Partitionen natürlicher Zahlen
|
|
|
- Hannelore Melsbach
- vor 9 Jahren
- Abrufe
Transkript
1 Partitionen natürlicher Zahlen 9. Oktober 03 In dieser Notiz wird der Beweis des Satzes über die Anzahl der Partitionen einer natürlichen Zahl vorgestellt. Die Darstellung folgt dem Beweis der Vorlesung. Aufgabenstellung: Seien k und N natürliche Zahlen. Gesucht ist die Anzahl der Lösung der folgenden Gleichung: x x... x k x k N, () wobei für jedes i {,..., k die Variable x i eine natürliche Zahl oder Null sein darf. Beispiele:. Für k gibt es nur eine Lösung: x N.. Für k gibt es genau N Lösungen: (x, x ) (0, N) oder (, N ),..., (N, ) oder (N, 0). Hierbei gelten zum Beispiel (, N ) und (N, ) als zwei verschiedene Lösungen. 3. Der Fall k 3 ist aufwändiger: Wenn wir x 0 wählen, gibt es wie im Fall k insgesamt N Möglichkeiten für x und x 3 ; Falls x, suchen wir Lösungen der Gleichung Dafür gibt es N Möglichkeiten. x x 3 N.
2 Falls wir x i für ein i {0,..., N setzen, gibt es N i Lösungen der Gleichung x x 3 N i. Für k 3 ist die Anzahl der Lösungen von Gleichung () somit: N N i i0 N (N ) (N ) (N ) (N ) Ab dem Fall k 4 sind relativ viele Fallunterscheidungen nötig, um die Lösungen nach dem direkten Schema der Beispiele zu zählen. Überraschenderweise gibt es eine prägnante Antwort: Satz: Die Anzahl der Lösungen von Gleichung () ist genau ( ) N k. k Beweis: Der Idee des Beweises liegen folgende zwei Beobachtungen zugrunde:. Lösungen der Gleichung () entsprechen gewissen Partitionen von N.. Partitionen von N enstprechen gewissen Folgen von Nullen und Einsen. Wir führen die erste Beobachtung nun genauer aus. Wir können N als Summe von Einsen schreiben: N N-mal Wenn wir eine Lösung der Gleichung () haben, haben wir gewisse x i {0,..., N gegeben. Diese lassen sich ebenfalls als Summen von Einsen darstellen: x.. x k N N-mal x -mal x -mal x i -mal. () x k -mal x k -mal
3 Das heißt, wir teilen die Summe der N Einsen in k Pakete von Einsen auf, wobei das i-te Paket aus genau x i Einsen besteht. Anders ausgedrückt, haben wir eine Partition von N in k disjunkte Teile erhalten, die folgende Bedingungen erfüllen: ein Teil der Partition kann leer sein (da jede Variable x i Null sein kann). die Teile der Partitionen überlappen sich nicht (siehe auch Bemerkung 3 unten). Es gilt außerdem: Verschiedene Lösungen von Gleichung () ergeben verschiedene Partitionen; Zu jeder Partition von N in k Teile gibt es eine entsprechende Lösung der Gleichung (); Somit haben wir eine Bijektion zwischen folgenden Mengen erhalten: { Lösungen der Gleichung () : { Partitionen von N in k Teile. Wenn wir also die Lösungen der Gleichung zählen wollen, können wir stattdessen versuchen, die Anzahl der Partionen von N in k Teile zu bestimmen. Nun erläutern wir die zweite Beobachtung der Beweisidee. Partitionen von N können wir sparsamer codieren. Im oberen Ausdruck () können wir weglassen und eine Trennung zwischen jedem i-ten Paket aus x i Einsen und dem nächsten i -ten Paket aus x i Einsen durch eine 0 darstellen: x -mal x -mal x i -mal x k -mal x k -mal x -mal x -mal x i -mal x k -mal 0... x k -mal (3) Das Datum (3) kann als eine Folge mit genau N Einsen und genau k Nullen gesehen werden. Es sind genau k Nullen, da wir k Trennstriche zwischen den k Paketen haben. Wieder gilt: Verschiedene Partionen von N in k Teile ergeben verschiedene Folgen mit N Einsen und k Nullen. 3
4 Zu jeder Folge mit N Einsen und k Nullen gibt es eine entsprechende Partition. Das heißt wir haben eine weitere Bijektion, zwischen den folgenden Mengen: { Partitionen von N in k Teile : { Folgen mit N Einsen und k Nullen Statt Partitionen von N in k Teile zu zählen, können wir versuchen, die Folgen mit den erwähnten Bedingungen zählen. Im letzten Teil des Beweises zählen wir schließlich die Folgen mit N Einsen und k Nullen. Die Wahl einer solchen Folge mit N k Stellen entspricht folgendem Vorgang: Wir ziehen aus der Menge {,..., Nk genau k verschiedene Zahlen. Diese k Zahlen entsprechen genau den Stellen der Folge, bei welchen eine Null steht. Das heißt, dass es ( ) ( ) N k N k k N Folgen mit N Einsen und k Nullen beziehungsweise Lösungen der Gleichungen () gibt. Damit ist der Satz bewiesen. # Noch einige Bemerkungen zum Abschluß:. Da jede Variable x i in Gleichung () Null sein darf, erhalten wir mit dem Satz die Anzahl aller Partitionen von N mit maximal k nichtleeren Teilen.. Wenn wir k N setzen, erhalten wir ( ) ( ) N N N N N mögliche Partitionen von N in nicht-leere Teile. 3. Diese Partitionen von N sollten allerdings nicht mit Partitionen der Menge {,..., N verwechselt werden! Eine Partition der Menge M {,..., N mit k Teilen ist gegeben durch k disjunkte nicht-leere Teilmengen, dessen Vereinigung M ergibt. 4
5 im Allgemeinen dürfen sich die Teilmengen einer Partition von M überlappen: {, N {,..., N ist eine zulässige Partition der N-elementigen Menge M. Die Partitionen von N des Beweises überlappen sich nicht (englisch: non-crossing partitions ). So kann z.b. das Paket zu x in (3) oder () nicht aus der ersten und der letzten Eins bestehen. 5
WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3)
WS 2015/16 Diskrete Strukturen Kapitel 3: Kombinatorik (3) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_15
Berechnung von Teilmengen
Berechnung von Teilmengen Satz Anzahl der Teilmengen 2 n = n k=0 k=0 ( ) n k Beweis Korollar aus Binomischem Lehrsatz (1 + 1) n = n ( n k=0 k) 1 k 1 n k. Oder kombinatorisch: Sei M Menge mit M = n. Die
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n
WS 2008/09. Diskrete Strukturen
WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Minimalpolynome und Implikanten
Kapitel 3 Minimalpolynome und Implikanten Wir haben bisher gezeigt, daß jede Boolesche Funktion durch einfache Grundfunktionen dargestellt werden kann. Dabei können jedoch sehr lange Ausdrücke enstehen,
Grundlagen der Mathematik
Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Lösungsskizzen 3 Grundlagen der Mathematik Präsenzaufgaben (P4) Wir betrachten die Menge M := P({1, 2, 3, 4}). Dann gilt 1 / M,
Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark Dr. Markus Lange. Analysis 1. Aufgabenzettel 4
Institut für Analysis WiSe 2018/2019 Prof. Dr. Dirk Hundertmark 08.11.2018 Dr. Markus Lange Analysis 1 Aufgabenzettel 4 Abgabe bis 14. November 2018, 19:00 Uhr Erinnerung: Die Anmeldung für den Übungsschein
Vollständige Induktion. Analysis I. Guofang Wang. Universität Freiburg
Universität Freiburg 26.10.2011 Vollständige Induktion Wir unterbrechen jetzt die Diskussion der Axiome der reellen Zahlen, um das Beweisverfahren der vollständigen Induktion kennenzulernen. Wir setzen
7 Das Zählen von Objekten. Themen: Teile und Herrsche Zählen durch Bijektion
7 Das Zählen von Objekten Themen: Teile und Herrsche Zählen durch Bijektion Grundprinzipien des Zählens 1. Teile und Hersche: Strukturiere die zu zählenden Objekte so, dass sie in Teilklassen zerfallen,
3 Vom Zählen zur Induktion
7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,
Folgen. Definition. Sei M eine beliebige Menge. Eine Abbildung a : N M oder a : N 0 M heißt eine Folge.
Folgen Eine Folge stellt man sich am einfachsten als eine Aneinanderreihung von Zahlen (oder Elementen irgendeiner anderen Menge) vor, die immer weiter geht Etwa,,,,,, oder,,, 8,,,, oder 0,,,,,,,, In vielen
Lineare Abhängigkeit
Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x
Monotonie von Folgen
Monotonie von Folgen W. Kippels 1. April 2011 Inhaltsverzeichnis 1 Die Grundlagen 2 1.1 Die Definitionen................................ 2 1.2 Bedeutung der Definitionen......................... 2 1.3
Diskrete Strukturen. Hausaufgabe 1 (5 Punkte)
Technische Universität München Fakultät für Informatik Lehrstuhl für Informatik 15 Computergraphik & Visualisierung Prof. Dr. Rüdiger Westermann Dr. Werner Meixner Wintersemester 007/08 Lösungsblatt 7
Musteraufgaben zum Thema Zusammenhang
Musteraufgaben zum Thema Zusammenhang Stephan Kulla (CC-BY 6.12.2011 1 Aufgabe 1 Für jedes a R denieren wir die Teilmenge X a R 2 durch X a = {(x, y R 2 x 2 y 2 a} Bestimme in Abhängigkeit von a, ob X
Kapitel 5 KONVERGENZ
Kapitel 5 KONVERGENZ Fassung vom 21. April 2002 Claude Portenier ANALYSIS 75 5.1 Metrische Räume 5.1 Metrische Räume DEFINITION 1 Sei X eine Menge. Eine Abbildung d : X X! R + heißt Metrik oder Distanz
2 Mengen. Menge. Die Summenformel. Die leere Menge. Das kartesische Produkt. Die Produktformel. Die Potenzmenge. Die Binomialzahlen.
2 Mengen Menge Die Summenformel Die leere Menge Das kartesische Produkt Die Produktformel Die Potenzmenge Die Binomialzahlen Der Binomialsatz Unendliche Mengen Springer Fachmedien Wiesbaden 2016 A. Beutelspacher,
Die Lösungen der Gleichung b x = log b (x)
Die Lösungen der Gleichung b = log b () [email protected] 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =
Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)
WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16
Summen, Indices und Multiindices
Summen, Indices und Multiindices 1 Einleitung Möchten wir zwei Zahlen a und b addieren, so schreiben wir für gewöhnlich a + b. Genauso schreiben wir a + b + c, für die Summe von drei Zahlen a, b und c.
Univ.-Prof. Dr. Goulnara ARZHANTSEVA
Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 02: Funktionen, Multimengen, Kompositionen 1 / 18 Funktionen zwischen endlichen Mengen [n]
Univ.-Prof. Dr. Goulnara ARZHANTSEVA
Diskrete Mathematik Univ.-Prof. Dr. Goulnara ARZHANTSEVA SS 2018 c Univ.-Prof. Dr. Goulnara Arzhantseva Kapitel 06: Rekursionen 1 / 30 Rekursionen Definition: Rekursion Sei c n eine Zahlenfolge. Eine Rekursion
Indexmengen. Definition. n n n. i=1 A i := A 1... A n
Indexmengen Definition Es sei n N. Für Zahlen a 1,..., a n, Mengen M 1,..., M n und Aussagen A 1,..., A n definieren wir: n i=1 a i := a 1 +... + a n n i=1 a i := a 1... a n n i=1 M i := M 1... M n n i=1
Kardinalzahlen. Bemerkung. Eine unendliche Kardinalzahl α muss eine Limesordinalzahl sein. (Beweis zur Übung)
Kardinalzahlen Kardinalzahlen sollen die Größe von Mengen messen, daher suchen wir eine Aussage der Form, dass jede Menge bijektiv auf eine Kardinalzahl abgebildet werden kann. Um eine brauchbare Theorie
WS 20013/14. Diskrete Strukturen
WS 20013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Vorlesung. Vollständige Induktion 1
WS 015/16 Vorlesung Vollständige Induktion 1 1 Einführung Bei der vollständigen Induktion handelt es sich um ein wichtiges mathematisches Beweisverfahren, mit dem man Aussagen, die für alle natürlichen
Prinzip der Inklusion- Exklusion
Prinzip der Inklusion- Exklusion Ziel: Zählen von Elementen in nicht-disjunkten Mengen. 2 Mengen A 1, A 2 : Zählen zunächst die Elemente in A 1. Addieren dazu die Anzahl der Elemente in A 2. Zählen damit
Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck
1 Der Binomische Lehrsatz, die Binomialkoeffizienten und das PASCALsche Dreieck Wir kennen die beiden binomischen Formeln: Sie sind ein Sonderfall des Binomischen Lehrsatzes: Wir sehen, dass die Potenzen
Mathematik für Anwender I
Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 7 Die Lösungsmenge eines homogenen linearen Gleichungssystems in n Variablen über einem Körper K ist ein Untervektorraum
WS 2009/10. Diskrete Strukturen
WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910
2. Hausübung Diskrete Mathematik SS 2003
2. Hausübung Diskrete Mathematik SS 2003 Lösungsvorschläge 6. Zunächst bestimmen wir die Anzahl der verschiedenen möglichen Ergebnisse für die Differenzen a i a j. Wegen 1 a 1 < < a 21 100 gibt es 99 Möglichkeiten
Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 18
Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 18 Elfte Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik / 18 Formale Potenzreihe
Algorithmen und Komplexität, Teil II: Berechenbarkeit und Komplexität
Algorithmen und Komplexität, Teil II: Berechenbarkeit und Komplexität Ralph Keusch 21. November 2017 Berechenbarkeitstheorie RAM-Maschine 1: M 1 1 2: M 0 1 3: M 0 M 0 M 1 4: M 2 M 2 M 1 5: GOTO 3 IF M
Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 4
Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt
Gleichungen und Ungleichungen
Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung
Gleichungen und Ungleichungen
Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.
Gleichungen und Ungleichungen
Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.
Analytische Behandlung von Ungleichungen mit Beträgen
Abbildungsverzeichnis Inhaltsverzeichnis Analytische Behandlung von Ungleichungen mit Beträgen 1 Aufgabe 1: < 1 Link: Schematische Darstellung des Lösungsweges Die folgenden Abhandlungen bieten zusätzliche
Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper
Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften
B A C H E L O R A R B E I T
B A C H E L O R A R B E I T Die Dimension von topologischen Räumen ausgeführt am Institut für Analysis & Scientific Computing der Technischen Universität Wien unter der Anleitung von Ao.Univ.Prof. Dipl.-Ing.
WS 2013/14. Diskrete Strukturen
WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314
Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester vom 21. Januar 2006
Prof. E.-W. Zink Institut für Mathematik Humboldt-Universität zu Berlin Elemente der Algebra und Zahlentheorie Musterlösung, Serie 5, Wintersemester 2005-06 vom 21. Januar 2006 1. Sei (N, v) Peano-Menge
Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.
Kapitel 5 Lineare Algebra 51 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen
1 Mengen. 1.1 Definition
1 Mengen 1.1 Definition Eine Menge M ist nach dem Begründer der Mengenlehre Georg Cantor eine Zusammenfassung von wohlunterschiedenen(verschiedenen) Elementen. Eine Menge lässt sich durch verschiedene
Serie 4 2 = 10. ) ist). Dann gilt für alle n n 0
Serie 4. Aufgabe 336 Punkte) Gegeben seien zwei reelle Zahlenfolgen durch a n : 0 n, n N b n : n n, n N Bestimmen Sie die Grenzwerte a bzw. b der Folgen a n ) n N bzw. b n ) n N. Geben Sie jeweils zu gegebenem
Polynomiale Gleichungen
Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben
Satz 7. A sei eine Teilmenge des nichttrivialen Vektorraums (V,+, ). Dann sind die folgende Aussagen äquivalent.
Definition der Basis Def. Es sei (V,+, ) ein nichttrivialer Vektorraum. Die Menge A V heißt eine Basis-Menge, falls sie (a) linear unabhängig ist und (b) span(a) = V. Satz 7. A sei eine Teilmenge des nichttrivialen
Behauptung: Es gibt unendlich viele Primzahlen.
Behauptung: Es gibt unendlich viele Primzahlen. 1 Der Beweis von Euklid Annahme: Es gibt endlich viele Primzahlen {p 1,..., p r }. Wir bilden die Zahl n = p 1... p r + 1. Nun gibt es zwei Möglichkeiten.
Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok
Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html [email protected]
Kombinatorische Beweisprinzipien
Kombinatorische Beweisprinzipien Satz Binomischer Lehrsatz Beweis (a + b) n = n k=0 ( ) n a k b n k k Multipliziere (a + b) n aus: (a + b) (a + b)... (a + b). Aus jedem der n Faktoren wird entweder a oder
Kapitel 2. Kapitel 2 Zählen (Kombinatorik)
Zählen (Kombinatorik) Inhalt 2.1 2.1 Einfache Zählformeln A A B B = A A + B. B. 2.2 2.2 Binomialzahlen 2.3 2.3 Die Die Siebformel 2.4 2.4 Permutationen Seite 2 2.1 Einfache Zählformeln Erinnerung: Für
Kombinatorik. Dr. Lucia Draque Penso. Universität Ulm. Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26
Kombinatorik Dr. Lucia Draque Penso Universität Ulm Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 1 / 26 Erste Vorlesung Dr. Lucia Draque Penso (Universität Ulm) Kombinatorik 2 / 26 Formales Vorlesung:
Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.
Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )
aus der Bedingung/Annahme A folgt ein Widerspruch ), so ist A falsch!
Bemerkungen: 1 Die Bedeutung von (und damit ) ist klar. wird oft, vor allem in Beweisen, auch als geschrieben (im Englischen: iff, if and only if). 2 Für zwei boolesche Aussagen A und B ist A B falsch
Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke
Freie Universität Berlin Wintersemester / Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Musterlösung zum. Übungsblatt zur Vorlesung Mathematik für Physiker I Differenzierbarkeit,
Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7
Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum
Das zehnte Hilbertsche Problem. Seminar Arbeit von Jurij Bernhardt ( )
Das zehnte Hilbertsche Problem Seminar Arbeit von Jurij Bernhardt (4004655) (11) In dem 10 en Hilbertschen Problem geht es um Existenz eines Algorithmus oder einer Methode zur Bestimmung ganzzahliger Lösungen
In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N. Wenn (mit einem n > 1)
34 Determinanten In diesem Abschnitt betrachten wir nur quadratische Matrizen mit Komponenten aus einem Körper K, also A K n n für ein n N Wenn (mit einem n > 1) a 11 a 12 a 1n a 21 a 22 a 2n A =, (1)
2 Polynome und rationale Funktionen
Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine
Lineare Algebra I, Musterlösung zu Blatt 9
Lineare Algebra I, Musterlösung zu Blatt 9 Wintersemester 2007/08 1. Untersuchen Sie, ob die folgenden Matrizen invertierbar sind und bestimmen Sie gegebenenfalls die Inverse. 8 1 3 1 a) A = 3 3 1 1 11
Mathematik macht Freu(n)de im Wintersemester 2018/19
Mathematik macht Freu(n)de im Wintersemester 08/9 Markus Fulmek 08 06 9 Im folgenden wird zunächst ein kombinatorischer Gedankengang entwickelt, der mit wenigen einfachen Definitionen (samt erläuternden
Untersuchen Sie, inwiefern sich die folgenden Funktionen für die Verwendung als Hashfunktion eignen. Begründen Sie Ihre Antwort.
Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe 1 (Güte von Hashfunktionen): Untersuchen Sie, inwiefern sich die folgenden Funktionen
FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT
FORMULIEREN VON AUSSAGEN KONSTANTEN VARIABLEN MENGEN DEFINITIONEN SÄTZEN BEWEISEN LOGIK VERSTEHE, WIE ES FUNKTIONIERT Dirix Workbooks, Seefeld am Pilsensee Autor: Martin Dirix ISBN 978-3-7347-7405-8 1.
Konstruktion reeller Zahlen aus rationalen Zahlen
Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen
Adventure-Problem. Vorlesung Automaten und Formale Sprachen Sommersemester Adventure-Problem
-Problem Vorlesung Automaten und Formale Sprachen Sommersemester 2018 Prof. Barbara König Übungsleitung: Christina Mika-Michalski Zum Aufwärmen: wir betrachten das sogenannte -Problem, bei dem ein Abenteurer/eine
Demo für LINEARE ALGEBRA. Vektoren und Vektorraum. Teil 3. Untervektorräume INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr.
Teil 3 Untervektorräume Stand 1. Juli 011 Datei Nr. 61110 LINEARE ALGEBRA Vektoren und Vektorraum INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo für 61110 Vektorrechnung Teil 3 Untervektorräume 51 Inhalt
5. Äquivalenzrelationen
5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)
Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung
Michael Winkler Johannes Lankeit 8.4.2014 Lösungsvorschlag zu den Präsenzaufgaben der 1. Übung Präsenzaufgabe 1: Rufe dir die folgenden Definitionen wieder in Erinnerung: C = {(x, y); x R, y R} bildet
Vorlesung. Prof. Janis Voigtländer Übungsleitung: Dennis Nolte. Mathematische Strukturen Sommersemester 2017
Vorlesung Mathematische Strukturen Sommersemester 017 Prof. Janis Voigtländer Übungsleitung: Dennis Nolte Kombinatorik: Einführung Es folgt eine Einführung in die abzählende Kombinatorik. Dabei geht es
D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Lösung 4
D-MATH, D-PHYS, D-CHAB Analysis I HS 017 Prof. Manfred Einsiedler Lösung 4 Hinweise 1. Zeigen Sie, dass inf X die kleinste obere Schranke von X ist.. Dass z 1, z Lösungen sind, kann man durch Einsetzen
Lineare Gleichungssysteme
Kapitel 6 Lineare Gleichungssysteme 6. Gaußalgorithmus Aufgabe 6. : Untersuchen Sie die folgenden linearen Gleichungssysteme mit dem Gaußalgorithmus auf Lösbarkeit und bestimmen Sie jeweils die Lösungsmenge.
4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.
4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus
Übungen zu Grundbegriffe der Topologie
Übungen zu Grundbegriffe der Topologie A. Čap Wintersemester 2018 (1) Wiederholen Sie die Definition des Durchschnittes i I A i einer beliebigen Familie {A i : i I} von Mengen und zeigen Sie, dass für
Kapitel 1 Mengen. Kapitel 1 Mengen. Mathematischer Vorkurs TU Dortmund Seite 1 / 25
Kapitel 1 Mengen Kapitel 1 Mengen Mathematischer Vorkurs TU Dortmund Seite 1 / 25 Kapitel 1 Mengen Definition 1.1 (Menge) Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen.
Lösungen der Aufgaben zu Abschnitt 5.4
A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ
Teil 4. Mengen und Relationen
Teil 4 Mengen und Relationen KAPITEL 10 Äquivalenzrelationen und Faktormengen 1. Äquivalenzrelationen Wir nennen eine Relation von A nach A auch eine Relation auf A. DEFINITION 10.1. SeiΡeine Relation
Definitionsbereich von Funktionen mehrerer Variablen
Definitionsbereich von Funktionen mehrerer Variablen Wir betrachten Funktionen, die von zwei Variablen und abhängen. Der (größtmögliche) Definitionsbereich D f einer Funktion f ist die Menge, die aus allen
Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013
Permutationsgruppen Jesko Hüttenhain Winter 2013 Sei N eine endliche Menge. Dann bezeichnen wir mit S N := {σ : N N σ bijektiv} die symmetrische Gruppe auf N. Für n N sei [n] := {1,..., n}. Wir schreiben
Beispiel 2 ([1], Ex ) Sei jxj = m, jy j = n. Wieviele Funktionen f : X! Y
Kombinatorik Nach [1], Chap.4 (Counting Methods and the Pigeonhole Principle). Multiplikationsprinzip Beispiel 1 Wieviele Wörter der Länge 4 kann man aus den Buchstaben A,B,C,D,E bilden,... 1. wenn Wiederholungen
Beispiellösungen zu Blatt 77
µathematischer κorrespondenz- zirkel Mathematisches Institut Georg-August-Universität Göttingen Aufgabe 1 Beispiellösungen zu Blatt 77 Die Zahl 9 ist sowohl als Summe der drei aufeinanderfolgenden Quadratzahlen,
Lineare Algebra und analytische Geometrie I
Prof Dr H Brenner Osnabrück WS 25/26 Lineare Algebra und analytische Geometrie I Schläft ein Lied in allen Dingen, Die da träumen fort und fort, Und die Welt hebt an zu singen, Triffst du nur das Zauberwort
Mathematik. Februar 2016 AHS. Kompensationsprüfung 1 Angabe für Kandidatinnen/Kandidaten
Name: Datum: Klasse: Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Februar 2016 Mathematik Kompensationsprüfung 1 Angabe für Kandidatinnen/Kandidaten Hinweise
