Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
|
|
|
- Heinrich Gärtner
- vor 9 Jahren
- Abrufe
Transkript
1 Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: WS13/14
2 Action required now 1. Smartphone: installiere die App "socrative student" oder Laptop: öffne im Browser m.socrative.com 2. Betrete den Raum Beantworte die erste Frage sofort! 2
3 Divide et Impera im Römischen Reich Einführung in die Informatik Die Lenkung des gesamten Römischen Reichs bedarf großer Entscheidungen für das ganze Reich, kleiner Entscheidungen für bestimmte Gebiete. Divide et Impera: Teile das Reich in kleinere Gebiete. Koordiniere nur das Zusammenspiel aller Gebiete. Delegiere die Lenkung jedes Gebiets an einen Verantwortlichen. : Jeder Verantwortliche teilt seinen Verantwortungsbereich wieder in kleinere Gebiete auf, solange bis der Bereich überschaubar ist. 3
4 Allgemein Ein Algorithmus ist rekursiv, wenn in seiner Beschreibung derselbe Algorithmus wieder aufgerufen wird. Das Prinzip der wird folgendermaßen zur Lösung von Problemen eingesetzt (informell): In einfachen Fällen: "Ich weiß das Ergebnis sofort." In schwierigeren Fällen: "Wenn ich die Lösung eines kleineren Problems kenne (rekursiv), kann ich das Gesamtergebnis daraus berechnen." z.b. aus der Vorlesung: einfacher Fall: 0! = 1 Dieses Vorgehen muss für alle n gleich sein! schwieriger Fall: Wenn ich den Wert von (n-1)! kenne, gilt: n! = (n-1)! * n 4
5 am Beispiel Raum: Welche Aufgabe kann nicht rekursiv gelöst werden? a) Löffelweise Suppe essen: Falls der Teller leer ist, fertig; Ansonsten iss einen Löffel Suppe und beginne von vorne. b) Ein Auto am "Fließband" zusammenbauen Falls das Auto komplett ist, fertig; Ansonsten baue einen bestimmten Teil und beginne von vorne. c) Ein Viereck zeichnen Falls schon vier Kanten gezeichnet sind, fertig; Ansonsten zeichne eine Kante, drehe das Blatt um 90 und beginne von vorne. 5
6 Aufgabe 1: Potenzfunktion (Beispiel 5 4 ) Schreiben Sie eine Methode, die für zwei nicht-negative Zahlen a und n vom Typ int die Potenz a n berechnet. 5 4 = 5 * 5 * 5 * 5 1 (= 5 * 5 * 5 * 5 * 5 0 ) 5 4 = 5 * 5 * = 5 * 5 3 n-mal Präzisierung: 5 n = 5 * * 5 = 5 * 5 n-1 Per Definition: 5 0 = 1 Induktive Definition: a n = 1, falls n = 0, a n = a * a n-1, falls n > 0 6
7 Aufgabe 1: Potenzfunktion (rekursiv) Einführung in die Informatik public static int potrek(int a, int n) { if (n == 0) return 1; else return a * potrek(a, n - 1); Induktive Definition: a n = 1, falls n = 0, a n = a * a n-1, falls n > 0 7
8 Aufgabe 1: Potenzfunktion (rekursiv): Beispiel 5 3 public static int potrek(int a, int n) { if (n == 0) else return 1; return a * potrek(a, n - 1); 1. Aufruf: a=5, n=3 potrek(5,3); 2. Aufruf: a=5, n=2 5 * potrek(5,2); 3. Aufruf: a=5, n=1 5 * (5 * potrek(5,1)); 4. Aufruf: a=5, n=0 5 * (5 * (5 * potrek(5,0))); Rückgabewert: 1 5 * (5 * (5 * 1)); Ausrechnen 125 8
9 Aufgabe 1: Potenzfunktion (iterativ) Einführung in die Informatik public static int potiter (int a, int n) { int akk = 1; while (n > 0) { akk = a * akk; n = n - 1; return akk; Induktive Definition: a n = 1, falls n = 0, a n = a * a n-1, falls n > 0 9
10 Aufgabe 1: Potenzfunktion (iterativ): Beispiel 5 3 public static int potiter (int a, int n) { int akk = 1; while (n > 0) { akk = a * akk; n = n - 1; return akk; Aufruf: a=5, n=3 potiterativ(5,3); 1. Anweisung akk = 1, n = 3 1. Schleifendurchlauf akk = 5*1 = 5, n = 2 2. Schleifendurchlauf akk = 5*5 = 25, n = 1 3. Schleifendurchlauf akk = 5*25 = 125, n = 0 Schleifenabbruch! 10
11 Vergleich von und Iteration Raum: Welche Aussage ist richtig? a) Bei der Ausführung eines rekursiven Programms müssen möglicherweise viele Werte zwischengespeichert werden, da keine Zwischenergebnisse berechnet werden können. b) Mit können mehr Probleme gelöst werden als mit Iteration (Schleifen). c) Ein rekursives Programm terminiert immer, ein iteratives Programm möglicherweise nicht. 11
12 Aufgabe 2: Gewinnchance beim Lotto Einführung in die Informatik Wie viele Möglichkeiten gibt es, 6 Zahlen aus gegebenen 49 Zahlen auszuwählen? Entwickeln Sie einen rekursiven Algorithmus. 12
13 Aufgabe 2: Lotto (klassische Berechnung) Aus der Statistik ist bekannt, dass es n Teilmengen mit k k Elementen aus einer Menge mit n Elementen gibt: moeglichkeiten(k,n)= n k für 1 k n Berechnung mit Binomialkoeffizient: n k = n! k! n k! moeglichkeiten(6,49)= 49 6 = 49! 6! 49 6! = ( ) ( ) 13
14 Aufgabe 2: Lotto (rekursive Lösungsidee) a. Jede Auswahl 6 aus 48 ist ebenfalls eine gültige Auswahl für 6 aus 49 (das sind alle Auswahlen, in denen 49 nicht vorkommt) b. Jede Auswahl 5 aus 48 zusammen mit der festen sechsten Zahl 49 ist ebenfalls eine Auswahl für 6 aus 49 (das sind alle Auswahlen, in denen 49 vorkommt) c. a. + b. liefert alle Auswahlen für 6 aus 49 Also: moeglichkeiten(6,49) = moeglichkeiten(6,48) + moeglichkeiten(5,48) 14
15 Aufgabe 2: Lotto (rekursive Lösungsidee) Also: moeglichkeiten(6,49) = moeglichkeiten(6,48) + moeglichkeiten(5,48) Allgemein gilt für 1 k n: moeglichkeiten(k,n) = n, falls k=1 moeglichkeiten(k,n) = 1, falls k=n moeglichkeiten(k,n) = moeglichkeiten(k,n-1) + moeglichkeiten(k-1,n-1), sonst 15
16 Aufgabe 2: Lotto (rekursiv) public static int moeglichkeiten(int k, int n) { if (k == 1) return n; else if (k == n) return 1; else return moeglichkeiten(k,n-1) + moeglichkeiten(k-1,n-1); Allgemein gilt für 1 k n: moeglichkeiten(k,n) = n, falls k=1 moeglichkeiten(k,n) = 1, moeglichkeiten(k,n) = falls k=n moeglichkeiten(k,n-1) + moeglichkeiten(k-1,n-1), sonst 16
17 Aufgabe 2: Lotto (rekursiv) Die Methode kann folgendermaßen aufgerufen werden: public class Lotto { public static void main(string[] args) { long start = System.currentTimeMillis(); System.out.println(moeglichkeiten(6, 49)); long ende = System.currentTimeMillis(); System.out.println(ende - start); public static int moeglichkeiten(int k, int n) {... Nach 11 Millisekunden berechnet das Programm das Ergebnis: Möglichkeiten 17
18 Aufgabe 2: Lotto (rekursiv) Raum: Welchen Nachteil hat diese rekursive Lösung? public static int moeglichkeiten(int k, int n) { if (k == 1) return n; else if (k == n) return 1; 1 k n else return moeglichkeiten(k,n-1) + moeglichkeiten(k-1,n-1); a) Das Programm terminiert für manche erlaubte Werte nicht. b) Das Programm liefert für manche erlaubte Werte ein falsches Ergebnis. c) Es werden Werte doppelt berechnet. 18
Rekursion. Dr. Philipp Wendler. Zentralübung zur Vorlesung Einführung in die Informatik: Programmierung und Softwareentwicklung
Dr. Philipp Wendler Zentralübung zur Vorlesung Einführung in die Informatik: Programmierung und Softwareentwicklung WS18/19 https://www.sosy-lab.org/teaching/2018-ws-infoeinf/ Divide et Impera im Römischen
Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die
Kontrollstrukturen: Wiederholungsanweisungen
Kontrollstrukturen: Wiederholungsanweisungen Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-16-17/infoeinf WS16/17 Action required now 1.
Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"
Grafische Benutzeroberflächen
Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"
Syntax. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-16-17/infoeinf WS16/17 Organisatorisches Wir werden socrative nutzen, um während der Zentralübung
Statische Methoden, Vererbung, Benutzereingabe
Statische Methoden, Vererbung, Benutzereingabe Dr. Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-16-17/infoeinf WS16/17 Action required now
Arrays von Objekten. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"
Suchbäume. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Suchbäume Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18. Vorbereitende Aufgaben
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2017/18 Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand Übungsblatt 7 Besprechung: 4. 8.12.2017 (KW 49) Vorbereitende
Einfache Arrays. Dr. Philipp Wendler. Zentralübung zur Vorlesung Einführung in die Informatik: Programmierung und Softwareentwicklung
Dr. Philipp Wendler Zentralübung zur Vorlesung Einführung in die Informatik: Programmierung und Softwareentwicklung WS18/19 https://www.sosy-lab.org/teaching/2018-ws-infoeinf/ Arrays: Wiederholung Ein
Erste Java-Programme (Scopes und Rekursion)
Lehrstuhl Bioinformatik Konstantin Pelz Erste Java-Programme (Scopes und Rekursion) Tutorium Bioinformatik (WS 18/19) Konstantin: [email protected] Homepage: https://bioinformatik-muenchen.com/studium/propaedeutikumprogrammierung-in-der-bioinformatik/
Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester 2016/17. Vorbereitende Aufgaben
Fakultät für Informatik Lehrstuhl 14 Lars Hildebrand, Alexander Lochmann, Iman Kamehkhosh, Marcel Preuß, Dominic Siedhoff Praktikum zu Einführung in die Informatik für LogWiIngs und WiMas Wintersemester
Kontrollstrukturen. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung
Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-14-15/infoeinf WS14/15 Action required now 1. Smartphone: installiere die App "socrative student"
Nachklausur Bitte in Druckschrift leserlich ausfüllen!
Übungen zur Vorlesung Informatik für Informationsmanager WS 2005/2006 Universität Koblenz-Landau Institut für Informatik Prof. Dr. Bernhard Beckert Dr. Manfred Jackel Nachklausur 24.04.2006 Bitte in Druckschrift
Fakultät IV Elektrotechnik/Informatik
Fakultät IV Elektrotechnik/Informatik Probeklausur Einführung in die Informatik I Hinweis: Diese Probeklausur ist eine kleine Aufgabensammlung, die etwa dem Schwierigkeitsgrad der Teilleistung TL 2 (Programmiertest)
Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 17/18. Syntax. Philipp Wendler
1 Philipp Wendler Zentralübung zur Vorlesung Einführung in die Informatik: Programmierung und Softwareentwicklung https://www.sosy-lab.org/teaching/2017-ws-infoeinf/ WS17/18 2 Organisatorisches Abgabe
Institut für Programmierung und Reaktive Systeme 2. Februar Programmieren I. Übungsklausur
Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 2. Februar 2017 Hinweise: Klausurtermine: Programmieren I Übungsklausur Programmieren I: 13. März
2.4 Schleifen. Schleifen unterscheiden sich hinsichtlich des Zeitpunktes der Prüfung der Abbruchbedingung:
2.4 Schleifen Schleifen beschreiben die Wiederholung einer Anweisung bzw. eines Blocks von Anweisungen (dem Schleifenrumpf) bis eine bestimmte Bedingung (die Abbruchbedingung) eintritt. Schleifen unterscheiden
Wiederholung Wozu Methoden? Methoden Schreiben Methoden Benutzen Rekursion?! Methoden. Javakurs 2012, 3. Vorlesung
Wiederholung Wozu? Schreiben Benutzen Rekursion?! Javakurs 2012, 3. Vorlesung [email protected] 5. März 2013 Wiederholung Wozu? Schreiben Benutzen Rekursion?! 1 Wiederholung 2 Wozu? 3 Schreiben
Institut für Programmierung und Reaktive Systeme 25. Januar Programmieren I. Übungsklausur
Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 25. Januar 2018 Hinweise: Klausurtermine: Programmieren I Übungsklausur Programmieren I: 17. Februar
2 Programmieren in Java I noch ohne Nachbearbeitung
1 2 Programmieren in Java I noch ohne Nachbearbeitung 2.1 Was sind Programme? Eingabe = Verarbeitung = Ausgabe Die Eingabe kann sein Konstanten im Quelltext; Kommandozeilenparameter oder interaktive Eingabe
Probeklausur Java Einführung in die Informatik. Wintersemester 2014/2015
Fakultät IV NI & CV Probeklausur Java Einführung in die Informatik Wintersemester 2014/2015 Hinweis: Diese Probeklausur ist eine kleine Aufgabensammlung, die etwa dem Schwierigkeitsgrad der schriftlichen
Programmiertechnik Übungen zu Klassen & -methoden
Programmiertechnik Übungen zu Klassen & -methoden Prof. Dr. Oliver Haase Oliver Haase Hochschule Konstanz 1 Übung 1 Ein Verfahren, den größten gemeinsamen Teiler (ggt) zweier Zahlen a und b, a
Vorkurs Informatik WiSe 17/18
Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Nicole Naczk, 10.10.2017 Technische Universität Braunschweig, IPS Überblick Einleitung Türme von Hanoi Rekursion Beispiele 10.10.2017 Dr. Werner Struckmann
Elementare Konzepte von
Elementare Konzepte von Programmiersprachen Teil 2: Anweisungen (Statements) Kapitel 6.3 bis 6.7 in Küchlin/Weber: Einführung in die Informatik Anweisungen (statements) in Java Berechnung (expression statement)
Programmierung für Mathematik HS11
software evolution & architecture lab Programmierung für Mathematik HS11 Übung 8 1 Aufgabe: Codeverständnis (Repetition) 1.1 Lernziele 1. Code verstehen können. 2. Fehler im Code finden und korrigieren
Programmierkurs Java
Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen
Vorkurs Informatik WiSe 16/17
Java Rekursion Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 11.10.2016 Technische Universität Braunschweig, IPS Überblick Einleitung Beispiele 11.10.2016 Dr. Werner Struckmann / Stephan Mielke,
Java Methoden. Informatik 1 für Nebenfachstudierende Grundmodul. Kai-Steffen Hielscher Folienversion: 1. Februar 2017
Informatik 1 für Nebenfachstudierende Grundmodul Java Methoden Kai-Steffen Hielscher Folienversion: 1. Februar 2017 Informatik 7 Rechnernetze und Kommunikationssysteme Inhaltsübersicht Kapitel 3 - Java
FHZ. K13 Rekursion. Lernziele. Hochschule Technik+Architektur Luzern Abteilung Informatik, Fach Programmieren. Inhalt
Inhalt 1. Einführung 1. Beispiel: Fakultät 2. Beispiel: Zahlenfolge 3. Beispiel: Formale Sprache 4. Unterschied Iteration/Rekursion 2. Rekursive Methoden 1. Beispiel: Fakultät 2. Beispiel: "Türme
Martin Unold INFORMATIK. Geoinformatik und Vermessung
Wiederholung So sieht ein leeres Java-Programm aus public class Programmname { public static void main (String[] args) { // Hier stehen die Anweisungen Anweisungen mit Variablen Wiederholung Deklaration
Probeklausur Java Einführung in die Informatik. Wintersemester 2016/2017
Fakultät IV NI & CV Java Einführung in die Informatik Wintersemester 2016/2017 Hinweis: Diese ist eine kleine Aufgabensammlung, die etwa dem Schwierigkeitsgrad der schriftlichen Prüfung des Moduls Einführung
11. Rekursion. 1, falls n 1. n (n 1)!, andernfalls. Mathematische Rekursion. Rekursion in Java: Genauso! Unendliche Rekursion. n!
Mathematische Rekursion 11. Rekursion Mathematische Rekursion, Terminierung, der Aufrufstapel, Beispiele, Rekursion vs. Iteration, Lindenmayer Systeme Viele mathematische Funktionen sind sehr natürlich
II.3.1 Rekursive Algorithmen - 1 -
1. Grundelemente der Programmierung 2. Objekte, Klassen und Methoden 3. Rekursion und dynamische Datenstrukturen 4. Erweiterung von Klassen und fortgeschrittene Konzepte II.3.1 Rekursive Algorithmen -
Klassenvariablen, Klassenmethoden
Einstieg in die Informatik mit Java, Vorlesung vom 11.12.07 Übersicht 1 Klassenmethoden 2 Besonderheiten von Klassenmethoden 3 Aufruf einer Klassenmethode 4 Hauptprogrammparameter 5 Rekursion Klassenmethoden
12. Rekursion. 1, falls n 1. n (n 1)!, andernfalls. Lernziele. Mathematische Rekursion. Rekursion in Java: Genauso! n! =
Lernziele Sie verstehen, wie eine Lösung eines rekursives Problems in Java umgesetzt werden kann. Sie wissen, wie Methoden in einem Aufrufstapel abgearbeitet werden. 12. Rekursion Mathematische Rekursion,
Übungsblatt 5. Thema: Algorithmen: Rekursion vs Iteration, O-Notation, Korrektheit
Informatik I WS 05/06 Prof. Dr. W. May Dipl.-Inform. Oliver Fritzen Dipl.-Inform. Christian Kubczak Übungsblatt 5 Ausgegeben am: Abgabe bis: 25.11.2005 6.12.2005 (Theorie) 9.12.2005 (Praktisch) Thema:
Stack. Seniorenseminar Michael Pohlig
Stack Seniorenseminar 21.06.2013 Michael Pohlig ([email protected]) Übersicht 1. Axiomatik eins Kellers und seine Software- Realisierung 2. Bedeutung der Rekursion in der Mathematik 3. Rekursive Programmierung.
1. Teilklausur Gruppe A. Bitte in Druckschrift leserlich ausfüllen!
Objektorientierte Programmierung & Modellierung WS 2007/8 Universität Koblenz-Landau Institut für Informatik Prof. Dr. Ralf Lämmel Dr. Manfred Jackel 1. Teilklausur 07.12.2007 Gruppe A Bitte in Druckschrift
Probeklausur Java Einführung in die Informatik. Wintersemester 2017/2018
Fakultät IV NI & CV Java Einführung in die Informatik Wintersemester 2017/2018 Hinweis: Diese ist eine kleine Aufgabensammlung, die etwa dem Schwierigkeitsgrad der schriftlichen Prüfung des Moduls Einführung
Übung Informatik I - Programmierung - Blatt 3
RHEINISCH- WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN LEHR- UND FORSCHUNGSGEBIET INFORMATIK II RWTH Aachen D-52056 Aachen GERMANY http://programmierung.informatik.rwth-aachen.de LuFG Informatik II Prof.
Klassen und Objekte. Klassen sind Vorlagen für Objekte. Objekte haben. Attribute. Konstruktoren. Methoden. Merkblatt
Klassen und Objekte Klassen sind Vorlagen für Objekte. Objekte haben Attribute Konstruktoren Methoden Aus einer Klasse kann man beliebig viele Objekte herstellen. Attribute bestimmen die Eigenschaften
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK
TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2011 Einführung in die Informatik I Übungsblatt 5 Prof. Dr. Helmut Seidl, A. Lehmann, A. Herz,
Musterlösung Stand: 5. Februar 2009
Fakultät IV Elektrotechnik/Informatik Probeklausur Einführung in die Informatik I Hinweis: Diese Probeklausur ist eine kleine Aufgabensammlung, die etwa dem Schwierigkeitsgrad der Teilleistung TL 2 (Programmiertest)
Beispielprüfung CuP WS 2015/2016
Beispielprüfung CuP WS 2015/2016 Univ.-Prof. Dr. Peter Auer 23. Dezember 2015 Informationen zur Prüfung Die Prüfung wird als Multiple-Choice-Test mit 10 Fragen am Computer abgehalten. (Bei manchen Fragen
Programmieren 1 C Überblick
Programmieren 1 C Überblick 1. Einleitung 2. Graphische Darstellung von Algorithmen 3. Syntax und Semantik 4. Einstieg in C: Einfache Sprachkonstrukte und allgemeiner Programmaufbau 5. Skalare Standarddatentypen
Thomas Gewering Benjamin Koch Dominik Lüke. (geschachtelte Schleifen)
Technische Informatik für Ingenieure WS 2010/2011 Musterlösung Übungsblatt Nr. 6 2. November 2010 Übungsgruppenleiter: Matthias Fischer Mouns Almarrani Rafał Dorociak Michael Feldmann Thomas Gewering Benjamin
Einführung in die Programmierung. (K-)II/Wb17
Probeklausur Hochschule Zittau/Görlitz, Prüfer: Prof. Dr. Georg Ringwelski Einführung in die Programmierung (K-)II/Wb17 Matrikelnummer: Punkte: 1 2 3 4 5 6 Gesamt /21 /19 /20 /20 /20 /20 /120 Spielregeln:
Übung Grundlagen der Programmierung WS 2008/09. Übung 04: Methoden. Abgabetermin: Prosabeschreibung Java-Programm.
Übung 04: Methoden Abgabetermin: 11. 11. 2008 Name: Matrikelnummer: Gruppe: G1 (Prähofer) G2 (Wolfinger) G3 (Wolfinger) Aufgabe Punkte gelöst abzugeben schriftlich abzugeben elektronisch Aufgabe 4.1 12
11. Rekursion. - Wiederholung von Anweisungen: durch Iteration und Rekursion - Anwendungsfälle der Rekursion
11. Rekursion 258 K. Bothe, PI1, WS 2000/01 259 ' ( ) - Wiederholung von Anweisungen: durch Iteration und Rekursion - Anwendungsfälle der Rekursion - induktiv definierte Funktionen - rekursive Problemlösungen
Probeklausur Java Einführung in die Informatik. Wintersemester 2014/2015. Musterlösung
Fakultät IV NI & CV Probeklausur Java Einführung in die Informatik Wintersemester 2014/2015 Hinweis: Diese Probeklausur ist eine kleine Aufgabensammlung, die etwa dem Schwierigkeitsgrad der schriftlichen
Übersicht. Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe SS 2010! Berechnung der Cosinus-Funktion Klausuraufgabe WS 2010/2011!
Algorithmen und Datenstrukturen Wintersemester 2012/13 8. Vorlesung Algorithmen in Java Jan-Henrik Haunert Lehrstuhl für Informatik I Übersicht Berechnung der Potenz für zwei ganze Zahlen Klausuraufgabe
Institut fu r Informatik
Technische Universita t Mu nchen Institut fu r Informatik Lehrstuhl fu r Bioinformatik Einfu hrung in die Programmierung fu r Bioinformatiker Prof. B. Rost, L. Richter WS 2013/14 Aufgabenblatt 5 2. Dezember
5. Algorithmen. K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16
5. Algorithmen K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 21. Okt. 2015 1. Berechne 2 n. Zu lösende Probleme 2. Berechne die Fakultät einer nat. Zahl: n! = 1 * 2 *... n 3. Entscheide,
Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme
Technische Universität Braunschweig Institut für Programmierung und Reaktive Systeme Programmieren I Dr. Werner Struckmann 6. März 2013 Name: Vorname: Matrikelnummer: Kennnummer: Anrede: Frau Herr Studiengang:
CoMa 04. Java II. Paul Boeck. 7. Mai Humboldt Universität zu Berlin Institut für Mathematik. Paul Boeck CoMa 04 7.
CoMa 04 Java II Paul Boeck Humboldt Universität zu Berlin Institut für Mathematik 7. Mai 2013 Paul Boeck CoMa 04 7. Mai 2013 1 / 13 Verzweigungen Wenn-Dann Beziehungen if (BEDINGUNG) { else if (BEDINGUNG2)
3. Anweisungen und Kontrollstrukturen
3. Kontrollstrukturen Anweisungen und Blöcke 3. Anweisungen und Kontrollstrukturen Mit Kontrollstrukturen können wir den Ablauf eines Programmes beeinflussen, z.b. ob oder in welcher Reihenfolge Anweisungen
Methoden. Gerd Bohlender. Einstieg in die Informatik mit Java, Vorlesung vom
Einstieg in die Informatik mit Java, Vorlesung vom 2.5.07 Übersicht 1 2 definition 3 Parameterübergabe, aufruf 4 Referenztypen bei 5 Überladen von 6 Hauptprogrammparameter 7 Rekursion bilden das Analogon
12. Rekursion Grundlagen der Programmierung 1 (Java)
12. Rekursion Grundlagen der Programmierung 1 (Java) Fachhochschule Darmstadt Haardtring 100 D-64295 Darmstadt Prof. Dr. Bernhard Humm FH Darmstadt, 24. Januar 2006 Einordnung im Kontext der Vorlesung
Java für Anfänger Teil 4: Anweisungen. Programmierkurs Manfred Jackel
Java für Anfänger Teil 4: Anweisungen Programmierkurs 11.-15.10.2010 Manfred Jackel Anweisungen Werzuweisung (hatten wir schon) Verzweigung Fallunterscheidung Schleifen Methodenaufruf Wiederholung: Klassendeklaration
Informatik I: Einführung in die Programmierung
Informatik I: Einführung in die Programmierung 7. Albert-Ludwigs-Universität Freiburg Bernhard Nebel 31. Oktober 2014 1 31. Oktober 2014 B. Nebel Info I 3 / 20 Um zu, muss man zuerst einmal. Abb. in Public
Implementieren von Klassen
Implementieren von Klassen Felder, Methoden, Konstanten Dr. Beatrice Amrhein Überblick Felder/Mitglieder (Field, Member, Member-Variable) o Modifizierer Konstanten Methoden o Modifizierer 2 Felder und
Übung zu Algorithmen und Datenstrukturen (für ET/IT)
Übung zu Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Jakob Vogel Computer-Aided Medical Procedures Technische Universität München Komplexität von Programmen Laufzeit kann näherungsweise
Übungspaket 22 Rekursive Funktionsaufrufe
Übungspaket 22 Rekursive Funktionsaufrufe Übungsziele: Skript: 1. Technische Voraussetzungen für rekursive Funktionsaufrufe 2. Umsetzung mathematisch definierter Rekursionen in entsprechende C-Programme
Abschnitt 11: Korrektheit von imperativen Programmen
Abschnitt 11: Korrektheit von imperativen Programmen 11. Korrektheit von imperativen Programmen 11.1 11.2Testen der Korrektheit in Java Peer Kröger (LMU München) in die Programmierung WS 16/17 931 / 961
