Phylogenetik. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung

Größe: px
Ab Seite anzeigen:

Download "Phylogenetik. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung"

Transkript

1 Phylogenetik Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann Webseite zur Vorlesung Sprechstunde Mo in OH14, R214 Sven.Rahmann -at- tu-dortmund.de 1

2 Phylogenetik Phylum = Stamm Phylogenetik: befasst sich mit der Rekonstruktion von evolutionären Stammbäumen (= phylogenetische Bäume, Phylogenien) aus unterscheidbaren Merkmalen, heutzutage insbesondere aus DNA- / Proteinsequenzen, - sowohl von Spezies [species trees] - als auch von einzelnen Gen- / Protein-Familien [gene trees] Tree Of Life Ein langfristiges Ziel: Stammbaum aller existierenden (und ausgestorbenen) Arten Tree Of Life Web Project: 2

3 Tree Of Life Ein langfristiges Ziel: Stammbaum aller existierenden (und ausgestorbenen) Arten Tree Of Life Web Project: Kontroverse über Verzweigungen nahe der Wurzel Tree Of Life Web Project 3

4 Ein Graph besteht aus: - Knoten (vertices V, nodes) und - Kanten (edges E), die zwischen den Knoten verlaufen. Grundlagen: Graphen Graphen können gerichtet oder ungerichtet sein (Kanten haben eine Richtung oder nicht). Der Grad eines Knoten ist die Anzahl seiner Nachbarn. 4

5 Grundlagen: Ungewurzelte Bäume Als (ungewurzelter) Baum (unrooted tree) T = (V,E) wird ein Graph bezeichnet, der - zusammenhängend (:= jeder Knoten wird von jedem anderen erreicht) - kreisfrei (:= es gibt nur einen Weg zwischen je zwei Knoten) ist. In einem Baum unterscheidet man zwischen - inneren Knoten (inner nodes N), und - Blättern = äußeren Knoten (leaves L). Kante Ein Baum heißt Binärbaum, wenn alle inneren Knoten Grad 3 und Blätter Grad 1 haben. Ungewurzelte binäre Bäume erfüllen E = 2 L - 3 und N = L - 2. Innerer Knoten Blatt 5

6 Grundlagen: Gewurzelte Bäume Ein ungewurzelter Baum kann gewurzelt werden, indem man eine Kante auswählt, in deren Mitte einen Knoten (die Wurzel) einfügt, und den Baum daran äufhängt. Die Wurzel hat Grad 2. Die Kanten werden von der Wurzel weg gerichtet. In der Informatik wird die Wurzel eines Baums stets oben, die Blätter werden unten gezeichnet. Kanten verlaufen von oben nach unten. 6

7 Anzahl an Binärbäumen Ungewurzelte Binärbäume: 3 Blätter: 1 Baum mit 3 Kanten 4 Blätter: 3 verschiedene Bäume, je 5 Kanten 5 Blätter: 3*5 = 15 Bäume, je 7 Kanten 6 Blätter: 15*7 = 105 Bäume... A B 3 Blätter: 1 ungewurzelter Baum Gewurzelte Binärbäume: Man kann die Wurzel wie ein weiteres Blatt bei ungewurzelten Bäumen behandeln: 3 Blätter: 3 Bäume (siehe rechts, 5 Kanten) 4 Blätter: 3*5 = 15 5 Blätter: 15*7 = 105 A B A B B A Beobachtung: Anzahl der binären Bäume wächst super-exponentiell in der Anzahl der Blätter n (schneller als c n für jede Konstante c) 3 Blätter: 3 gewurzelte Bäume mit veschiedenen Nachbarschaftsverhältnissen 7

8 Die drei Quartette A A B A B B D D D AB D A BD AD B 8

9 Aufgaben der Phylogenetik Eine wichtige Aufgabe der Phylogenetik ist die Bestimmung der Verwandtschaftsverhältnisse zwischen Arten (Spezies) und der Ereignisse, die bei verschiedenen Arten seit der Speziation stattfanden. Gorillas Humans himpanzees Bonobos Orangutans Bonobos Gorillas Humans MYA 0 14 MYA 0 Klassische Sichtweise, basierend auf äußeren Merkmalen Moderne Sichtweise, basierend auf DNA-Vergleich 9

10 Evolutionäre Verwandtschaft zwischen Genen Erinnerung: Ein multiples Alignment ist nur zwischen Sequenzen sinnvoll, die global ähnlich sind, d.h. zwischen denen eine evolutionäre Verwandtschaft besteht. Diese wird durch einen phylogenetischen Baum ausgedrückt. Beispiel: Serpin-Familie in der pfam-datenbank Dies ist ein Gen-Baum (gene tree), kein Arten-Baum (species tree): An den Blättern (rechts) stehen einzelne Gene/Proteine/Sequenzen, keine Spezies. Evolutionäre Ereignisse (innere Knoten): - Genduplikation - Speziation 10

11 Grad der Auflösung des Verzweigungsmusters Stern -Baum, nicht aufgelöst Teilweise aufgelöst Vollständig aufgelöst A A A B E E D B B E D D Polytomie, Multifurkation Bifurkation 11

12 Darstellungsarten in der Phylogenetik Kladogramm Phylogramm Ultrametrischer Baum (cladogram) (phylogram) (ultrametric tree) Taxon B Taxon Taxon Taxon B Taxon B Taxon Taxon A 1 Taxon A Taxon A Taxon D 5 Taxon D Taxon D Achse hat keine Bedeutung Maß für den genetischen Unterschied (z.b. PAM-Einheiten) Realzeit: gleicher Abstand aller Blätter zur Wurzel Alle Darstellungsformen zeigen die gleichen evolutionären Beziehungen (Baumtopologien, Verzweigungen, zwischen den Taxa). Taxa im selben Unterbaum bilden eine monophyletische Gruppe (clade). Darstellung durch geschachtelte Klammern: (((B,),A),D) 12

13 Gewurzelt oder ungewurzelt? Das Problem der Molekularen Uhr Phylogenetische Bäume werden (heutzutage vor allem) aus Biosequenzen gewonnen. Um über die Verwandtschafts-Verhältnisse zu entscheiden, benötigt man Algorithmen zum Sequenzvergleich, ein mathematisches Modell der Evolutionsprozesse auf Sequenzen. Hieraus lassen sich Distanzen zwischen Sequenzen berechnen. Beispiel: 139 beobachtete Unterschiede auf zwei Sequenzen der Länge 854. Wie vielen PAM-Einheiten entspricht das? Dies kann als einfaches Distanzmaß genommen werden. Problem: Distanz ist nicht Realzeit! Evolutionsgeschwindigkeit variiert zeitlich, genspezifisch, Gattungs-spezifisch,... Hieraus berechnete Bäume repräsentieren keine realen zeitlichen Abstände. Auch die Wurzel kann nicht zuverlässig positioniert werden. Man berechnet ungewurzelte Phylogramme. In Ausnahmefällen treten diese Probleme nicht auf. Man sagt dann: Es gilt die Hypothese der molekularen Uhr. Man erhält einen gewurzelten ultrametrischen Baum. 13

14 Wurzeln eines ungewurzelten Baums Zwei Methoden: (1) Mit Hilfe einer outgroup : Spezies die bekanntermaßen außerhalb der betrachteten Gruppe liegt (erfordert Vorwissen, relativ zuverlässig) outgroup (2) Als Mittelpunkt der am weitesten voneinander entfernten Taxa (einfach, relativ unsicher) A 10 Größter Abstand: d (A,D) = = 18 Mittelpunkt bei 18 / 2 = B 2 5 D 14

15 Ähnlichkeit / Distanz: beobachtbar, messbar Ähnlichkeit ist nicht Verwandtschaft Verwandtschaft: historische Tatsache, kann heute nicht mehr beobachtet werden A D 6 B ist ähnlicher zu A (d = 3) als zu B (d = 7), aber und B sind am nächsten verwandt. Das heißt, und B hatten einen späteren gemeinsamen Vorfahren als oder B mit A. 15

16 Gründe für beobachtete Ähnlichkeiten (1) Evolutionäre Verwandtschaft - gemeinsame Stamm-Merkmale () - gemeinsame abgeleitete Merkmale (G) (2) parallele unabhängige Entwicklung von Merkmalen (Homoplasie) G G G T G G G G G konvergente Mutation zu G parallele Mutation zu G Rückmutation zu (3) geringe Evolutionsraten (hoher negativer selektiver Druck) 16

17 Phylogenetische Methoden Es gibt unterschiedliche Methoden zum Erstellen phylogenetischer Bäume. Sie unterscheiden sich vor allem in zwei Dingen: - Auf welcher Art von Daten arbeiten sie (Distanze oder Merkmale)? - Welche Prinzipien liegen dem Algorithmus zu Grunde? ALGORITHMUS BASIERT AUF einem Optimalitätskriterium lusteringverfahren ART DER DATEN Merkmale Distanzen PARSIMONY (Sparsamkeit) MAXIMUM LIKELIHOOD MINIMUM EVOLUTION LEAST SQUARES (kleinste Quadrate) UPGMA NEIGHBOR-JOINING 17

18 Distanz- vs. Merkmals-basierte Methoden Merkmals-basierte Methoden Merkmale sind Objekte, die einen von mehreren Zuständen annehmen können, z.b. jeweils eine Spalte in einem multiplen Alignment von DNA-Sequenzen. In jedem Taxon liegt eine bestimmte Merkmalsausprägung vor. Die Merkmale (Alignments) werden direkt zur Baumkonstruktion verwendet. Taxa Merkmale Species A ATGGTATTTTATAGTAG Species B ATGTAGTTTATATTAA Species TTATAGATGTGGTA Species D TTGAAGATGTGGTG Species E TTGAAGTTTTAGTTG Distanz-basierte Methoden Die Merkmale werden durch ein mathematisches Modell in paarweise Distanzen zwischen den Taxa umgerechnet. Nur die Distanz-Werte werden zur Baumkonstruktion verwendet. Zwei berechnete Distanzmatrizen rechts: Anteil Unterschiede, links: PAM-Schätzung / 100 A B D E Species A Species B Species Species D Species E

19 Optimierungs- vs. lustering-methoden Auf einem Optimalitätskriterium basierende Methoden Es wird ein Kriterium (eine Eigenschaft des zu berechnenden Baumes) definiert, das es zu optimieren gilt. Beispiele dafür: - Möglichst wenig Mutationen insgesamt im Baum - Möglichst wenig Diskrepanz zwischen gegebenen Distanzen und den Distanzen, die die Baumtopologie impliziert Die Aufgabe eines Algorithmus' ist nun, den Baum zu finden, der dieses Kriterium optimiert. Man muss wieder zwischen exakten Algorithmen und Heuristiken unterscheiden. Man kann die Ausgaben verschiedener Algorithmen miteinander vergleichen. lustering-methoden Es werden Regeln definiert, nach denen Taxa zu (2er-)Bäumen zusammenzufassen sind, diese Bäume wiederum zu grösseren Bäumen, etc. Diese Methoden liefern immer einen einzigen Baum zurück; dieser kann nicht gegenüber Alternativen bewertet werden. Es gibt kein Optimalitätskriterium. Achtung: Keines der Prinzipien verspricht den biologisch korrekten Baum! 19

20 Ausgewählte Methoden im Überblick ALGORITHMUS BASIERT AUF einem Optimalitätskriterium lusteringverfahren ART DER DATEN Merkmale Distanzen PARSIMONY (Sparsamkeit) MAXIMUM LIKELIHOOD MINIMUM EVOLUTION LEAST SQUARES (kleinste Quadrate) UPGMA NEIGHBOR-JOINING Merkmalsbasierte Methoden: + können auf molekulare oder auf morphologische Merkmale angewendet werden + liefern Schätzungen der Ahnen-Sequenzen + können die evolutionären Ereignisketten bestimmen führen auf NP-schwere Probleme, auch Heuristiken sehr rechenaufwändig 20

21 Sehr einfaches Beispiel Gegeben sind 5 Sequenzen: A, A, G, G, G Zwei mögliche Baumtopologien: Welche Sequenzen stehen an den inneren Knoten? Bei Maximum-Likelihood spielt die Länge der Kanten dabei eine Rolle.???????? A G G A G G G G A A 21

22 Parsimony (Sparsamkeit) Gesucht / Ausgabe: Baumtopologie, Ahnen-Sequenzen in den inneren Knoten & Wurzel Optimalitätskriterium: Der sparsamste Baum ( most parsimonious tree) ist derjenige, der über alle Kanten summiert am wenigsten Änderungen benötigt. Vorteile Einfach, intuitiv, motiviert durch Occam's Razor: die einfachste, kürzeste Erklärung ist die beste. Nachteile: Unterschätzt die wahre Anzahl von evolutionären Ereignissen bei entfernt verwandten Sequenzen (z.b. wegen Homoplasien) liefert falsche Ergebnisse bei weit entfernten Sequenzen und stark unterschiedlichen Raten 22

23 Maximum Likelihood (maximale Plausibilität) Gesucht / Ausgabe: Baumtopologie, Kantenlängen (in PAM-Einheiten o.ä.) Optimalitätskriterium: Sind ein statistisches Evolutionsmodell und eine Baumtopologie & Kantenlängen gegeben, kann man die Wahrscheinlichkeit ausrechnen, dass genau die beobachteten Sequenzen zusammen auftreten. Gesucht ist der Baum & Kantenlängen, der diese Wahrscheinlichkeit maximiert. Vorteile Modellbasiert: Alle Annahmen werden explizit gemacht Mehrfach- und Rücksubstitutionen sind im Modell berücksichtigt Konsistente Schätzung evolutionärer Distanzen (Kantenlängen) Nachteile: Ergebnisse sehr modell-abhängig; falsches Modell führt zu beliebigen Ergebnissen schwierig zu verstehen 23

24 Ausgewählte Methoden im Überblick ALGORITHMUS BASIERT AUF einem Optimalitätskriterium lusteringverfahren ART DER DATEN Merkmale Distanzen PARSIMONY (Sparsamkeit) MAXIMUM LIKELIHOOD MINIMUM EVOLUTION LEAST SQUARES (kleinste Quadrate) Programme fitch, kitsch UPGMA NEIGHBOR-JOINING Distanzbasierte Optimierungs-Methoden: + Distanzen können auf unterschiedliche Arten gewonnen werden + flexibler Einsatz, auch außerhalb der Phylogenetik Merkmale gehen nur indirekt ein; Ergebnisse von Distanzberechnung abhängig Keine Aussage über Ahnen-Merkmale möglich 24

25 Minimum Evolution / Least Squares Gesucht / Ausgabe: Baumtopologie, Kantenlängen Optimalitätskriterium: Zu jeder Baumtopologie werden die Kantenlängen so bestimmt, dass die die gegebenen Distanzen von Blatt zu Blatt möglichst gut approximieren (im Sinne kleinster Quadrate). Optimal ist die Baumtopologie - mit kleinstem quadratischen Fehler (bei least squares) - mit kleinster Gesamtlänge (bei minimum evolution) Vorteile optimalitäts-basiert ( Lösungen können vergleichend evaluiert werden) schneller als merkmals-basierte Methoden Nachteile: langsamer als lustering-methoden NJ und UPGMA 25

26 Ausgewählte Methoden im Überblick ALGORITHMUS BASIERT AUF einem Optimalitätskriterium lusteringverfahren ART DER DATEN Merkmale Distanzen PARSIMONY (Sparsamkeit) MAXIMUM LIKELIHOOD MINIMUM EVOLUTION LEAST SQUARES (kleinste Quadrate) UPGMA NEIGHBOR-JOINING lustering-methoden: + Distanzen können auf unterschiedliche Arten gewonnen werden + die schnellsten Baumrekonstruktionsmethoden + universell einsetzbar (auch außerhalb der Phylogenetik) + wenn die Distanzen es zulassen (ultrametrisch oder additiv sind), liefern die Algorithmen den richtigen Baum, sonst einen gut passenden 26

27 Ausgewählte Methoden im Überblick ALGORITHMUS BASIERT AUF einem Optimalitätskriterium lusteringverfahren ART DER DATEN Merkmale Distanzen PARSIMONY (Sparsamkeit) MAXIMUM LIKELIHOOD MINIMUM EVOLUTION LEAST SQUARES (kleinste Quadrate) UPGMA NEIGHBOR-JOINING lustering-methoden: liefern immer genau einen Baum, auch bei unsinnigen Distanz-Daten verschiedene Lösungen können nicht anhand eines Kriteriums verglichen werden Problem, dass eine unsinnige Lösung berechnet wurde, wird möglicherweise gar nicht erkannt 27

28 UPGMA: Unweighted Pair Group Method using Averaging Gesucht / Ausgabe: Baumtopologie, Kantenlängen Verfahren: Solange mehr als ein Objekt vorhanden ist: Finde das Paar (x,y) von Objekten mit kleinster Distanz Erzetze sie durch ein einziges Objekt {x,y} Berechne Distanzen von {x,y} zu den anderen Objekten a,..., mittels Durchschnittbildung zwischen d(x,a) und d(y,a) Der Baum ergibt sich aus der Hierarchie der zusammengefassten Objekte. Vorteile einfach zu verstehen, einfach durchzuführen liefert korrektes Resultat bei ultrametrischen Distanzen, d.h. wenn es einen ultrametrischen Baum gibt, der die gegebenen Distanzen als Distanzen zwischen den Blätten aufweist, wird dieser (schnell) gefunden. Nachteile: Ergebnisse schlecht interpretierbar bei nicht ultrametrischen Eingabe-Distanzen 28

29 NJ: Neighbor Joining Gesucht / Ausgabe: Baumtopologie, Kantenlängen Verfahren: Ähnlich wie bei UPGMA, aber die Wahl des zu aggregierenden Objektpaars ist sorgfältiger: Es werden alle Distanzen berücksichtigt, nicht nur die kleinste. Der Baum ergibt sich aus der Hierarchie der zusammengefassten Objekte. Vorteile liefert korrektes Resultat bei additiven Distanzen, d.h. wenn es einen (ungewurzelten) Baum gibt, der die gegebenen Distanzen als Distanzen zwischen den Blätten aufweist, wird dieser (schnell) gefunden. erlaubt viele Varianten mit unterschiedlichen Eigenschaften Nachteile: Ergebnisse schlecht interpretierbar bei nicht additiven Eingabe-Distanzen 29

30 Persönliche Empfehlung: Welche Methode soll ich benutzen? Distanzbasierte Methoden sind schnell und funktionieren meist gut, wenn das richtige Distanz-Modell verwendet wurde. Es empfiehlt sich, eine NJ-Variante zu benutzen, nicht UPGMA. Probabilistische Methoden (ML, Bayes'sche Methoden) sind langsam (auch diese Problemformulierung ist NP-schwer), aber können bei richtiger Wahl des Evolutionsmodells bessere Ergebnisse liefern. Sie berechnen außerdem Alternativen und relative Konfidenzwerte. Parsimony-Methoden unterschätzen den wahren evolutionären Abstand, denn sie suchen nach der sparsamsten Erklärung für Unterschiede. Nur in Ordnung bei sehr nah verwandten Sequenzen. Man bekommt keine Zeitschätzungen. Parsimony ist NP-schwer und benötigt viel Zeit für exakte Lösungen. 30

31 Software-Sammlung Phylogenetik Umfangreiche Sammlung phylogenetischer Software: Phylip: das am häufigsten benutzte Paket zum Erstellen von Phylogenien, enthält zahlreiche Einzelprogramme für verschiedene Aufgaben Projekt-Homepage: Web-Interface zu einer Teilmenge von Phylip + mehr: 31

32 Ende 32

33 Vertiefungsthemen Details zu den einzelnen Algorithmen Distanzberechnung im Jukes-antor und Kimura-Modell Robustheit geschätzter Bäume: Bootstrap 33

Einführung in die Angewandte Bioinformatik: Phylogenetik und Taxonomie

Einführung in die Angewandte Bioinformatik: Phylogenetik und Taxonomie Einführung in die Angewandte Bioinformatik: Phylogenetik und Taxonomie 24.06.2010 Prof. Dr. Sven Rahmann 1 Phylogenetik: Berechnung phylogenetischer Bäume Phylogenetik (phylum = Stamm): Rekonstruktion

Mehr

Einführung in die Angewandte Bioinformatik: Multiples Alignment und Phylogenetik

Einführung in die Angewandte Bioinformatik: Multiples Alignment und Phylogenetik Einführung in die Angewandte Bioinformatik: Multiples Alignment und Phylogenetik 04.06.2009 Prof. Dr. Sven Rahmann 1 Bisher: Paarweise Alignments Optimales Alignment: Alignment mit höchstem Score unter

Mehr

Einführung in die Bioinformatik

Einführung in die Bioinformatik Einführung in die Bioinformatik Ringvorlesung Biologie Sommer 07 Burkhard Morgenstern Institut für Mikrobiologie und Genetik Abteilung für Bioinformatik Goldschmidtstr. 1 Online Materialien zur Ringvorlesung:

Mehr

Multiple Alignments. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung

Multiple Alignments. Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann. Webseite zur Vorlesung Multiple Alignments Vorlesung Einführung in die Angewandte Bioinformatik Prof. Dr. Sven Rahmann Webseite zur Vorlesung http://bioinfo.wikidot.com/ Sprechstunde Mo 16-17 in OH14, R214 Sven.Rahmann -at-

Mehr

Evolutionary Trees: Distance Based

Evolutionary Trees: Distance Based Evolutionary Trees: Distance Based 1 Buftea Alexandru Laut der Evolutionstheorie findet in allen Organismen eine langsame Änderung statt (Evolution). Ein evolutionärer Baum, auch phylogenetischer Baum

Mehr

Bioinformatik für Biochemiker

Bioinformatik für Biochemiker Bioinformatik für Biochemiker Oliver Kohlbacher WS 2009/2010 9. Multiples Alignment II Abt. Simulation biologischer Systeme WSI/ZBIT, Eberhard Karls Universität Tübingen Übersicht T-COFFEE Probleme bei

Mehr

Bioinformatik für Biochemiker

Bioinformatik für Biochemiker Bioinformatik für Biochemiker Oliver Kohlbacher WS 2009/2010 9. Multiples Alignment II Abt. Simulation biologischer Systeme WSI/ZBIT, Eberhard Karls Universität Tübingen Übersicht T-OFFEE Probleme bei

Mehr

Evolutionäre Bäume. Madox Sesen. 30. Juni 2014

Evolutionäre Bäume. Madox Sesen. 30. Juni 2014 Evolutionäre Bäume Madox Sesen 30. Juni 2014 1 Einleitung Phylogenetische Bäume sind ein wichtiges Darstellungsmittel der Evolutionsforschung. Durch sie werden Verwandtschaftsbeziehungen zwischen Spezies

Mehr

Bioinformatik für Lebenswissenschaftler

Bioinformatik für Lebenswissenschaftler Bioinformatik für Lebenswissenschaftler Oliver Kohlbacher, Steffen Schmidt SS 2010 11. Hiden Markov Models & Phylogenien Abt. Simulation biologischer Systeme WSI/ZBIT, Eberhard Karls Universität Tübingen

Mehr

Bioinformatik für Lebenswissenschaftler

Bioinformatik für Lebenswissenschaftler Bioinformatik für Lebenswissenschaftler Oliver Kohlbacher, Steffen Schmidt SS 2010 11. Hiden Markov Models & Phylogenien Abt. Simulation biologischer Systeme WSI/ZBIT, Eberhard Karls Universität Tübingen

Mehr

Welche Alignmentmethoden haben Sie bisher kennengelernt?

Welche Alignmentmethoden haben Sie bisher kennengelernt? Welche Alignmentmethoden haben Sie bisher kennengelernt? Was heißt optimal? Optimal = die wenigsten Mutationen. Sequenzen bestehen aus Elementen (z.b. Aminosäuren oder Nukleotide). Edit Distanzen sind

Mehr

Rekonstruktion von Evolutionärer Geschichte

Rekonstruktion von Evolutionärer Geschichte Rekonstruktion von Evolutionärer Geschichte Populations- und Evolutionsbiologie 21.1.04 Florian Schiestl Phylogenetische Systematik Phylogenie: (gr. Phylum=Stamm) die Verwandtschaftsbeziehungen der Organismen,

Mehr

Bioinformatik. Distanzbasierte phylogenetische Algorithmen. Ulf Leser Wissensmanagement in der. Bioinformatik

Bioinformatik. Distanzbasierte phylogenetische Algorithmen. Ulf Leser Wissensmanagement in der. Bioinformatik Bioinformatik Distanzbasierte phylogenetische Algorithmen Ulf Leser Wissensmanagement in der Bioinformatik Phylogenetische Bäume Stammbaum (Phylogenetic Tree) Ulf Leser: Algorithmische Bioinformatik, Wintersemester

Mehr

Zentrum für Bioinformatik. Übung 4: Revision. Beispielfragen zur Klausur im Modul Angewandte Bioinformatik (erste Semesterhälfte)

Zentrum für Bioinformatik. Übung 4: Revision. Beispielfragen zur Klausur im Modul Angewandte Bioinformatik (erste Semesterhälfte) Andrew Torda Björn Hansen Iryna Bondarenko Zentrum für Bioinformatik Übung zur Vorlesung Angewandte Bioinformatik Sommersemester 2014 20./23.06.2014 Übung 4: Revision Beispielfragen zur Klausur im Modul

Mehr

Algorithmen auf Sequenzen Paarweiser Sequenzvergleich: Alignments

Algorithmen auf Sequenzen Paarweiser Sequenzvergleich: Alignments Algorithmen auf Sequenzen Paarweiser Sequenzvergleich: Alignments Sven Rahmann Genominformatik Universitätsklinikum Essen Universität Duisburg-Essen Universitätsallianz Ruhr Einführung Bisher: Berechnung

Mehr

Darwins Erben - Phylogenie und Bäume

Darwins Erben - Phylogenie und Bäume Vorlesung Einführung in die Bioinforma4k SoSe2011 Darwins Erben - Phylogenie und Bäume Prof. Daniel Huson ZBIT Center for Bioinformatics Center for Bioinformatics Charles Darwin und Bäume Darwin's Notizbuch

Mehr

Phylogenetische Rekonstrukion Sparsamkeits- und Abstandsmethoden 5. Juli 2012

Phylogenetische Rekonstrukion Sparsamkeits- und Abstandsmethoden 5. Juli 2012 Merle Erpenbeck Phylogenetische Rekonstrukion Sparsamkeits- und Abstandsmethoden 5. Juli 202 Seminarausarbeitung im Seminar Mathematische Biologie vorgelegt von Merle Erpenbeck Matrikelnummer: 5896 Betreuer:

Mehr

Bayesianische Netzwerke - Lernen und Inferenz

Bayesianische Netzwerke - Lernen und Inferenz Bayesianische Netzwerke - Lernen und Inferenz Manuela Hummel 9. Mai 2003 Gliederung 1. Allgemeines 2. Bayesianische Netzwerke zur Auswertung von Genexpressionsdaten 3. Automatische Modellselektion 4. Beispiel

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Phylogenetische Bäume Kieu Trinh Do SS 2009

Phylogenetische Bäume Kieu Trinh Do SS 2009 1. Einleitung Phylogenetische Bäume Kieu Trinh Do SS 2009 Wie seit geraumer Zeit bekannt ist, hat Ähnlichkeit ihre Ursachen in gemeinsamer Abstammung. Es stellt sich aber die Frage, wie wir die evolutionäre

Mehr

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume)

Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) WS 2016/17 Diskrete Strukturen Kapitel 4: Graphentheorie (Bäume) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Evolutionsbiologie 1 Phylogenetik Sebastian Höhna

Evolutionsbiologie 1 Phylogenetik Sebastian Höhna Evolutionsbiologie 1 Phylogenetik Sebastian Höhna Division of Evolutionary Biology Ludwig-Maximilians Universität, München Phylogenese, Phylogenie, Phylogenetik Definition (Wikipedia): Phylogenese (altgriechisch

Mehr

Aufgabe 7: Distanzbasierte Phylogenie: Neighbor Joining. Stefan Kröger, Philippe Thomas Wissensmanagement in der Bioinformatik

Aufgabe 7: Distanzbasierte Phylogenie: Neighbor Joining. Stefan Kröger, Philippe Thomas Wissensmanagement in der Bioinformatik Aufgabe 7: Distanzbasierte Phylogenie: Neighbor Joining Stefan Kröger, Philippe Thomas Wissensmanagement in der Bioinformatik Daten Wir verwenden neue Daten Die müssen sie ausnahmsweise selber suchen DNA-Sequenzen

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (18 Bäume: Grundlagen und natürliche Suchbäume) Prof. Dr. Susanne Albers Bäume (1) Bäume sind verallgemeinerte Listen (jedes Knoten-Element kann mehr

Mehr

TreeTOPS. Ein Phylogenetik-Icebreaker Spiel. Lehrer- Handbuch. ELLS Europäisches Lernlabor für die Lebenswissenschaften

TreeTOPS. Ein Phylogenetik-Icebreaker Spiel. Lehrer- Handbuch. ELLS Europäisches Lernlabor für die Lebenswissenschaften TreeTOPS Ein Phylogenetik-Icebreaker Spiel Lehrer- Handbuch ELLS Europäisches Lernlabor für die Lebenswissenschaften 1 Übergeordnetes Ziel Das übergeordnete Ziel des Spieles ist es, die Spieler in das

Mehr

Part A: Eine Hypothese der Verwandtschaft von Primaten anhand von morphologischen Merkmalen

Part A: Eine Hypothese der Verwandtschaft von Primaten anhand von morphologischen Merkmalen Ihre Namen: Übung 3: Phylogenetik II: Übungsaufgaben This exercise will help youin dieser Übung werden Sie lernen: dass phylogenetische Bäume testbare Hyptohesen sind wie evolutionäry Abstammung anhand

Mehr

9 Minimum Spanning Trees

9 Minimum Spanning Trees Im Folgenden wollen wir uns genauer mit dem Minimum Spanning Tree -Problem auseinandersetzen. 9.1 MST-Problem Gegeben ein ungerichteter Graph G = (V,E) und eine Gewichtsfunktion w w : E R Man berechne

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Algorithmen auf Sequenzen

Algorithmen auf Sequenzen Algorithmen auf Sequenzen Vorlesung von Prof. Dr. Sven Rahmann im Sommersemester 2008 Kapitel 6 Alignments Webseite zur Vorlesung http://ls11-www.cs.tu-dortmund.de/people/rahmann/teaching/ss2008/algorithmenaufsequenzen

Mehr

Molekulare Phylogenie

Molekulare Phylogenie Molekulare Phylogenie Grundbegriffe Methoden der Stammbaum-Rekonstruktion Thomas Hankeln, Institut für Molekulargenetik SS 2010 Grundlagen der molekularen Phylogenie Evolution äußert sich durch Veränderungen

Mehr

Bioinformatik Für Biophysiker

Bioinformatik Für Biophysiker Bioinformatik Für Biophysiker Sommersemester 2009 Silke Trißl / Ulf Leser Wissensmanagement in der Bioinformatik Wissensmanagement in der Bioinformatik Schwerpunkte Algorithmen der Bioinformatik Management

Mehr

Minimal spannende Bäume

Minimal spannende Bäume http://www.uni-magdeburg.de/harbich/ Minimal spannende Fakultät für Informatik Otto-von-Guericke-Universität 2 Inhalt Definition Wege Untergraphen Kantengewichtete Graphen Minimal spannende Algorithmen

Mehr

Aufgabe 6: Distanzbasierte Phylogenie: Hierarchisches Clustering. Ulf Leser Wissensmanagement in der Bioinformatik

Aufgabe 6: Distanzbasierte Phylogenie: Hierarchisches Clustering. Ulf Leser Wissensmanagement in der Bioinformatik Aufgabe 6: Distanzbasierte Phylogenie: Hierarchisches Clustering Ulf Leser Wissensmanagement in der Bioinformatik Daten Wir verwenden neue Daten Die müssen sie ausnahmsweise selber suchen DNA-Sequenzen

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 13 (6.6.2018) Graphenalgorithmen II Yannic Maus Algorithmen und Komplexität Repräsentation von Graphen Zwei klassische Arten, einen Graphen

Mehr

Phylogenetischen Systematik

Phylogenetischen Systematik Grundlagen der Phylogenetischen Systematik Johann-Wolfgang Wägete Verlag Dr. Friedrich Pfeil München, Juli 2000 ISBN 3-931516-73-3 Einleitung 9 1 Wissenschaftstheoretische Grundlagen 11 1.1 Was ist»erkenntnis«?

Mehr

Ihre Namen: Übung C: Phylogenetik I: Übungsaufgaben

Ihre Namen: Übung C: Phylogenetik I: Übungsaufgaben Ihre Namen: Übung C: Phylogenetik I: Übungsaufgaben Die heutige Übung dient dazu, phylogenetische Bäume für Sie verständlicher zu machen und Sie mit der Logik von phylogenetischen Analysen vertraut zu

Mehr

Graphen. Definitionen

Graphen. Definitionen Graphen Graphen werden häufig als Modell für das Lösen eines Problems aus der Praxis verwendet, wie wir im Kapitel 1 gesehen haben. Der Schweizer Mathematiker Euler hat als erster Graphen verwendet, um

Mehr

Phylogenetische Analyse

Phylogenetische Analyse Bioinformatik I - Uebung Phylogenetische Analyse Wenn nicht anders angegeben verwende die Standard-Einstellungen der Programme Hintergrund: Die Schwämme (Phylum Porifera) gehören zu den den ältesten lebenden

Mehr

Übungen zur Vorlesung Algorithmische Bioinformatik

Übungen zur Vorlesung Algorithmische Bioinformatik Übungen zur Vorlesung Algorithmische Bioinformatik Freie Universität Berlin, WS 2006/07 Utz J. Pape Johanna Ploog Hannes Luz Martin Vingron Blatt 6 Ausgabe am 27.11.2006 Abgabe am 4.12.2006 vor Beginn

Mehr

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

MafI I: Logik & Diskrete Mathematik (F. Hoffmann) Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob

Mehr

Datenstrukturen und Algorithmen (SS 2013)

Datenstrukturen und Algorithmen (SS 2013) Datenstrukturen und Algorithmen (SS 2013) Übungsblatt 10 Abgabe: Montag, 08.07.2013, 14:00 Uhr Die Übungen sollen in Gruppen von zwei bis drei Personen bearbeitet werden. Schreiben Sie die Namen jedes

Mehr

Studientag zur Algorithmischen Mathematik

Studientag zur Algorithmischen Mathematik Studientag zur Algorithmischen Mathematik Eulertouren, 2-Zusammenhang, Bäume und Baumisomorphismen Winfried Hochstättler Diskrete Mathematik und Optimierung FernUniversität in Hagen 22. Mai 2011 Outline

Mehr

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung

Kapitel 1: Fallstudie Bipartite Graphen Gliederung der Vorlesung Kapitel : Fallstudie Bipartite Graphen Gliederung der Vorlesung. Fallstudie Bipartite Graphen. Grundbegriffe. Elementare Graphalgorithmen und. Minimal spannende Bäume. Kürzeste Wege 6. Traveling Salesman

Mehr

MBI: Sequenzvergleich ohne Alignment

MBI: Sequenzvergleich ohne Alignment MBI: Sequenzvergleich ohne Alignment Bernhard Haubold 12. November 2013 Wiederholung Exaktes & inexaktes Matching Das exakte Matching Problem Naive Lösung Präprozessierung Muster(Pattern): Z-Algorithmus,

Mehr

Phylogenetische Bäume

Phylogenetische Bäume Phylogenetische Bäume Hauptseminar AfS Algorithmen der Bioinformatik Andreas Brieg Ilmenau, 06.07.2007 Phylogenetische Bäume Gliederung Einleitung Distanzbasierte Methoden Ultrametriken und ultrametrische

Mehr

Allgemeine Aufgabenstellung. Ziele

Allgemeine Aufgabenstellung. Ziele Allgemeine Aufgabenstellung Sie (s)wollen die Phylogenie der Vertebraten mit Hilfe molekulare Daten ergründen. Insbesondere interessiert Sie die Verwandtschaft der Primaten; aber auch tiefere Verzweigungen

Mehr

Klausur SoSe Juli 2013

Klausur SoSe Juli 2013 Universität Osnabrück / FB6 / Theoretische Informatik Prof. Dr. M. Chimani Informatik D: Einführung in die Theoretische Informatik Klausur SoSe 2013 11. Juli 2013 (Prüfungsnr. 1007049) Gruppe: Batman,

Mehr

Die Maximum-Likelihood-Methode

Die Maximum-Likelihood-Methode Vorlesung: Computergestützte Datenauswertung Die Maximum-Likelihood-Methode Günter Quast Fakultät für Physik Institut für Experimentelle Kernphysik SS '17 KIT Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik FREIE UNIVERSITÄT BERLIN Fachbereich Mathematik und Informatik Institut für Informatik (WE 3) FU BERLIN Freie Universität Berlin FB Mathematik und Informatik, Institut für Informatik, Takustr. 9, D-14195

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

Evolution & Genetik (Beispiel Hämoglobin) Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 akrause@fh-bingen.de

Evolution & Genetik (Beispiel Hämoglobin) Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 akrause@fh-bingen.de Evolution & Genetik (Beispiel Hämoglobin) Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 akrause@fh-bingen.de DNA (Desoxyribonukleinsäure) 5 3 CGATGTACATCG GCTACATGTAGC 3 5 Doppelhelix Basen: Adenin,

Mehr

Studiengang Informatik der FH Gießen-Friedberg. Sequenz-Alignment. Jan Schäfer. WS 2006/07 Betreuer: Prof. Dr. Klaus Quibeldey-Cirkel

Studiengang Informatik der FH Gießen-Friedberg. Sequenz-Alignment. Jan Schäfer. WS 2006/07 Betreuer: Prof. Dr. Klaus Quibeldey-Cirkel Studiengang Informatik der FH Gießen-Friedberg Sequenz-Alignment Jan Schäfer WS 2006/07 Betreuer: Prof. Dr. Klaus Quibeldey-Cirkel Überblick Einführung Grundlagen Wann ist das Merkmal der Ähnlichkeit erfüllt?

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Einführung in die Phylogenie (lat.: phylum = Stamm) Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Stammbäume Phylogenetische Bäume Evolutionsmodell

Mehr

Phylogenien und Methoden zu ihrer Rekonstruktion. Seminar Bioinformatik: Algorithmische und statistische Verfahren der strukturellen Genomanalyse

Phylogenien und Methoden zu ihrer Rekonstruktion. Seminar Bioinformatik: Algorithmische und statistische Verfahren der strukturellen Genomanalyse 1 Phylogenien und Methoden zu ihrer Rekonstruktion Seminar Bioinformatik: Algorithmische und statistische Verfahren der strukturellen Genomanalyse Übersicht 2 Geschichte und Beispiele Darwin und Kreationismus

Mehr

Vorlesung 2: Graphentheorie

Vorlesung 2: Graphentheorie Vorlesung 2: Graphentheorie Markus Püschel David Steurer Peter Widmayer Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Funktionsgraph bekannt aus der Schule hat aber leider nichts mit

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Übersicht: Graphen. Definition: Ungerichteter Graph. Definition: Ungerichteter Graph Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 07 Dr. Stefanie Demirci Computer Aided Medical Procedures Technische Universität München 7 Fortgeschrittene Datenstrukturen Graphen

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 6 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 16. Mai 2018 [Letzte Aktualisierung: 18/05/2018,

Mehr

Dieser Graph hat 3 Zusammenhangskomponenten

Dieser Graph hat 3 Zusammenhangskomponenten Vl 2, Informatik B, 19. 04. 02 1.1.3 Definitionen und wichtige Graphen Sei im folgenden G =(V;E) ein schlichter ungerichteter Graph. Definition: Der Grad eines Knoten v in einem ungerichteten Graphen ist

Mehr

Fernstudium "Molekulare Evolution" Bernhard Lieb Michael Schaffeld. Institut für Zoologie Universität Mainz

Fernstudium Molekulare Evolution Bernhard Lieb Michael Schaffeld. Institut für Zoologie Universität Mainz Fernstudium "Molekulare Evolution" ernhard Lieb Michael Schaffeld Institut für Zoologie Universität Mainz 1 Ziel des Kurses Wie erhalte ich aus meinen (Sequenz-) aten einen Stammbaum, und was sagt mir

Mehr

Das Problem des Handlungsreisenden

Das Problem des Handlungsreisenden Seite 1 Das Problem des Handlungsreisenden Abbildung 1: Alle möglichen Rundreisen für 4 Städte Das TSP-Problem tritt in der Praxis in vielen Anwendungen als Teilproblem auf. Hierzu gehören z.b. Optimierungsprobleme

Mehr

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein:

a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: 1 Aufgabe 8.1 (P) (2, 3)-Baum a) Fügen Sie die Zahlen 39, 38, 37 und 36 in folgenden (2, 3)-Baum ein: Zeichnen Sie, was in jedem Schritt passiert. b) Löschen Sie die Zahlen 65, 70 und 100 aus folgendem

Mehr

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22 Gliederung 1 Unsicheres Wissen 2 Schließen

Mehr

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität

Datenstrukturen und Algorithmen. Christian Sohler FG Algorithmen & Komplexität Datenstrukturen und Algorithmen Christian Sohler FG Algorithmen & Komplexität 1 Clustering: Partitioniere Objektmenge in Gruppen(Cluster), so dass sich Objekte in einer Gruppe ähnlich sind und Objekte

Mehr

Algorithmische Bioinformatik

Algorithmische Bioinformatik Algorithmische Bioinformatik Character-basierte Phylogenie Ulf Leser Wissensmanagement in der Bioinformatik Ziel dieser Vorlesung Grundprinzip der Maximum Parsimony Idee erkennen und bewerten können Verfahren

Mehr

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007

Graphentheorie. Kürzeste Wege. Kürzeste Wege. Kürzeste Wege. Rainer Schrader. 25. Oktober 2007 Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 25. Oktober 2007 1 / 20 2 / 20 Wir werden Optimierungsprobleme vom folgenden Typ betrachten: gegeben eine Menge X und eine Funktion

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Datenstrukturen: Anordnung von Daten, z.b. als Liste (d.h. in bestimmter Reihenfolge) Beispiel: alphabetisch sortiertes Wörterbuch... Ei - Eibe - Eidotter... als Baum (d.h.

Mehr

Algorithmische Graphentheorie

Algorithmische Graphentheorie Algorithmische Graphentheorie Vorlesung 4: Suchstrategien Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. April 2017 HALBORDNUNG TOPOLOGISCHE ORDNUNG TOPOLOGISCHES

Mehr

ADS: Algorithmen und Datenstrukturen 2

ADS: Algorithmen und Datenstrukturen 2 ADS: Algorithmen und Datenstrukturen 2 Teil 4 Prof. Dr. Gerhard Heyer Institut für Informatik Abteilung Automatische Sprachverarbeitung Universität Leipzig 24. April 2019 [Letzte Aktualisierung: 24/04/2019,

Mehr

Homologie und Sequenzähnlichkeit. Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 akrause@fh-bingen.de

Homologie und Sequenzähnlichkeit. Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 akrause@fh-bingen.de Homologie und Sequenzähnlichkeit Prof. Dr. Antje Krause FH Bingen 06721 / 409 253 akrause@fh-bingen.de Homologie Verwandtschaft aufgrund gleicher Abstammung basiert auf Speziation (Artbildung): aus einer

Mehr

Tutoraufgabe 1 (Suchen in Graphen):

Tutoraufgabe 1 (Suchen in Graphen): Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS14 F. Corzilius, S. Schupp, T. Ströder Tutoraufgabe 1 (Suchen in Graphen): a) Geben Sie die Reihenfolge an, in der die Knoten besucht werden, wenn

Mehr

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie

Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Ferienkurs zur algorithmischen diskreten Mathematik Kapitel 1: Grundlagen der algorithmischen Graphentheorie Dipl-Math. Wolfgang Kinzner 2.4.2012 Kapitel 1: Grundlagen der algorithmischen Graphgentheorie

Mehr

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke

Graphentheorie Graphentheorie. Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke Graphen Graphentheorie Graphentheorie Grundlagen Bäume Eigenschaften von Graphen Graphen-Algorithmen Matchings und Netzwerke 2 Was ist ein Graph? Ein Graph ist in der Graphentheorie eine abstrakte Struktur,

Mehr

Physik der sozio-ökonomischen Systeme mit dem Computer. 7. Vorlesung

Physik der sozio-ökonomischen Systeme mit dem Computer. 7. Vorlesung Physik der sozio-ökonomischen Systeme mit dem Computer PC-POOL RAUM 01.120 JOHANN WOLFGANG GOETHE UNIVERSITÄT 01.12.2017 7. Vorlesung MATTHIAS HANAUSKE FRANKFURT INSTITUTE FOR ADVANCED STUDIES JOHANN WOLFGANG

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 Bäume & Graphen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v. Sommersemester

Mehr

Wie wird ein Graph dargestellt?

Wie wird ein Graph dargestellt? Wie wird ein Graph dargestellt? Für einen Graphen G = (V, E), ob gerichtet oder ungerichtet, verwende eine Adjazenzliste A G : A G [i] zeigt auf eine Liste aller Nachbarn von Knoten i, wenn G ungerichtet

Mehr

INTERVALLBÄUME. Tanja Lehenauer, Besart Sylejmani

INTERVALLBÄUME. Tanja Lehenauer, Besart Sylejmani INTERVALLBÄUME Tanja Lehenauer, Besart Sylejmani Datenstrukturen in der Informatik Baumstrukturen Warum Intervallbäume? Centered Interval Tree Konstruktion Suchen eines Punktes Suchen eines Intervalls

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle iels Landwehr Überblick: Graphische Modelle Graphische Modelle: Werkzeug zur Modellierung einer Domäne mit verschiedenen

Mehr

Wie teilt man Lebewesen ein? 1. Versuch Aristoteles ( v.chr.)

Wie teilt man Lebewesen ein? 1. Versuch Aristoteles ( v.chr.) Taxonomie Kladistik Phylogenese Apomorphien& Co. Fachwissenschaft & Methodik bei der Ordnung und Einteilung von Lebewesen Bildquellen: http://www.ulrich-kelber.de/berlin/berlinerthemen/umwelt/biodiversitaet/index.html;

Mehr

Algorithmen und Datenstrukturen (Informatik II) SS Klausur

Algorithmen und Datenstrukturen (Informatik II) SS Klausur Lehrstuhl für Algorith. und Datenstrukturen Prof. Dr. Hannah Bast Axel Lehmann Algorithmen und Datenstrukturen (Informatik II) SS 2013 http://ad-wiki.informatik.uni-freiburg.de/teaching Klausur Mittwoch

Mehr

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16

Natürliche Bäume. (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun. Letzte Änderung: :16. Natürliche Bäume 1/16 Natürliche Bäume (Algorithmen und Datenstrukturen I) Prof. Dr. Oliver Braun Letzte Änderung: 18.03.2018 18:16 Natürliche Bäume 1/16 Bäume Begriffe (1/2) Bäume sind verallgemeinerte Listenstrukturen ein

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 22 (20.7.2016) Greedy Algorithmen - Datenkompression Algorithmen und Komplexität Greedy Algorithmen Greedy Algorithmen sind eine Algorithmenmethode,

Mehr

Christian Rieck, Arne Schmidt

Christian Rieck, Arne Schmidt Institute of Operating Systems and Computer Networks Algorithms Group Algorithmen und Datenstrukturen Wintersemester 207/208 Übung#5, 2.2.207 Christian Rieck, Arne Schmidt Bäume Satz Jeder gerichtete Baum

Mehr

A Berlin, 10. April 2017

A Berlin, 10. April 2017 A Berlin, 10. April 2017 Name:... Matr.-Nr.:... Wiederholung der schriftlichen Prüfung zur Vorlesung Diskrete Strukturen (Niedermeier/Molter/Froese, Wintersemester 2016/17) Einlesezeit: 15 Minuten Bearbeitungszeit:

Mehr

Slide 1. Visualisierung evolutionärer Zusammenhänge

Slide 1. Visualisierung evolutionärer Zusammenhänge Slide 1 Visualisierung evolutionärer Zusammenhänge Slide 2 Evolution Enstehung neuerarten: Vererbung Mutation Selektion Horizontaler Gentransfer, Endosymbiose, Hybridisierung Slide 3 2 Beispiele: Slide

Mehr

Aufgaben zur Klausurvorbereitung

Aufgaben zur Klausurvorbereitung Vorlesung Graphen und Optimierung Sommersemester 2013/14 Prof. S. Lange Aufgaben zur Klausurvorbereitung Hier finden Sie eine Reihe von Übungsaufgaben, die wir an den beiden Vorlesungsterminen am 29.01.2014

Mehr

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum.

Clausthal C G C C G C. Informatik II Bäume. G. Zachmann Clausthal University, Germany Beispiele. Stammbaum. lausthal Informatik II Bäume. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Beispiele Stammbaum. Zachmann Informatik - SS 0 Bäume Stammbaum Parse tree, Rekursionsbaum Unix file hierarchy

Mehr

Zusammenfassung des 2. Abends

Zusammenfassung des 2. Abends lgorithmen in der iologie r. Hans-Joachim öckenhauer r. ennis Komm Zusammenfassung des. bends Zürich, 0. pril 0 lignment-verfahren Für einen Überblick über die lignment-lgorithmen zur estimmung der Ähnlichkeit

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik 1 Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg Wintersemester 2014/15 2 Notation für Wörter w a is die Anzahl der Vorkommen von

Mehr

Sachrechnen/Größen WS 14/15-

Sachrechnen/Größen WS 14/15- Kapitel Daten & Wahrscheinlichkeit 3.1 Kombinatorische Grundlagen 3.2 Kombinatorik & Wahrscheinlichkeit in der Grundschule 3.3 Daten Darstellen 3.1 Kombinatorische Grundlagen Verschiedene Bereiche der

Mehr

Fortgeschrittene Netzwerk- und Graph-Algorithmen

Fortgeschrittene Netzwerk- und Graph-Algorithmen Fortgeschrittene Netzwerk- und Graph-Algorithmen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Wintersemester

Mehr

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden!

Informatik II: Algorithmen & Datenstrukturen. Blättern Sie nicht um bevor Sie dazu aufgefordert werden! Albert-Ludwigs-Universität Institut für Informatik Prof. Dr. F. Kuhn Informatik II: Algorithmen & Datenstrukturen Montag, 29. August, 2014, 14:00 17:00 Name:...........................................................

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 02.07.2015 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen

Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Algorithmen und Datenstrukturen Übung #4 BFS/DFS, Wachstum von Funktionen Christian Rieck, Arne Schmidt 22.11.2018 Heute 12 Breiten-

Mehr

Betriebliche Optimierung

Betriebliche Optimierung Betriebliche Optimierung Joachim Schauer Joachim Schauer Betriebliche Optimierung 1 / 31 1 Metaheuristische Verfahren 2 Joachim Schauer Betriebliche Optimierung 2 / 31 Einleitendes Metaheuristische Verfahren

Mehr

Digraphen, DAGs und Wurzelbäume

Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 1 Digraphen, DAGs und Wurzelbäume Digraphen (gerichtete Graphen) Slide 2 Eingangs- und Ausgangsgrad Bei einer gerichteten Kante e = (u,v) E heißt u Startknoten von

Mehr

Theoretische Informatik 1

Theoretische Informatik 1 Theoretische Informatik 1 Approximierbarkeit David Kappel Institut für Grundlagen der Informationsverarbeitung Technische Universität Graz 10.06.2016 Übersicht Das Problem des Handelsreisenden TSP EUCLIDEAN-TSP

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2017/18 Pro f. Dr. Sán do r Fe k e te 1 Binärer Suchbaum Außerdem wichtig: Struktur der Schlüsselwerte! 2 Ordnungsstruktur Linker

Mehr