. Zumindest hat noch nie jemand ein solches gefunden und es macht keinen Sinn, nach einem solchen zu suchen. Man kann für große Probleme keine (optimalen) Lösungen erwarten. Anwendung heuristischer statt exakter Verfahren Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 79
5 Traveling Salesman Problem Definition 3.3. Gegeben sei ein vollständiger Graph G = (V, E) mit einer Kostenfunktion c : E IN auf den Kanten. Die Enscheidungsvariante des Traveling Salesman Problem (TSP) lautet: Existiert ein hamiltonscher Kreis K in G, für den die Summe der Kantengewichte c(k) k ist. Bemerkung 3.3. Die Entscheidungsvariante des TSP ist N P- vollständig. Dies kann durch HC TSP bewiesen werden. Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 80 TSP als Optimierungsproblem Die Optimierungsvariante des TSP lautet: Finde einen hamiltonschen Kreis mit minimalem Gewicht. Durch die N P-Vollständigkeit des zugehörigen Entscheidungsproblems kann es optimal nur für kleine n gelöst werden. Für große n müssen Heuristiken zur Berechnung einer möglichst guten Lösung angewendet werden. Theoretisch interessant sind Heuristiken mit Gütegarantie (siehe folgendes Kapitel). Einf ührung in die Graphentheorie FH Bonn-Rhein-Sieg, WS 03/04 81
Eulerweg, Eulerkreis. Das Königsberger Brückenproblem. Definition 3.1. Ein Weg, der jede Kante von G genau einmal
3. Kreis- und Wegeprobleme Kapitelübersicht 3. Kreis- und Wegeprobleme Eulerweg, Eulerkreis Charakterisierung von eulerschen Graphen Bestimmung von eulerschen Wegen und Kreisen Hamiltonsche Graphen Definition
Vier-Farben-Vermutung (1)
Vier-Farben-Vermutung (1) Landkarten möchte man so färben, dass keine benachbarten Länder die gleiche Farbe erhalten. Wie viele Farben braucht man zur Färbung einer Landkarte? Vier-Farben-Vermutung: Jede
abgeschlossen unter,,,, R,
Was bisher geschah Turing-Maschinen können Sprachen L X akzeptieren entscheiden Funktionen berechnen f : X X (partiell) Menge aller Turing-akzeptierbaren Sprachen genau die Menge aller Chomsky-Typ-0-Sprachen
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Vollständiger Graph. Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete).
Vollständiger Graph Definition 1.5. Sei G =(V,E) ein Graph. Gilt {v, w} E für alle v, w V,v w, dann heißt G vollständig (complete). Mit K n wird der vollständige Graph mit n Knoten bezeichnet. Bemerkung
3 Klassifikation wichtiger Optimierungsprobleme
3 Klassifikation wichtiger Optimierungsprobleme 3.1 Das MIN- -TSP Wir kehren nochmal zurück zum Handlungsreisendenproblem für Inputs (w {i,j} ) 1 i
Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen
Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter WS 2013/14 1 Eulersche Graphen Kantenzug Ein Kantenzug in einem Graphen (V, E) ist eine Folge (a 0, a 1,..., a n ) von Knoten
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein
Proseminar Online Algorithmen, Prof. Dr. Rolf Klein Vortrag von Michael Daumen am 13.12.2000 Thema : Minimum Spanning Tree und 2-Approximation der TSP-Tour Inhalt des Vortrags : 1. genaue Vorstellung des
Übung zur Vorlesung Berechenbarkeit und Komplexität
RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die
Überblick. TSP Vergleich der Lösungen. Das Travelling Salesman Problem. Nearest-Neighbor Heuristik für TSP
Kap..1 Heuristiken Kap.. Approximative Algorithmen und Gütegarantien Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP SS 008 14. Juli 009 Überblick
NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)
NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP
Die Verbindung von Linearer Programmierung und Graphentheorie
Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der
6. Flüsse in Netzwerken Berechnung maximaler Flüsse. dann berechnet der Markierungsalgorithmus für beliebige Kapazitätsfunktionen
6. Flüsse in Netzwerken Berechnung maximaler Flüsse Satz 6.4. Ersetzt man in Algorithmus 6.1 den Schritt 2 durch 2a. Wähle den Knoten, der zuerst in eingefügt wurde. Setze. dann berechnet der arkierungsalgorithmus
Minimal spannender Baum
Minimal spannender Baum 16 1 2 21 5 11 19 6 6 3 14 33 10 5 4 18 Die Kreise zeigen die vorgesehenen Standorte neu zu errichtender Filialen einer Bank. Entlang der bestehenden Straßen sollen Telefonleitungen
2. Repräsentationen von Graphen in Computern
2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen
Das Multi Traveling Salesman Problem
Das Multi Traveling Salesman Problem Harald Voit Seminar Ganzzahlige Optimierung 19. bis 21. Januar 2007 Wallenfels Das Multi Traveling Salesman Problem p.1/26 Übersicht Vom TSP zum ATSP Das Multi Traveling
4. Kreis- und Wegeprobleme Abstände in Graphen
4. Kreis- und Wegeprobleme Abstände in Graphen Abstände in Graphen Definition 4.4. Es sei G = (V,E) ein Graph. Der Abstand d(v,w) zweier Knoten v,w V ist die minimale Länge eines Weges von v nach w. Falls
Fortgeschrittene Netzwerk- und Graph-Algorithmen
Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester
Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.
Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines
Traveling Salesman Problem (TSP)
Traveling Salesman Problem (TSP) Das Traveling Salesman Problem (TSP) ist ein bekanntes Optimierungsproblem. Ein Handlungsreisender soll in einer Rundreise (auch Tour genannt) n vorgegebene Städte besuchen.
Einführung in Algorithmen und Komplexität
Einführung in Algorithmen und Komplexität SS2004 w u v High Performance = Innovative Computer Systems + Efficient Algorithms Friedhelm Meyer auf der Heide 1 Was haben wir bisher gemacht? - Rechenmodell:
Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis
Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit
Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering
Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme
Freie Universität Berlin. Diskrete Mathematik. Ralf Borndörfer, Stephan Schwartz. Freie Universität. 08. April 2013
Diskrete Mathematik Ralf Borndörfer, Stephan Schwartz 08. April 2013 FUB VL Diskrete Mathematik SS 2013 1 Leonhard Euler (1707-1783) e i sin cos f(x) FUB VL Diskrete Mathematik SS 2013 2 Das Königsberger
2. Optimierungsprobleme 6
6 2. Beispiele... 7... 8 2.3 Konvexe Mengen und Funktionen... 9 2.4 Konvexe Optimierungsprobleme... 0 2. Beispiele 7- Ein (NP-)Optimierungsproblem P 0 ist wie folgt definiert Jede Instanz I P 0 hat einen
Vorlesung Berechenbarkeit und Komplexität. Motivation, Übersicht und Organisatorisches
Berechenbarkeit und Komplexität: Motivation, Übersicht und Organisatorisches Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen Berechenbarkeit die absoluten Grenzen
Übungsblatt 2 - Lösung
Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 2 - Lösung Vorlesung Algorithmentechnik im WS 08/09 Ausgabe 04. November 2008 Abgabe 8. November, 5:0 Uhr (im Kasten vor Zimmer
Einführung in die Informatik
Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester
Algorithmen II Vorlesung am
Algorithmen II Vorlesung am 0..0 Minimale Schnitte in Graphen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales Forschungszentrum
NP-vollständig - Was nun?
Kapitel 4 NP-vollständig - Was nun? Wurde von einem Problem gezeigt, dass es NP-vollständig ist, ist das Problem damit nicht gelöst oder aus der Welt geschafft. In der Praxis muss es trotzdem gelöst werden.
Kapitel 4: Minimal spannende Bäume Gliederung der Vorlesung
Kapitel : Minimal spannende Bäume Gliederung der Vorlesung. Fallstudie Bipartite Graphen 2. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Wege. Traveling
Nichtdeterministische Platzklassen
Sommerakademie 2010 Rot an der Rot AG 1: Wieviel Platz brauchen Algorithmen wirklich? Nichtdeterministische Platzklassen Ulf Kulau August 23, 2010 1 Contents 1 Einführung 3 2 Nichtdeterminismus allgemein
Kapitel 4: Minimale spannende Bäume Gliederung der Vorlesung
Kapitel : Minimale spannende Bäume Gliederung der Vorlesung. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman
Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung
Wie findet man den optimalen Weg zum Ziel? Klassische Probleme der Kombinatorischen Optimierung Teilnehmer/innen: Markus Dahinten, Graf Münster Gymnasium Bayreuth Robert Fay, Herder Gymnasium Berlin Falko
6. Flüsse und Zuordnungen
6. Flüsse und Zuordnungen In diesem Kapitel werden Bewertungen von Kanten als maximale Kapazitäten interpretiert, die über solch eine Kante pro Zeiteinheit transportiert werden können. Wir können uns einen
f h c 7 a 1 b 1 g 2 2 d
) Man bestimme mit Hilfe des Dijkstra-Algorithmus einen kürzesten Weg von a nach h: c 7 a b f 5 h 3 4 5 i e 6 g 2 2 d Beim Dijkstra-Algorithmus wird in jedem Schritt von den noch unmarkierten Knoten jener
Minimal spannende Bäume
http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen
3. Musterlösung. Problem 1: Boruvka MST
Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner. Musterlösung Problem : Boruvka MST pt (a) Beweis durch Widerspruch. Sei T MST von G, e die lokal minimale Kante eines
Die Komplexitätsklassen P und NP
Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und
Kapitel 5: Minimale spannende Bäume Gliederung der Vorlesung
Gliederung der Vorlesung 1. Grundbegriffe 2. Elementare Graphalgorithmen und Anwendungen 3. Kürzeste Wege. Minimale spannende Bäume. Färbungen und Cliquen. Traveling Salesman Problem. Flüsse in Netzwerken
Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen
Kapitel 4 Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen 1 Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren
Der Simplex-Algorithmus
5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis
Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)
Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,
Lange Nacht der Wissenschaft. Ein Klassiker. Die Mathematik der Kürzesten Wege
Lange Nacht der Wissenschaft Ein Klassiker Die Mathematik der Kürzesten Wege 09.06.2007 [email protected] Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB) http://www.zib.de/schlechte 2 Überblick
Algorithmen und Datenstrukturen 2
Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik [email protected] Algorithmen für Graphen Fragestellungen: Suche
Kapitel 7: Flüsse in Netzwerken und Anwendungen Gliederung der Vorlesung
Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und Anwendungen. Minimal spannende Bäume. Kürzeste Pfade. Traveling Salesman Problem. Flüsse in Netzwerken
William Rowan Hamilton,
3.2.2 Hamiltonkreise Definition 130. In einem Graph G = (V,E) nennt man einen Kreis, der alle Knoten aus V genau einmal durchläuft, einen Hamiltonkreis. Enthält ein Graph eine Hamiltonkreis, nennt man
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten
Graphentheorie Graph Paar (V,E) V: nichtleere Menge von Knoten (vertex) E: Menge von Kanten (edges): Relation (Verbindung) zwischen den Knoten gerichteter Graph (DiGraph (directed graph) E: Teilmenge E
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual!
Das Dilemma des Einbrechers Wer die Wahl hat, hat die Qual! 0kg 4000 Euro Luster 5,5 kg, 430.- Laptop 2,0 kg, 000.- Schatulle 3,2 kg, 800.- Uhr 3,5 kg, 70.- Schwert,5 kg, 850.- Bild 3,4 kg, 680.- Besteck
Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling
Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani
Das Briefträgerproblem
Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................
6. Übung zur Linearen Optimierung SS08
6 Übung zur Linearen Optimierung SS08 1 Sei G = (V, E) ein schlichter ungerichteter Graph mit n Ecken und m Kanten Für eine Ecke v V heißt die Zahl der Kanten (u, v) E Grad der Ecke (a) Ist die Anzahl
Durchschnitt von Matroiden
Durchschnitt von Matroiden Satz von Edmonds Dany Sattler 18. Januar 2007/ Seminar zur ganzzahligen Optimierung / Wallenfels Definition: Unabhängigkeitssystem Definition: Ein Mengensystem (S, J ) nennt
Lineare Programmierung
Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in
Toleranzbasierte Algorithmen für das Travelling Salesman Problem. Gerold Jäger
Toleranzbasierte Algorithmen für das Travelling Salesman Problem Gerold Jäger (Zusammenarbeit mit Jop Sibeyn, Boris Goldengorin) Institut für Informatik Martin-Luther-Universität Halle-Wittenberg [email protected]
Rechnerische Komplexität
Proseminar Effiziente Algorithmen SS 2002 Rechnerische Komplexität Ulrike Krönert (34180) 0. Inhalt 1. Einführung 2. Algorithmen und Komplexität 2.1. Algorithmen 2.2. Laufzeitabschätzung 2.3. Polynomialzeit
Dynamische Programmierung. Problemlösungsstrategie der Informatik
als Problemlösungsstrategie der Informatik und ihre Anwedung in der Diskreten Mathematik und Graphentheorie Fabian Cordt Enisa Metovic Wissenschaftliche Arbeiten und Präsentationen, WS 2010/2011 Gliederung
Algorithmen II Vorlesung am 15.11.2012
Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales
Effiziente Algorithmen I
H 10. Präsenzaufgabenblatt, Wintersemester 2015/16 Übungstunde am 18.01.2015 Aufgabe Q Ein Reiseveranstalter besitzt ein Flugzeug, das maximal p Personen aufnehmen kann. Der Veranstalter bietet einen Flug
Anmerkungen zur Übergangsprüfung
DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung
Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph.
Aufgabe 4.2 Sei G = (V, E, l) ein ungerichteter, gewichteter und zusammenhängender Graph. a) Es seien W 1 = (V, E 1 ), W 2 = (V, E 2 ) Untergraphen von G, die beide Wälder sind. Weiter gelte E 1 > E 2.
Studientag zur Algorithmischen Mathematik
Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline
Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen
en Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie P, und C Definition () Seien L 1, L 2 {0, 1} zwei Sprachen. Wir sagen, dass L 1 auf L 2 in polynomialer Zeit reduziert wird, wenn eine
Datenstrukturen und Algorithmen SS07
Datenstrukturen und Algorithmen SS07 Datum: 27.6.2007 Michael Belfrage [email protected] belfrage.net/eth Programm von Heute Online Algorithmen Update von Listen Move to Front (MTF) Transpose Approximationen
Routing Algorithmen. Begriffe, Definitionen
Begriffe, Definitionen Routing (aus der Informatik) Wegewahl oder Verkehrslenkung bezeichnet in der Telekommunikation das Festlegen von Wegen für Nachrichtenströme bei der Nachrichtenübermittlung über
Komplexitätstheorie Einführung und Überblick (Wiederholung)
Literatur C. Papadimitriou UC Berkeley Zum Komplexitätsbegriff Strukturelle Komplexität Average Case Analyse Effiziente Algorithmen Logische Komplexität Beschreibungssprachen: SQL Kolmogorov Komplexität
Traveling Salesman Problem (TSP) Präsentation von Burku, Kienzerle, Stollnberger
Traveling Salesman Problem (TSP) Präsentation von Burku, Kienzerle, Stollnberger Inhalt Allgemeine Problembeschreibung Historie Mathematische Beschreibung Algorithmische Komplexität Beispiel Symmetrisches
Approximation im Sinne der Analysis:
1 Approximation im Sinne der Analysis: Satz von Weierstrass: (1815-1897) Sei f eine stetige Funktion auf [a, b]. Dann gibt es zu jedem ε > 0 ein Polynom P ε mit: max x [a,b] f(x) P ε(x) < ε Numerische
5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus
5. Lokale Suchverfahren Lokale Suche 5. Lokale Suchverfahren Beispiel TSP: k-change Nachbarschaft Optimale Lösungen können oft nicht effizient ermittelt werden. Heuristiken liefern zwar zulässige Lösungen,
Statistische Untersuchungen zu endlichen Funktionsgraphen
C# Projekt 1 Name: Statistische Untersuchungen zu endlichen Funktionsgraphen Aufgabe: Basierend auf dem Abschnitt 2.1.6. Random mappings, Kap.2, S 54-55, in [1] sollen zunächst für eine beliebige Funktion
11. Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P
11 Woche: Turingmaschinen und Komplexität Rekursive Aufzählbarkeit, Entscheidbarkeit Laufzeit, Klassen DTIME und P 11 Woche: Turingmaschinen, Entscheidbarkeit, P 239/ 333 Einführung in die NP-Vollständigkeitstheorie
4 Greedy-Algorithmen (gierige Algorithmen)
Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine
Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen
Vorlesung Diskrete Strukturen Eulersche und Hamiltonsche Graphen Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden [email protected] WS 2009/10 1 Bernhard Ganter, TU Dresden Modul
16. Flächenfärbungen
Chr.Nelius: Graphentheorie (WS 2015/16) 57 16. Flächenfärbungen In der Mitte des 19. Jahrhunderts tauchte eine Vermutung auf, die erst 125 Jahre später bewiesen werden sollte und die eine der bekanntesten
9. Übung Algorithmen I
Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der
Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).
8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame
Gemischt-ganzzahlige und Kombinatorische Optimierung
5. Präsenzaufgabenblatt, Sommersemester 2015 Übungstunde am 15.06.2015 Aufgabe J Betrachten Sie die LP-Relaxierung max c T x a T x b 0 x i 1 des 0/1-Knapsack-Problems mit n Gegenständen, c 0 und a > 0.
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
1 Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Ziele 2 Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
5.4 Das Rucksackproblem
Problemstellung: 5.4 Das Rucksackproblem Eingabe: Ganzzahlige Volumina a 1,..., a n > 0, Nutzenwerte c 1,..., c n > 0, ganzzahlige Volumenschranke b. Aufgabe: Packe die Objekte in einen Rucksack von Volumen
Ausarbeitung zum Modulabschluss. Graphentheorie. spannende Bäume, bewertete Graphen, optimale Bäume, Verbindungsprobleme
Universität Hamburg Fachbereich Mathematik Seminar: Proseminar Graphentheorie Dozentin: Haibo Ruan Sommersemester 2011 Ausarbeitung zum Modulabschluss Graphentheorie spannende Bäume, bewertete Graphen,
Kapitel 9. Komplexität von Algorithmen und Sortieralgorithmen
Kapitel 9 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:
Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206
Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter
Verbesserungsheuristiken
Verbesserungsheuristiken Bestandteile der Lokalen Suche Für schwierige Optimierungsaufgaben haben Verbesserungsheuristiken eine große praktische Bedeutung. Sie starten mit Ausgangslösungen, die von z.b.
Diskrete Mathematik. Sebastian Iwanowski FH Wedel. Kap. 6: Graphentheorie
Referenzen zum Nacharbeiten: Diskrete Mathematik Sebastian Iwanowski FH Wedel Kap. 6: Graphentheorie Lang 6 Beutelspacher 8.1-8.5 Meinel 11 zur Vertiefung: Aigner 6, 7 (7.4: Algorithmus von Dijkstra) Matousek
Planare Graphen, Traveling Salesman Problem, Transportnetze. Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61)
Planare Graphen, Traveling Salesman Problem, Transportnetze Formale Methoden der Informatik WiSe 2012/2013 teil 4, folie 1 (von 61) Teil IV: Planare Graphen / Transportnetze 1. Planare Graphen / Traveling
Approximationsalgorithmen am Beispiel des Traveling Salesman Problem
Approximationsalgorithmen am Beispiel des Traveling Salesman Problem Seminararbeit im Rahmen des Seminars Algorithmentechnik vorgelegt von Leonie Sautter Leiter des Seminars: Juniorprof. Dr. Henning Meyerhenke
Kombinatorische Spiele mit Zufallselementen
Kombinatorische Spiele mit Zufallselementen Die Realität ist nicht so streng determiniert wie rein kombinatorische Spiele. In vielen Situationen spielt der Zufall (Risko) eine nicht zu vernachlässigende
Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität
Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte
Approximationsalgorithmen
Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann [email protected] FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert
Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie
Algorithmen und Datenstrukturen Kapitel 6 Komplexitätstheorie Einführung in P und NP Frank Heitmann [email protected] 11. November 2015 Frank Heitmann [email protected]
Informatik I WS 07/08 Tutorium 24
Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 3.2.07 astian Molkenthin E-Mail: [email protected] Web: http://infotut.sunshine2k.de Organisatorisches / Review is zum 2.2 müssen alle Praxisaufgaben
Graphalgorithmen 2. Oleksiy Rybakov. 3. Juni Betreuer: Tobias Werth, Daniel Brinkers
Graphalgorithmen 2 Oleksiy Rybakov 3. Juni 2015 Betreuer: Tobias Werth, Daniel Brinkers 1 / 40 Inhaltsverzeichnis 1 Minimale Spannbäume und Datenstrukturen 2 Kürzeste Wege 3 Spezielle Graphen 2 / 40 Minimale
Kombinatorische Optimierung
Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 4 Programm des
Approximations-Algorithmen
Approximations-Algorithmen Institut für Computergraphik und Algorithmen Abteilung für Algorithmen und Datenstrukturen 186.102 Sommersemester 2004, 2h VU Motivation: Bereits viele einfache Optimierungsprobleme
Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke
Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen
