Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Größe: px
Ab Seite anzeigen:

Download "Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg"

Transkript

1 Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22

2 Gliederung 1 Unsicheres Wissen 2 Schließen mit unsicherem Wissen (Lehrstuhl KI) Bayes-Netze (1) 2 / 22

3 Unsicherheit warum? Notwendigkeit, unter Unsicherheit zu handeln: Rationale Entscheidungen hängen ab von der relativen Wichtigkeit verschiedener Ziele. Ziele hängen ab von der Wahrscheinlichkeit, dass und in welchem Umfang sie erreicht werden können. Bestenfalls ein Überzeugungsgrad ( Degree of Belief ) für die Wahrheit von Aussagen. In 50% der Fälle Ist eine Falle Kiste ist zu Kiste ist verschlossen Fast nie ein Schatz In 50% der Fälle Enthält einen Schatz Ist es gefährlich, die Kiste zu öffnen? Beobachtung: Die Kiste ist zu. Erfahrung: Es gibt viele Schätze, aber auch viele Fallen. Die meisten verschlossenen Kisten sind Fallen. (Lehrstuhl KI) Bayes-Netze (1) 3 / 22

4 Quellen der Unsicherheit Vernachlässigen: Aufwand zur kompletten Auflistung aller Antezedens- und Konsequens-Elemente für Regeln ohne Ausnahmen zu gross; Schwierigkeiten der Handhabung komplexer und umfangreicher Regelsysteme. Theoretische Unkenntnis: Es existiert keine geschlossene Bereichstheorie. Praktische Unkenntnis: Selbst bei Kenntnis aller Regeln ist es oft nicht möglich, vollständige Information über einen bestimmten Anwendungsfall zu gewinnen. (Lehrstuhl KI) Bayes-Netze (1) 4 / 22

5 Unsicherheit und rationale Entscheidungen Wahrscheinlichkeitstheorie ist ein Mittel zur Darstellung und Verarbeitung von Überzeugungsgraden für die Wahrheit von Sätzen. Markierung von Sätzen mit einem Wahrscheinlichkeitsmass bedeutet ein Mass für die Erwartung, dass solche Sätze zutreffen. Die Wahrscheinlichkeit, eine Aussage für richtig zu halten, hängt von den Erfahrungen ab, die (bis dato) gemacht wurden: Evidenz Wahrscheinlichkeit vor Evidenz: a priori (nicht-konditional) Wahrscheinlichkeit nach Evidenz: a posteriori (konditional) (Lehrstuhl KI) Bayes-Netze (1) 5 / 22

6 Wahrscheinlichkeit (1) Das Etikett P (p) gibt die Wahrscheinlichkeit für die Wahrheit der Formel p an: P (p) [0, 1] Werte von P (p): 0: p ist sicher falsch, 1: p ist sicher wahr, 0.5: p ist gleich wahrscheinlich wahr wie falsch. Bedingte Wahrscheinlichkeiten: P (p q) = y genau dann, wenn y die Wahrscheinlichkeit angibt, unter der p (auch) wahr ist, falls man weiss, dass q wahr ist (und nicht mehr). (Lehrstuhl KI) Bayes-Netze (1) 6 / 22

7 Wahrscheinlichkeit (2) Allgemein gilt: 1 P (p q) = P (p)p (q p) 2 P ( p) = 1 P (p) 3 p q P (p) = P (q) Wichtige Konsequenz: Die Regel von Bayes Für zwei Sätze H (Hypothese) und E (Evidenz) gilt: P (E) 0 P (H E) = P (E H)P (H), P (E) d.h. Posteriori = Likelihood * Priori / Evidenz, denn P (H)P (E H) = P (E H) = P (H E) = P (E)P (H E). (Lehrstuhl KI) Bayes-Netze (1) 7 / 22

8 Konsequenzen aus der Bayes-Regel 1 Falls H die Evidenz E ausschließt, dann auch umgekehrt: P (E H) = 0 P (H E) = 0; 2 E hat keinen Einfluss auf die relativen Wahrscheinlichkeiten von H 1 und H 2, wenn die Hypothesen H 1 und H 2 die gleiche Information über die Evidenz E liefern: P (E H 1 ) = P (E H 2 ) P (H 1 E) P (H 2 E) = P (H 1) P (H 2 ). (Lehrstuhl KI) Bayes-Netze (1) 8 / 22

9 Unabhängigkeit (Bedingte) Unabhängigkeit: H ist unabhängig von E, falls P (H E) = P (H); H ist bedingt unabhängig von E bei Evidenz F, falls P (H E F ) = P (H F ). Falls H unabhängig von E ist, dann auch E von H. Aus den Wahrscheinlichkeitsaxiomen folgt auch: P (p q) = P (p) + P (q) P (p q). (Lehrstuhl KI) Bayes-Netze (1) 9 / 22

10 Totale Wahrscheinlichkeit Ist w 1,..., w n eine Menge von Sätzen mit P (w 1... w n ) = 1 und i j P (w i w j ) = 0, gilt für beliebige Sätze p: P (p) = i P (p w i )P (w i ). Die Wahrscheinlichkeit von p kann abhängig von den Wahrscheinlichkeiten für w i rekonstruiert werden. Jedes w i liefert den eigenen Beitrag gewichtet mit der Wahrscheinlichkeit für w i selbst. Beispiel: P (zu) = P (zu Falle) P (Falle) + P (zu Schatz) P (Schatz) (Lehrstuhl KI) Bayes-Netze (1) 10 / 22

11 Vier Arten von Inferenz In 50% der Fälle Ist eine Falle Kiste ist zu Kiste ist verschlossen Fast nie ein Schatz In 50% der Fälle Enthält einen Schatz Diagnostische Inferenz Ist es eine Falle, daß die Kiste verschlossen ist? Kausale Inferenz Ist die Kiste verschlossen, weil es eine Falle ist? Interkausale Inferenz Ist es eine Falle, wenn die Kiste verschlossen und ein Schatz drin ist? Knoten stehen für Zufallsvariablen. Kanten geben an, welche Zufallsvariablen direkten Einfluß auf welche anderen haben. (Lehrstuhl KI) Bayes-Netze (1) 11 / 22

12 BAYES-Netze repräsentieren unsicheres Wissen BAYES-Netze sind gerichtete Graphen ohne Zyklen. Jeder Knoten hat eine Tabelle mit den bedingten Wahrscheinlichkeiten für den Einfluß der Eltern auf ihn. Für Knoten ohne Eltern gibt es eine Tabelle für die Wahrscheinlichkeit für jeden Wert der Zufallsvariablen. Falle 40% keine Falle 60% Schatz 20% kein Schatz 80% Ist eine Falle Enthält einen Schatz Kiste ist verschlossen Falle Schatz Kiste zu P(Kiste zu=x Falle=y und Schatz=z) (Lehrstuhl KI) Bayes-Netze (1) 12 / 22

13 Benötigte Daten für Inferenzen a-priori Wahrscheinlichkeiten Falle 40% keine Falle 60% Ist eine Falle Kiste ist verschlossen P (Falle) P (Falle) 0, 4 0, 6 bedingte Wahrscheinlichkeiten Falle Kiste zu Wahrscheinlichkeit (F ) (K) P (K F ) = 2 4 (F ) ( K) P ( K F ) = 2 4 ( F ) (K) P (K F ) = 4 6 ( F ) ( K) P ( K F ) = 2 6 Anhand dieser Werte können Schlußfolgerungen gezogen werden (Inferieren). Beobachtungen können die a-priori Wahrscheinlichkeiten verändern. (Lehrstuhl KI) Bayes-Netze (1) 13 / 22

14 Beobachten und Inferieren (1) A-posteriori Wahrscheinlichkeiten für Kiste zu aufgrund der gegebenen a-priori Wahrscheinlichkeiten: P (K) = P (F )P (K F ) + P ( F )P (K F ) = = 3 5 P ( K) = P (F )P ( K F ) + P ( F )P ( K F ) = = 2 5 Beobachtung: Es ist eine Falle. P (K) = P (F )P (K F ) + P ( F )P (K F ) = = 1 2 P ( K) = P (F )P ( K F ) + P ( F )P ( K F ) = = 1 2 (Lehrstuhl KI) Bayes-Netze (1) 14 / 22

15 Beobachten und Inferieren (2) Für kausale Inferenzen muß man a-posteriori oder totale Wahrscheinlichkeiten berechnen. Feind territorium Ist eine Falle P (F ) = P (T )P (F T ) + P ( T )P (F T ) P ( F ) = P (T )P ( F T ) + P ( T )P ( F T ) P (K) = P (F )P (K F ) + P ( F )P (K F ) P ( K) = P (F )P ( K F ) + P ( F )P ( K F ) Kiste ist verschlossen Beobachtung: Die Kiste ist zu. P (F K) = P (F ) 0, 4 P (K F ) = P (K) = 1 5 Bei der diagnostischen Inferenz hilft die Regel von BAYES. (Lehrstuhl KI) Bayes-Netze (1) 15 / 22

16 Beobachten und Inferieren (3) Ist eine Falle Kiste ist verschlossen Enthält einen Schatz Falle (F ) Schatz (S) Kiste zu (K) Für die Berechnung von P (K F S) gilt die Bedingung P (K F S) + P ( K F S) = P (K F S) + P ( K F S) P (F S) = (disjunkte Ereignisse) P ((K K) F S) P (F S) = P (F S) P (F S) = 1 (Lehrstuhl KI) Bayes-Netze (1) 16 / 22

17 Rekursionsformel für bedingte Wahrscheinlichkeiten Hat man mehrere Zufallsvariablen A 1,... A n und will die Wahrscheinlichkeit berechnen, daß A 1 = a 1 und A 2 = a 2 und... A n = a n, nutzt man folgenden Zusammenhang zwischen der gemeinsamen Verteilung der A i und bedingten Wahrscheinlichkeiten: n P ( A i = a i ) = P (a 1 )P (a 2 a 1 )... P (a n a 1... a n 1 ) i=1 = P (a 1 ) P (a 1 a 2 ) P (a 1 )... P (a 1... a n ) P (a 1... a n 1 ) (Lehrstuhl KI) Bayes-Netze (1) 17 / 22

18 Beobachten und Inferieren (4) Interkausale Inferenz (explaining away) (Lehrstuhl KI) Bayes-Netze (1) 18 / 22

19 Beobachten und Inferieren (5) Wie wahrscheinlich ist es, daß der Sprinkler an ist, wenn daß Gras naß ist, und es regnet? P (S = W = R = ) = P (S = W = R = ) P (W = R = ) Berechnung des Zählers: P (S = W = R = ) = P (S = W = R = C = ) + P (S = W = R = C = ) Anwendung der Rekursionsformel: P (S W R C) = P (C) P (S C) P (R S C) P (W S C R) = P (C) P (S C) P (R C) P (W S R) (Lehrstuhl KI) Bayes-Netze (1) 19 / 22

20 Beobachten und Inferieren (6) Die letzte Gleichung der vorigen Folie nutzt Annahmen über die Unabhängigkeit von Zufallsvariablen, die sich aus der Netztopologie ergeben. Jetzt kann der Wert des Zählers ermittelt werden: P (S = W = R = ) = P (C) P (S C) P (R C) P (W S R) + P ( C) P (S C) P (R C) P (W S R) = = = Beachte (zur Addition der Wahrscheinlichkeiten): (S W R C) (S W R C) = (Lehrstuhl KI) Bayes-Netze (1) 20 / 22

21 Beobachten und Inferieren (7) Berechnung des Nenners: P (W R) = P (W R C S) + P (W R C S) + P (W R C S) + P (W R C S) = (C) P (S C) P (R C) P (W S R) + (C) P ( S C) P (R C) P (W S R) + ( C) P (S C) P (R C) P (W S R) + ( C) P ( S C) P (R C) P (W S R) = = (Lehrstuhl KI) Bayes-Netze (1) 21 / 22

22 Fazit Im Beispiel ergibt sich also insgesamt: Zusammenfassend: P (S = W = R = ) = = Ausgangspunkt ist die gemeinsame Verteilung aller Variablen im Netz. Über die Rekursionsformel wird die gemeinsame Verteilung aufgelöst nach der gesuchten Variablen. Dabei sind alle Variablen voander unabhängig, die nicht durch eine Kante im Graphen miteinander verbunden sind. Für alle Variablen deren Wert nicht bekannt ist, wird die Summenformel für disjunkte Ereignisse ausgenutzt. (Lehrstuhl KI) Bayes-Netze (1) 22 / 22

Bayes sche und probabilistische Netze

Bayes sche und probabilistische Netze Bayes sche und probabilistische Netze Gliederung Wahrscheinlichkeiten Bedingte Unabhängigkeit, Deduktion und Induktion Satz von Bayes Bayes sche Netze D-Separierung Probabilistische Inferenz Beispielanwendung

Mehr

Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Bayes-Netze (2) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (2) 1 / 23 Gliederung 1 Zusammenhang zwischen Graphenstruktur

Mehr

Bayessche Netze. Kevin Klamt und Rona Erdem Künstliche Intelligenz II SoSe 2012 Dozent: Claes Neuefeind

Bayessche Netze. Kevin Klamt und Rona Erdem Künstliche Intelligenz II SoSe 2012 Dozent: Claes Neuefeind Bayessche Netze Kevin Klamt und Rona Erdem Künstliche Intelligenz II SoSe 2012 Dozent: Claes Neuefeind Einleitung Sicheres vs. Unsicheres Wissen Kausale Netzwerke Abhängigkeit Verbindungsarten Exkurs:

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle iels Landwehr Überblick: Graphische Modelle Graphische Modelle: Werkzeug zur Modellierung einer Domäne mit verschiedenen

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Bayes sches Lernen. Niels Landwehr Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Bayes sches Lernen Niels Landwehr Überblick Grundkonzepte des Bayes schen Lernens Wahrscheinlichstes Modell gegeben Daten Münzwürfe

Mehr

PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein

PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein PRAKTIKUM KÜNSTLICHE INTELLIGENZ Ausarbeitung zum 1. Meilenstein Bayes'sche Netze Andreas Bahcecioglu Marcel Bergmann Ertan Samgam Sven Schebitz Jan Seewald Fachhochschule Köln Wintersemester 2014 / 2015

Mehr

Semester-Fahrplan 1 / 17

Semester-Fahrplan 1 / 17 Semester-Fahrplan 1 / 17 Hydroinformatik I Einführung in die Hydrologische Modellierung Bayes sches Netz Olaf Kolditz *Helmholtz Centre for Environmental Research UFZ 1 Technische Universität Dresden TUDD

Mehr

Elektrotechnik und Informationstechnik

Elektrotechnik und Informationstechnik Elektrotechnik und Informationstechnik Institut für utomatisierungstechnik, Professur Prozessleittechnik Bayessche Netze VL Prozessinformationsverarbeitung WS 2009/2010 Problemstellung Wie kann Wissen

Mehr

Methoden der KI in der Biomedizin Bayes Netze

Methoden der KI in der Biomedizin Bayes Netze Methoden der KI in der Biomedizin Bayes Netze Karl D. Fritscher Bayes Netze Intuitiv: Graphische Repräsentation von Einfluss Mathematisch: Graphische Repräsentation von bedingter Unabhängigkeit Bayes Netze

Mehr

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg

Perzeptronen. Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg Perzeptronen Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Perzeptronen 1 / 22 Gliederung 1 Schwellwert-Logik (MCCULLOCH-PITTS-Neuron)

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 5: Naive Bayes + IBL (V.

Mehr

Bayes sches Lernen: Übersicht

Bayes sches Lernen: Übersicht Bayes sches Lernen: Übersicht Bayes sches Theorem MAP, ML Hypothesen MAP Lernen Minimum Description Length Principle Bayes sche Klassifikation Naive Bayes Lernalgorithmus Teil 10: Naive Bayes (V. 1.0)

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Datenanalyse Klausur SS 2014 (nicht wortwörtlich) Lösung (aus einer Nachbesprechung mit Elsenbeer)

Datenanalyse Klausur SS 2014 (nicht wortwörtlich) Lösung (aus einer Nachbesprechung mit Elsenbeer) 1. Ist das folgende Argument gültig? Datenanalyse Klausur SS 2014 (nicht wortwörtlich) Lösung (aus einer Nachbesprechung mit Elsenbeer) Wenn minderjährige Mörder für ihr Vergehen genauso verantwortlich

Mehr

Klassifikation von Daten Einleitung

Klassifikation von Daten Einleitung Klassifikation von Daten Einleitung Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl Informatik 8) Klassifikation von Daten Einleitung

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Christoph Sawade/Niels Landwehr/Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Graphische Modelle. Christoph Sawade/Niels Landwehr/Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Graphische Modelle Christoph Sawade/Niels Landwehr/Tobias Scheffer Graphische Modelle Werkzeug zur Modellierung einer Domäne mit

Mehr

3 Wahrscheinlichkeitstheorie

3 Wahrscheinlichkeitstheorie Einige mathematische Konzepte 3 Wahrscheinlichkeitstheorie 3.1 Wahrscheinlichkeit Die Wahrscheinlichkeitstheorie modelliert Situationen, in denen Unsicherheit über bestimmte Aspekte der Umwelt vorherrscht.

Mehr

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen Unüberwachtes

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Satz 18 (Satz von der totalen Wahrscheinlichkeit)

Satz 18 (Satz von der totalen Wahrscheinlichkeit) Ausgehend von der Darstellung der bedingten Wahrscheinlichkeit in Gleichung 1 zeigen wir: Satz 18 (Satz von der totalen Wahrscheinlichkeit) Die Ereignisse A 1,..., A n seien paarweise disjunkt und es gelte

Mehr

Bayesianische Netzwerke - Lernen und Inferenz

Bayesianische Netzwerke - Lernen und Inferenz Bayesianische Netzwerke - Lernen und Inferenz Manuela Hummel 9. Mai 2003 Gliederung 1. Allgemeines 2. Bayesianische Netzwerke zur Auswertung von Genexpressionsdaten 3. Automatische Modellselektion 4. Beispiel

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Anhang 9: 3. Szenario

Anhang 9: 3. Szenario Anhang 9: 3. Szenario Monty Hall s Problem (Ziegenproblem) 268 3. Szenario Monty Hall s Problem oder das Ziegenproblem 269 Ziegenproblem nach Wikipedia, der freien Enzyklopädie Das Ziegenproblem (auch

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Haug verwendet man die Denition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A \ B] = Pr[BjA] Pr[A] = Pr[AjB] Pr[B] : (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1 ; : : : ; A n

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 3

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 3 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Einführung in die Wahrscheinlichkeitstheorie svorschläge zu Übungsblatt

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 . Grundlagen der Wahrscheinlichkeitstheorie. Zufallsereignisse, Ereignisraum und Ereignismenge Zufallsexperiment: nach einer bestimmten Vorschrift ausgeführter, unter gleichen edingungen beliebig oft wiederholbarer

Mehr

Vorlesung Wissensentdeckung

Vorlesung Wissensentdeckung Vorlesung Wissensentdeckung Klassifikation und Regression: nächste Nachbarn Katharina Morik, Uwe Ligges 14.05.2013 1 von 24 Gliederung Funktionsapproximation 1 Funktionsapproximation Likelihood 2 Kreuzvalidierung

Mehr

Computergestützte Datenanalyse in der Kern- und Teilchenphysik

Computergestützte Datenanalyse in der Kern- und Teilchenphysik Computergestützte Datenanalysein der Kern- und Teilchenphysik p. 1/?? Computergestützte Datenanalyse in der Kern- und Teilchenphysik Vorlesung 4 Jan Friedrich Computergestützte Datenanalysein der Kern-

Mehr

Methoden der KI in der Biomedizin Unsicheres Schließen

Methoden der KI in der Biomedizin Unsicheres Schließen Methoden der KI in der Biomedizin Unsicheres Schließen Karl D. Fritscher Motivation Insofern sich die Gesetze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht sicher. Und insofern sie sich

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger / Dr. Andreas Pondorfer Vorkurs Mathematik September/Oktober

Mehr

Elektrotechnik und Informationstechnik

Elektrotechnik und Informationstechnik Elektrotechnik und Informationstechnik Institut für Automatisierungstechnik, Professur Prozessleittechnik Bayes'sche Netze VL PLT2 Professur für Prozessleittechnik Prof. Leon Urbas, Dipl. Ing. Johannes

Mehr

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg!

15. September 2010 Prof. Dr. W. Bley. Universität Kassel Klausur SS 2010 Diskrete Strukturen I (Informatik) Name:... Matr.-Nr.:... Viel Erfolg! 15. September 010 Prof. Dr. W. Bley Universität Kassel Klausur SS 010 Diskrete Strukturen I (Informatik) 1 3 4 5 6 Name:................................................ Matr.-Nr.:............................................

Mehr

Latente Dirichlet-Allokation

Latente Dirichlet-Allokation Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Latente Dirichlet-Allokation Tobias Scheffer Peter Haider Paul Prasse Themenmodellierung Themenmodellierung (Topic modeling) liefert

Mehr

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 /

Aufgabenblock 3. Durch zählen erhält man P(A) = 10 / 36 P(B) = 3 / 36 P(C) = 18 / 36 und P(A B) = 3 / Aufgabenblock 3 Aufgabe ) A sei das Ereignis: schwerer Verkehrsunfall B sei das Ereignis: Alkohol ist im Spiel Herr Walker betrachtet die Wahrscheinlichkeit P(B A) = 0.3 und errechnet daraus P(-B A) =

Mehr

4. Grundzüge der Wahrscheinlichkeitsrechnung

4. Grundzüge der Wahrscheinlichkeitsrechnung 4. Grundzüge der Wahrscheinlichkeitsrechnung Dr. Antje Kiesel Institut für angewandte Mathematik WS 2010/2011 In der beschreibenden Statistik haben wir verschiedene Kennzahlen (Statistiken) für Stichproben

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt

Grundbegriffe der Wahrscheinlichkeitstheorie. Karin Haenelt Grundbegriffe der Wahrscheinlichkeitstheorie Karin Haenelt 1 Inhalt Wahrscheinlichkeitsraum Bedingte Wahrscheinlichkeit Abhängige und unabhängige Ereignisse Stochastischer Prozess Markow-Kette 2 Wahrscheinlichkeitsraum

Mehr

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass

Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass Beweis: Mit Hilfe des Satzes von der totalen Wahrscheinlichkeit folgt, dass f Z (z) = Pr[Z = z] = x W X Pr[X + Y = z X = x] Pr[X = x] = x W X Pr[Y = z x] Pr[X = x] = x W X f X (x) f Y (z x). Den Ausdruck

Mehr

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg

Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Statistische Methoden der Datenanalyse Wintersemester 2011/2012 Albert-Ludwigs-Universität Freiburg Prof. Markus Schumacher Physikalisches Institut Westbau 2 OG Raum 008 Telefonnummer 07621 203 7612 E-Mail:

Mehr

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate

Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für

Mehr

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung.

Graphentheorie. Eulersche Graphen. Eulersche Graphen. Eulersche Graphen. Rainer Schrader. 14. November Gliederung. Graphentheorie Rainer Schrader Zentrum für Angewandte Informatik Köln 14. November 2007 1 / 22 2 / 22 Gliederung eulersche und semi-eulersche Graphen Charakterisierung eulerscher Graphen Berechnung eines

Mehr

Clusteranalyse: Gauß sche Mischmodelle

Clusteranalyse: Gauß sche Mischmodelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Clusteranalyse: Gauß sche Mischmodelle iels Landwehr Überblick Problemstellung/Motivation Deterministischer Ansatz: K-Means Probabilistischer

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Prof. Dr. Michael Havbro Faber 28.05.2009 1 Korrektur zur letzten Vorlesung Bsp. Fehlerfortpflanzung in einer Messung c B a 2 2 E c Var c a b A b 2 2 2 n h( x)

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Übersicht. 16. Treffen einfacher Entscheidungen

Übersicht. 16. Treffen einfacher Entscheidungen Übersicht I Künstliche Intelligenz II Problemlösen III Wissen und Schlußfolgern IV Logisch Handeln V Unsicheres Wissen und Schließen 14. Unsicherheiten 15. Probabilistische Inferenzsysteme 16. Treffen

Mehr

Binomialverteilung Vertrauensbereich für den Anteil

Binomialverteilung Vertrauensbereich für den Anteil Übungen mit dem Applet Binomialverteilung Vertrauensbereich für den Anteil Binomialverteilung Vertrauensbereich für den Anteil 1. Statistischer Hintergrund und Darstellung.... Wie entsteht der Vertrauensbereich?...

Mehr

Bruchterme. Klasse 8

Bruchterme. Klasse 8 ALGEBRA Terme Bruchterme Teil Noch ohne Korrekturlesung! Klasse Datei Nr. Friedrich W. Buckel November 00 Geändert: Oktober 00 Internatsgymnasium Schloß Torgelow Inhalt DATEI. Werte berechnen. Definitionsbereiche

Mehr

Quantitative Methoden Wissensbasierter Systeme

Quantitative Methoden Wissensbasierter Systeme Quantitative Methoden Wissensbasierter Systeme Probabilistische Netze und ihre Anwendungen Robert Remus Universität Leipzig Fakultät für Mathematik und Informatik Abteilung für Intelligente Systeme 23.

Mehr

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests

Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen

Mehr

Schriftlicher Test Teilklausur 2

Schriftlicher Test Teilklausur 2 Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Künstliche Intelligenz: Grundlagen und Anwendungen Wintersemester 2012 / 2013 Albayrak, Fricke (AOT) Opper, Ruttor (KI) Schriftlicher

Mehr

Datenanalyse Klausur SS 2014 (nicht wortwörtlich) Minderjährige Mörder sind für ihr Vergehen nicht genauso verantwortlich wie Erwachsene.

Datenanalyse Klausur SS 2014 (nicht wortwörtlich) Minderjährige Mörder sind für ihr Vergehen nicht genauso verantwortlich wie Erwachsene. Datenanalyse Klausur SS 2014 (nicht wortwörtlich) 1. Ist das folgende Argument gültig? Wenn minderjährige Mörder für ihr Vergehen genauso verantwortlich sind wie Erwachsene, ist eine lebenslängliche Strafe

Mehr

Primer: Inferenzstatistik 1.0

Primer: Inferenzstatistik 1.0 : 1.0 Dr. Malte Persike persike@uni-mainz.de methodenlehre.com twitter.com/methodenlehre methodenlehre.com/g+ iversity.org/schoolinger Inhalte der nächsten Minuten Die Frage aller Fragen: Ist etwas groß?

Mehr

8 Einführung in Expertensysteme

8 Einführung in Expertensysteme 8 Einführung in Expertensysteme 22. Vorlesung: Constraints; Probabilistisches Schließen Für die Programmierung von Expertensystemen werden verschiedene Grundtechniken der Wissensrepräsentation und spezielle

Mehr

Stichprobe vs. Vollerhebung

Stichprobe vs. Vollerhebung Stichprobe vs. Vollerhebung Seminar Inferenzstatistik Referent: Hannes Holtermann Dresden, 02.12.2008 Stichprobe vs. Vollerhebung Gliederung 1.Einleitung 2.Grundgesamtheit und Stichprobe 3.Beispiel Lotto

Mehr

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen

Kapitel ML:IV. IV. Statistische Lernverfahren. Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen Kapitel ML:IV IV. Statistische Lernverfahren Wahrscheinlichkeitsrechnung Bayes-Klassifikation Maximum-a-Posteriori-Hypothesen ML:IV-1 Statistical Learning c STEIN 2005-2011 Definition 1 (Zufallsexperiment,

Mehr

Testen von Hypothesen, Beurteilende Statistik

Testen von Hypothesen, Beurteilende Statistik Testen von Hypothesen, Beurteilende Statistik Was ist ein Test? Ein Test ist ein Verfahren, mit dem man anhand von Beobachtungen eine begründete Entscheidung über die Gültigkeit oder Ungültigkeit einer

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten

Vorlesung 9b. Bedingte Verteilungen und bedingte Wahrscheinlichkeiten Vorlesung 9b Bedingte Verteilungen und bedingte Wahrscheinlichkeiten 1 Voriges Mal: Aufbau der gemeinsamen Verteilung von X 1 und X 2 aus der Verteilung ρ von X 1 und Übergangswahrscheinlichkeiten P(a

Mehr

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung

Überblick. Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Grundlagen Überblick Einführung in die automatische Mustererkennung Grundlagen der Wahrscheinlichkeitsrechnung Klassifikation bei bekannter Wahrscheinlichkeitsverteilung Entscheidungstheorie Bayes- Entscheidungsfunktionen

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Wahrscheinlichkeitstheorie 2

Wahrscheinlichkeitstheorie 2 Wahrscheinlichkeitstheorie 2 Caroline Sporleder Computational Linguistics Universität des Saarlandes Sommersemester 2011 19.05.2011 Caroline Sporleder Wahrscheinlichkeitstheorie 2 (1) Wiederholung (1):

Mehr

Vektor-Additions-Systeme und Invarianten

Vektor-Additions-Systeme und Invarianten Vektor-Additions-Systeme und Invarianten http://www.informatik.uni-bremen.de/theorie/teach/petri Renate Klempien-Hinrichs Stellen- und Transitions-Vektoren T -Invarianten S-Invarianten Bezug zu erreichbaren

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Hidden-Markov-Modelle

Hidden-Markov-Modelle Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Hidden-Markov-Modelle Tobias Scheffer Thomas Vanck Hidden-Markov-Modelle: Wozu? Spracherkennung: Akustisches Modell. Geschriebene

Mehr

7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten

7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten 7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten 7.1 Zufallsvorgänge - zufälliges Geschehen/ Zufallsvorgang/ stochastische Vorgang: aus Geschehen/Vorgang/Experiment (mit gegebener Ausgangssituation)

Mehr

Aufgabe 1 Probabilistische Inferenz

Aufgabe 1 Probabilistische Inferenz Seite 1 von 8 Aufgabe 1 Probabilistische Inferenz (28 Punkte) Die BVG will besser auf Ausfälle im S-Bahn-Verkehr eingestellt sein. Sie geht dabei von folgenden Annahmen aus: An 20% der Tage ist es besonders

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung 2. Vorlesung Dr. Jochen Köhler 25.02.2011 1 Inhalt der heutigen Vorlesung Risiko und Motivation für Risikobeurteilungen Übersicht über die Wahrscheinlichkeitstheorie

Mehr

Syntaktische und Statistische Mustererkennung. Bernhard Jung

Syntaktische und Statistische Mustererkennung. Bernhard Jung Syntaktische und Statistische Mustererkennung VO 1.0 840.040 (UE 1.0 840.041) Bernhard Jung bernhard@jung.name http://bernhard.jung.name/vussme/ 1 Rückblick Nicht lineare Entscheidungsfunktionen SVM, Kernel

Mehr

Reasoning and decision-making under uncertainty

Reasoning and decision-making under uncertainty Reasoning and decision-making under uncertainty 9. Vorlesung Actions, interventions and complex decisions Sebastian Ptock AG Sociable Agents Rückblick: Decision-Making A decision leads to states with values,

Mehr

Geldpolitische Institutionen Teil 2. Steffen Ahrens Fakultät VII Geldtheorie- und Geldpolitik WS2013/2014

Geldpolitische Institutionen Teil 2. Steffen Ahrens Fakultät VII Geldtheorie- und Geldpolitik WS2013/2014 Geldpolitische Institutionen Teil 2 Steffen Ahrens Fakultät VII Geldtheorie- und Geldpolitik WS2013/2014 Gliederung: Teil 1: 1. Regelgebundene Geldpolitik Teil 2: 2. Delegation der Geldpolitik 3. Geldpolitik

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

1 Inhaltsverzeichnis. 1 Einführung...1

1 Inhaltsverzeichnis. 1 Einführung...1 1 Inhaltsverzeichnis 1 Einführung...1 1.1 Arten der stochastischen Abhängigkeit...2 1.2 Wo kommen regressive Abhängigkeiten vor?...3 1.3 Hauptaufgaben von Regressionsmodellen...3 1.4 Wissenschaftstheoretische

Mehr

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008

Bayes sche Klassifikatoren. Uwe Reichel IPS, LMU München 16. Juli 2008 Bayes sche Klassifikatoren Uwe Reichel IPS, LMU München reichelu@phonetik.uni-muenchen.de 16. Juli 2008 Inhalt Einleitung Grundlagen der Wahrscheinlichkeitsrechnung Noisy-Channel-Modell Bayes sche Klassifikation

Mehr

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L

Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Bayes Klassifikatoren M E T H O D E N D E S D A T A M I N I N G F A B I A N G R E U E L Inhalt Grundlagen aus der Wahrscheinlichkeitsrechnung Hypothesenwahl Optimale Bayes Klassifikator Naiver Bayes Klassifikator

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

BAYES SCHE STATISTIK

BAYES SCHE STATISTIK BAES SCHE STATISTIK FELIX RUBIN EINFÜHRUNG IN DIE STATISTIK, A.D. BARBOUR, HS 2007 1. Einführung Die Bayes sche Statistik gibt eine weitere Methode, um einen unbekannten Parameter θ zu schätzen. Bisher

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Konfidenzintervalle. SeKo. Heute. Konjunktion, Disjunktion, bedingte Wahrscheinlichkeit

Konfidenzintervalle. SeKo. Heute. Konjunktion, Disjunktion, bedingte Wahrscheinlichkeit Übung Methodenlehre I, SeKo Vivien Röder Professur für Forschungsmethodik & Evaluation Wiederholung Wahrscheinlichkeitstheorie Konjunktion, Disjunktion, bedingte Wahrscheinlichkeit P(Methodenverständnis

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

12. Verarbeitung unsicheren Wissens

12. Verarbeitung unsicheren Wissens 12. Verarbeitung unsicheren Wissens Prof. Dr. Rudolf Kruse University of Magdeburg Faculty of Computer Science Magdeburg, Germany rudolf.kruse@cs.uni-magdeburg.de S F UZZY 12. Verarbeitung unsicheren Wissens

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/39 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Gesetz der großen Zahl, Zentraler Grenzwertsatz Schließende Statistik: Grundlagen Prof. Dr. Achim Klenke http://www.aklenke.de 9. Vorlesung: 16.06.2017

Mehr

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze

Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Statistische Verfahren in der Künstlichen Intelligenz, Bayesische Netze Erich Schubert 6. Juli 2003 LMU München, Institut für Informatik, Erich Schubert Zitat von R. P. Feynman Richard P. Feynman (Nobelpreisträger

Mehr

Grundlegende Eigenschaften von Punktschätzern

Grundlegende Eigenschaften von Punktschätzern Grundlegende Eigenschaften von Punktschätzern Worum geht es in diesem Modul? Schätzer als Zufallsvariablen Vorbereitung einer Simulation Verteilung von P-Dach Empirische Lage- und Streuungsparameter zur

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Simulationsmethoden in der Bayes-Statistik

Simulationsmethoden in der Bayes-Statistik Simulationsmethoden in der Bayes-Statistik Hansruedi Künsch Seminar für Statistik, ETH Zürich 6. Juni 2012 Inhalt Warum Simulation? Modellspezifikation Markovketten Monte Carlo Simulation im Raum der Sprungfunktionen

Mehr