Was bedeutet p<0.05?
|
|
|
- Helmuth Lehmann
- vor 8 Jahren
- Abrufe
Transkript
1 Was bedeutet p<0.05? Oliver Kuß 1,2 1 Institut für Medizinische Epidemiologie, Biometrie und Informatik und 2 Biometrisches Zentrum, Pflegeforschungsverbund Mitte-Süd, Medizinische Fakultät, Martin-Luther Universität Halle-Wittenberg, Halle (Saale)
2 Programm Einleitung Der diagnostische Test Der statistische Test Das Problem Lösungen (?) Fazit/Diskussion 2
3 Einleitung Bedingte Wahrscheinlichkeiten: P(A B): Wahrscheinlichkeit für das Eintreten des Ereignisses A, wenn wir wissen, dass B wahr ist. ( Wahrscheinlichkeit für A gegeben B ) Beispiel: Verdecktes Ziehen einer Karte aus einem Skatblatt (32 Karten) Ereignis A: Karte ist ein Herz P(A) = 8/32 = 1/4 Ereignis B: Karte ist ein As P(B) = 4/32 = 1/8 P(A B): P(B A): Wahrscheinlichkeit für ein Herz, wenn wir wissen, dass die Karte ein As ist P(A B) = 1/4 Wahrscheinlichkeit für ein As, wenn wir wissen, dass die Karte ein Herz ist P(B A) = 1/8 3
4 Der diagnostische Test Krankheit K+ K- Diagnostischer Test T+ RP FP T- FN RN Maßzahlen für die Güte eines diagnostischen Tests: Sensitivität: P(T+ K+) W t für positives Testergebnis bei einem Kranken Spezifität: P(T- K-) W t für negatives Testergebnis bei einem Gesunden 4
5 Der diagnostische Test Aber: Diese Werte nützen uns am Krankenbett nichts, denn da haben wir nur das Testergebnis (T+ bzw. T-), wollen aber wissen, ob die Krankheit vorliegt (K+ bzw. K-) Von Interesse also: P(K+ T+) bzw. P(K- T-) (Prädiktive Werte) 5
6 Der diagnostische Test Satz von Bayes: P(K+ T+ )= P(T+ K+) P(K+) P(T+ K+) P(K+) + P(T+ K-) P(K-) = Sens x Prävalenz Sens x Prävalenz + (1-Spez) x (1-Prävalenz) Problem: Prädiktive Werte sind prävalenzabhängig! 6
7 Der diagnostische Test Beispiel: Bundesweites Screening auf HIV-Virus (mit ELISA- Test) Sensitivität: P(T+ K+) = 99,5% Spezifität: P(T- K-) = 99,5% Prävalenz: P(K+) = 0,1% Wahrscheinlichkeit, dass jemand mit positivem HIV-Test tatsächlich HIV-positiv ist: P(T+ K+) P(K+) 0,995 x 0,001 P(K+ T+ ) = = = 16,6% P(T+ K+) P(K+) + P(T+ K-) P(K-) 0,995 x 0, ,005 x 0,999 Von 6 Test-Positiven ist nur einer tatsächlich HIV-positiv!!! 7
8 Der statistische Test Statistischer Test Wahrheit (Nullhypothese) + (H 0 richtig) - (H 0 falsch) ST+ (H0 akzeptieren) Fehler 2. Art ST- (H0 verwerfen) Fehler 1. Art Fehler 1. Art: α = P(ST- H 0 +) W t für Verwerfen der Nullhypothese, wenn Sie vorliegt. Fehler 2. Art: β = P(ST+ H 0 -) W t für Annahme der Nullhypothese, wenn Sie nicht vorliegt. 8
9 Der statistische Test Durchführung eines statistischen Tests: Lege α vor Beginn des Experimentes fest (z.b: α = 0.05) Nach der Durchführung des Experiments (Daten: x) berechnen wir eine Teststatistik T(x) und entscheiden: Verwerfe H 0, falls P(T > T(x) H 0 +) < α P(T > T(x) H 0 +) ist der p-wert. Der p-wert ist die Wahrscheinlichkeit, dass, unter der Annahme dass die Nullhypothese richtig ist, die Teststatistik einen Wert annimmt, der noch extremer als der tatsächlich beobachtete Wert ist. 9
10 Das Problem Der p-wert macht eine Aussage über die Wahrscheinlichkeit der Daten, nicht über die Wahrscheinlichkeit der Hypothese!!! Wir möchten P(H0 Daten), bekommen aber P(Daten H0)!!! Lösung (Anwendung des Satz von Bayes): P(Daten H 0 +) P(H 0 +) P(H 0 + Daten ) P(Daten H0 +) P(H 0 +) + P(Daten H 0 -) P(H 0 -) Großes Problem: Wie groß ist P(H0+)? (A priori - Wahrscheinlichkeit für die Nullhypothese) 10
11 Lösungen (?) Beispiel: Randomisierte klinische Studie mit zwei Therapien (Verum/Placebo) und binärer Zielgröße (Heilung ja/nein) Heilung Ja Nein Σ Verum Placebo Σ Ergebnis: OR [95%-KI]: 1.91 [1.09; 3.34] χ 2 = 5.12 p-wert =
12 Lösungen (?) Mögliche Lösung: Nullhypothese und Alternative sind gleichwahrscheinlich (P(H 0 +) = 0,5) Für unsere Beispielstudie gilt dann: P(H 0 + Daten) = 0,135 Spannende Frage: Wie groß müsste P(H 0 +) sein, damit der p-wert gleich P(H 0 + Daten) wäre? Antwort (für unser Beispiel): P(H 0 +) = 13% Berechtigte Frage: Ist es überhaupt ethisch, eine Studie zu machen, wenn man sich zu 87% sicher ist, dass die Therapie einen Effekt hat? 12
13 Lösungen (?) Weitere Lösungen (ohne Angabe von P(H 0 +)!) Minimum Bayes Factor (Goodman, 1999): exp(- χ 2 /2 )) P(H 0 + Daten ) = (1+exp(- χ2 /2 )) In unserem Beispiel: P(H 0 + Daten) = 0,071 Calibration of p-values (Sellke/Bayarri/Berger, 1999): P(H0+ Daten) = (1-exp(p-Wert*log(p-Wert)) -1 ) -1 (für p-wert < 1/e (= 0.368)) In unserem Beispiel: P(H 0 + Daten) = 0,194 13
14 Fazit/Diskussion Der p-wert sagt uns nicht das, was wir eigentlich wissen wollen, denn er macht keine Aussage über die Sicherheit der zugrunde liegenden Hypothesen. Die Sicherheit, die uns der p-wert vorgaukelt, ist im allgemeinen zu groß. Schritte zu einer Lösung(?): Gesunde Skepsis gegenüber p-werten Konfidenzintervalle berichten Für die Zukunft: Kompletter Umstieg in die Bayes sche Statistik. 14
15 Fazit/Diskussion Ein Anfang ist gemacht: Aus dem Inhaltsverzeichnis: Bayesian statistics (p ) Minimum Bayes factors (p ). 15
Promotionsstudiengang Gesundheits- und Pflegewissenschaften Partizipation als Ziel von Pflege und Therapie Methodenkolloquium
Promotionsstudiengang Gesundheits- und Pflegewissenschaften Partizipation als Ziel von Pflege und Therapie Methodenkolloquium Power und Fallzahlberechnung Ist Fallzahlberechnung Zauberei? Aus: Schulz KF,
Bedingte Wahrscheinlichkeiten & Unabhängigkeit
Statistik 1 für SoziologInnen Bedingte Wahrscheinlichkeiten & Univ.Prof. Dr. Marcus Hudec Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die
Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung
Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)
Vorlesung - Medizinische Biometrie
Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar Vorlesung - Medizinische Biometrie
Medizinische Biometrie (L5)
Medizinische Biometrie (L5) Vorlesung V Der diagnostische Test Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie [email protected]
Inferenzstatistik und Hypothesentests. Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis.
Statistik II und Hypothesentests Dr. Michael Weber Aufgabenbereich Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis. Ist die zentrale Fragestellung für alle statistischen
GRUNDPRINZIPIEN statistischen Testens
Fragestellungen beim Testen GRUNDPRINZIPIEN statistischen Testens. Vergleiche Unterscheidet sich die Stichprobenbeobachtung von einer vorher spezifizierten Erwartung ( Hypothese ) mit ausreichender Sicherheit?
Epidemiologie / Biometrie
Wintersemester 2004 / 2005 Epidemiologie / Biometrie Robert Hochstrat 14. März 2005 Zusammenschrift der Übung zur Vorlesung aus dem WS 04/05 Rückfragen, Ergänzungen und Korrekturen an robert [email protected]
Bedingte Wahrscheinlichkeit. Beispiel zur bedingten Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die Wahrscheinlichkeiten für das Eintreten von Ereignissen durch das Eintreten anderer Ereignisse
Epidemiologie und HIV-Tests
26. November 2009 Cornelias HIV-Test Das ist Cornelia. Cornelia möchte Plasmaspenderin werden. Dafür braucht sie einen negativen Befund eines HIV-Tests. Deshalb geht sie ins Krankenhaus. Cornelias HIV-Test
Bedingte Wahrscheinlichkeiten & Unabhängigkeit
Statistik 1 für SoziologInnen Bedingte Wahrscheinlichkeiten & Univ.Prof. Dr. Marcus Hudec Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die
Schließende Statistik: Hypothesentests (Forts.)
Mathematik II für Biologen 15. Mai 2015 Testablauf (Wdh.) Definition Äquivalente Definition Interpretation verschiedener e Fehler 2. Art und Macht des Tests Allgemein im Beispiel 1 Nullhypothese H 0 k
Diagnostische Verfahren
6. Diagnostische s Jede Registrierung oder Auswertung einer Information mit dem Ziel der Erkennung einer Erung oder eines speziellen Zustandes wird diagnostischer genannt. Beispiele Reaktion auf Ansprechen
Testen von Hypothesen, Beurteilende Statistik
Testen von Hypothesen, Beurteilende Statistik Was ist ein Test? Ein Test ist ein Verfahren, mit dem man anhand von Beobachtungen eine begründete Entscheidung über die Gültigkeit oder Ungültigkeit einer
Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten
Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:
Statistical Coaching. Thomas Forstner
Statistical Coaching Thomas Forstner Diagnoseverfahren Allgemein Vergleich: wahrer Befund mit Test (Diagnose) wahrer Befund muss bekannt sein (Goldstandard) 3 Analogie zur Testtheorie 4 Beurteilung von
Biomathematik für Mediziner, Klausur SS 2001 Seite 1
Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer
STATISTISCHE KRANKHEITSTESTS. Simon Schimpf und Nico Schmitt
1 STATISTISCHE KRANKHEITSTESTS 18.11.2008 Simon Schimpf und Nico Schmitt Gliederung 2 Hintergrund des Themas (worum geht es Voraussetzungen Lernziele Die intuitive Herangehensweise ohne Satz von Bayes
Themenblock. Diagnose und Prognose. Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik. Themen im Block Diagnose und Prognose
Themenblock Diagnose und Prognose Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik Themen im Block Diagnose und Prognose Diagnose Prävalenz und prädiktive Werte Güte von diagnostischen
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003
Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1
Biometrie und Methodik (Statistik) - WiSem08/09 Probeklausur 1 Aufgabe 1 (10 Punkte). 10 Schüler der zehnten Klasse unterziehen sich zur Vorbereitung auf die Abschlussprüfung einem Mathematiktrainingsprogramm.
Auswertung und Lösung
Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1
Übungsscheinklausur,
Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...
Einführung in die Induktive Statistik: Testen von Hypothesen
Einführung in die Induktive Statistik: Testen von Hypothesen Jan Gertheiss LMU München Sommersemester 2011 Vielen Dank an Christian Heumann für das Überlassen von TEX-Code! Testen: Einführung und Konzepte
Einführung in Quantitative Methoden
Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 4. Juni 2014 Christodoulides / Waldherr Einführung in Quantitative Methoden 1/35 Ein- und Zweiseitige Hypothesen H 0 : p =
10 Der statistische Test
10 Der statistische Test 10.1 Was soll ein statistischer Test? 10.2 Nullhypothese und Alternativen 10.3 Fehler 1. und 2. Art 10.4 Parametrische und nichtparametrische Tests 10.1 Was soll ein statistischer
P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.
2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das
Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001
Lösungen zur Biomathe-Klausur Gruppe A Montag, den 16. Juli 2001 1. Sensitivität und Spezifität In einer medizinischen Ambulanz haben 30 % der Patienten eine akute Appendizitis. 80 % dieser Patienten haben
Ursachen gefühlter Risiken
Ursachen gefühlter Risiken Gerd Gigerenzer Max-Planck-Institut für Bildungsforschung Berlin Der Weg zu einer Gesellschaft, die mit Risiken entspannt umgehen kann Problem 1: Menschen verstehen statistische
Typ I und Typ II Fehler
Typ I und Typ II Fehler Analogie: Vergleich mit einem Gerichtsurteil Angeklagter ist unschuldig Angeklagter ist schuldig Gericht fällt Entscheidung richtige Entscheidung ein Schuldiger unschuldig wird
Beurteilende Statistik
Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten
Institut für Biometrie und klinische Forschung. WiSe 2012/2013
Klinische Forschung WWU Münster Pflichtvorlesung zum Querschnittsfach Epidemiologie, Biometrie und Med. Informatik Praktikum der Medizinischen Biometrie (3) Überblick. Deskriptive Statistik I 2. Deskriptive
Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)
3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P
THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ
WEBINAR@LUNCHTIME THEMA: "STATISTIK IN DER PRAXIS TESTEN IST BESSER ALS VERMUTEN" TORSTEN SCHOLZ EINLEITENDES BEISPIEL SAT: Standardisierter Test, der von Studienplatzbewerbern an amerikanischen Unis gefordert
Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten.
26 6. Bedingte Wahrscheinlichkeit Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. Alarmanlage Tritt bei einer Sicherungsanlage ein Alarm
Ma 13 - Stochastik Schroedel Neue Wege (CON)
Bedingte Wahrscheinlichkeiten S. 70, Nr. 5 Richtiges Anwenden der Multiplikationsregel A: Abonnement liest Werbeanzeige B: Produkt wird gekauft S. 70, Nr. 6 Übersetzung von Daten in ein Baumdiagramm A
Hypothesentest. Ablehnungsbereich. Hypothese Annahme, unbewiesene Voraussetzung. Anzahl Kreise
Hypothesentest Ein Biologe vermutet, dass neugeborene Küken schon Körner erkennen können und dies nicht erst durch Erfahrung lernen müssen. Er möchte seine Vermutung wissenschaftlich beweisen. Der Biologe
2.4 Hypothesentests Grundprinzipien statistischer Hypothesentests. Hypothese:
2.4.1 Grundprinzipien statistischer Hypothesentests Hypothese: Behauptung einer Tatsache, deren Überprüfung noch aussteht (Leutner in: Endruweit, Trommsdorff: Wörterbuch der Soziologie, 1989). Statistischer
Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen
Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind
Schließende Statistik
Schließende Statistik Die schließende Statistik befasst sich mit dem Rückschluss von einer Stichprobe auf die Grundgesamtheit (Population). Die Stichprobe muss repräsentativ für die Grundgesamtheit sein.
Hypothesen: Fehler 1. und 2. Art, Power eines statistischen Tests
ue biostatistik: hypothesen, fehler 1. und. art, power 1/8 h. lettner / physik Hypothesen: Fehler 1. und. Art, Power eines statistischen Tests Die äußerst wichtige Tabelle über die Zusammenhänge zwischen
Diagnostikstudien. Dr. Dirk Hasenclever IMISE, Leipzig.
Diagnostikstudien Dr. Dirk Hasenclever IMISE, Leipzig [email protected] Diagnostische Tests Krankheit ja Krankheit nein Test positiv TrueP FP Test negativ FN TrueN Test- Positive Test- Negative
8. Konfidenzintervalle und Hypothesentests
8. Konfidenzintervalle und Hypothesentests Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Beispiel. Sie wollen den durchschnittlichen Fruchtsaftgehalt eines bestimmten Orangennektars
Seminar Diagnostik L5
Seminar Diagnostik L5 Regenwahrscheinlichkeit Bezugsgröße festlegen! Beipackzettel Bezugsgröße festlegen! Brustkrebs-Screening Entscheidungsmöglichkeiten bei diagnostischen Tests Wahrer Zustand des Patienten
Einführung in die Bayes-Statistik. Helga Wagner. Ludwig-Maximilians-Universität München WS 2010/11. Helga Wagner Bayes Statistik WS 2010/11 1
Einführung in die Bayes-Statistik Helga Wagner Ludwig-Maximilians-Universität München WS 2010/11 Helga Wagner Bayes Statistik WS 2010/11 1 Organisatorisches Termine: Montag: 16.00-18.00 AU115 Dienstag:
Täuschung und Manipulation mit Zahlen
58. Ärztekongress Berlin/Charité 4.11.2010 Täuschung und Manipulation mit Zahlen Kleines Statistikseminar zum kritischen Umgang mit Zahlen Dr. med. H.-J. Koubenec Mammasprechstunde im Immanuel Krankenhaus
Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006
Übungsrunde 4, Gruppe 2 LVA 107.369, Übungsrunde 4, Gruppe 2, 07.11. Markus Nemetz, [email protected], TU Wien, 10/2006 1 17 1.1 Angabe Ein Parallelsystem funktioniert, wenn wenigstens eine seiner
Datenanalyse. (PHY231) Herbstsemester Olaf Steinkamp
Datenanalyse (PHY31) Herbstsemester 015 Olaf Steinkamp 36-J- [email protected] 044 63 55763 Einführung, Messunsicherheiten, Darstellung von Messdaten Grundbegriffe der Wahrscheinlichkeitsrechnung und
1 Kontrollierte klinische Studien - eine Einführung Zur Notwendigkeit randomisierter Studien: Hochdosis- Chemotherapie beim Mammakarzinom...
Inhaltsverzeichnis EINLEITUNG 1 Kontrollierte klinische Studien - eine Einführung...1 1.1 Die Salk-Polio-Studie...3 1.2 Die Problematik historischer Vergleiche...5 1.3 Beobachtungsstudien und Registerdaten...8
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.
Glossar Biometrie / Statistik. Auszug für Fragebogen Fallzahlberechnung/-begründung
Glossar Biometrie / Statistik A Äquivalenztest Der Äquivalenztest beurteilt die Gleichwertigkeit von Therapien. Beim Äquivalenztest werden als Hypothesen formuliert: Nullhypothese H 0 : Die Präparate sind
Biostatistische Studienplanung. Dr. Matthias Kohl SIRS-Lab GmbH
Biostatistische Studienplanung Dr. Matthias Kohl SIRS-Lab GmbH Ausgangspunkt Fragestellung(en)/Hypothese(n): Hauptfragestellung: Grund für Durchführung der Studie Nebenfragestellung(en): Welche Fragestellungen
Tutorial: Anpassungstest
Tutorial: Anpassungstest An einem Institut gibt es vier UniversitätslehrerInnen, die auch Diplomarbeiten betreuen. Natürlich erfordert die Betreuung einer Diplomarbeit einiges an Arbeit und Zeit und vom
Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft.
Aussagenlogik, Mengenlehre, Wahrscheinlichkeit und Prüfstatistik sind eng miteinander verknüpft. Schon immer wurde die Menschheit von Krankheiten bedroht und oft konnte eine Frühdiagnose mit nachfolgender
WB 11 Aufgabe: Hypothesentest 1
WB 11 Aufgabe: Hypothesentest 1 Ein Medikament, das das Überleben eines Patienten sichern soll, wird getestet. Stelle Null- und Alternativhypothese auf und beschreibe die Fehler 1. Art und 2. Art. Welcher
Eine Einführung in R: Statistische Tests
Eine Einführung in R: Statistische Tests Bernd Klaus, Verena Zuber Institut für Medizinische Informatik, Statistik und Epidemiologie (IMISE), Universität Leipzig http://www.uni-leipzig.de/ zuber/teaching/ws11/r-kurs/
STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück
STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen
3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren
Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte
Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum
Grundlagen der Statistik
Grundlagen der Statistik Übung 13 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Exakter Binomialtest als Beispiel
Prinzipien des statistischen Testens Entscheidungsfindung Exakter Binomialtest als Beispiel Statistische Tests Nullhypothese Alternativhypothese Fehlentscheidungen Ausgangspunkt: Forschungshypothese Beispiele:.
Wahrscheinlichkeitstheorie
Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten
4. Kopplung. Konzepte: Gekoppelte Vererbung. Genkarten. Doppel-Crossover. Interferenz. Statistik
4. Kopplung Konzepte: Gekoppelte Vererbung Genkarten Doppel-Crossover Interferenz Statistik 1. Sie analysieren die Kopplungsverhältnisse von 3 Mutationen in Drosophila melanogaster (scute [sc; keine Thoraxborsten],
Wiederholung Hypothesentests Zusammenfassung. Hypothesentests. Statistik I. Sommersemester Statistik I Hypothesentests I (1/36)
Statistik I Sommersemester 2009 Statistik I I (1/36) Wiederholung Grenzwertsatz Konfidenzintervalle Logik des 0.0 0.1 0.2 0.3 0.4 4 2 0 2 4 Statistik I I (2/36) Zum Nachlesen Agresti/Finlay: Kapitel 6+7
Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem
Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,
Unabhängigkeit KAPITEL 4
KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht
Mögliche Fehler beim Testen
Mögliche Fehler beim Testen Fehler. Art (Irrtumswahrscheinlichkeit α), Zusammenfassung: Die Nullhypothese wird verworfen, obwohl sie zutrifft. Wir haben uns blamiert, weil wir etwas Wahres abgelehnt haben.
Klausur in Epidemiologie SS 2006 Freitag, den 14. Juli 2006
Klausur in Epidemiologie SS 2006 Freitag, den 14. Juli 2006 Name: Matrikelnummer: Unterschrift: Aufgabe 1: Odds Ratio Im Rahmen einer Studie wurden 20 Frauen mit Uteruskarzinom, die stationär behandelt
Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg
Bayes-Netze (1) Lehrstuhl für Künstliche Intelligenz Institut für Informatik Friedrich-Alexander-Universität Erlangen-Nürnberg (Lehrstuhl KI) Bayes-Netze (1) 1 / 22 Gliederung 1 Unsicheres Wissen 2 Schließen
Analyse von Querschnittsdaten. Signifikanztests I Basics
Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004
Statistische Tests für unbekannte Parameter
Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung
Konfidenzintervalle. die anschauliche Alternative zum p-wert...
Konfidenzintervalle die anschauliche Alternative zum p-wert... Grundidee des Konfidenzintervalls Studie Realität Studienergebnis falsch-positiver Rückschluß??? Realität???? Studie 10 % Grundidee des Konfidenzintervalls
Querschnittsbereich Nr. 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik. Behandelt werden 4 Themenblöcke
Querschnittsbereich Nr. 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik Behandelt werden 4 Themenblöcke Ätiologie und Risiko Diagnose und Prognose Intervention Medizinische Informatik
Testen von Hypothesen
Elke Warmuth Humboldt-Universität zu Berlin Sommersemster 2010 1 / 46 2 / 46 1 Testen von Hypothesen 3 / 46 Signifikant, signifikant, signifikant,... 4 / 46 Signifikant, signifikant, signifikant,... 5
Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18
Naive Bayes 5. Dezember 2014 Naive Bayes 5. Dezember 2014 1 / 18 Inhaltsverzeichnis 1 Thomas Bayes 2 Anwendungsgebiete 3 Der Satz von Bayes 4 Ausführliche Form 5 Beispiel 6 Naive Bayes Einführung 7 Naive
Analytische Statistik II
Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,
Bivariate Zusammenhänge
Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne
Diagnose und Prognose: Kurzfassung 4
Diagnose und Prognose: Kurzfassung 4 Ziele der 4. Vorlesung Inhaltliche Verbindung zwischen inhaltlicher Statistisches Konzept / Problemstellung Problemstellung und statistischem statistische Methode Konzept/Methode
Pflichtlektüre: Kapitel 12 - Signifikanztest Wie funktioniert ein Signifikanztest? Vorgehensweise nach R. A. Fisher.
Pflichtlektüre: Kapitel 12 - Signifikanztest Überblick Signifikanztest Populationsparameter Ein Verfahren zur Überprüfung von Hypothesen, Grundlage bilden auch hier Stichprobenverteilungen, das Ergebnis
Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe
Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,
R. Brinkmann Seite
R. Brinkmann http://brinkmann-du.de Seite 1 24.2.214 Grundlagen zum Hypothesentest Einführung: Wer Entscheidungen zu treffen hat, weiß oft erst im nachhinein ob seine Entscheidung richtig war. Die Unsicherheit
Lösungen zu den Übungsaufgaben in Kapitel 10
Lösungen zu den Übungsaufgaben in Kapitel 10 (1) In einer Stichprobe mit n = 10 Personen werden für X folgende Werte beobachtet: {9; 96; 96; 106; 11; 114; 114; 118; 13; 14}. Sie gehen davon aus, dass Mittelwert
VS PLUS
VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN
Einführung in die Stochastik 6. Übungsblatt
Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.
Wahrscheinlichkeiten
Wahrscheinlichkeiten Bestimmung der Wahrscheinlichkeit Bei einem Zufallsexperiment kann man nicht voraussagen, welches Ereignis eintritt, aber manche Ereignisse treten naturgemäß mit einer größeren Wahrscheinlichkeit
Kapitel 3 Schließende Statistik
Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:
Kategorielle Daten. Seminar für Statistik Markus Kalisch
Kategorielle Daten Markus Kalisch 1 Phase 3 Studie: Wirksamer als Placebo? Medikament Placebo Total Geheilt 15 9 24 Nicht geheilt 10 11 21 Total 25 20 45 Grundfrage: Sind Heilung und Medikamentengabe unabhängig?
Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist.
.3. Stochastik Grundlagen Die ABSOLUTE HÄUFIGKEIT einer Merkmalsausprägung gibt an, wie oft diese in der Erhebung eingetreten ist. Die RELATIVE HÄUFIGKEIT einer Merkmalsausprägung gibt an mit welchem Anteil
Übung 2 im Fach "Biometrie / Q1"
Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-897 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 3, 8975 Ulm Tel. +49
Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren
Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG - LÖSUNGEN. Zweimaliges Werfen eines Würfels mit Berücksichtigung der Reihenfolge a. Ergebnismenge (Ereignisraum)
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Wahrscheinlichkeit und Zufallsvorgänge Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften
Südtiroler Akademie für Allgemeinmedizin. Seminar
Südtiroler Akademie für Allgemeinmedizin Seminar 16.10.2015 Diagnostische Entscheidungsfindung in der Allgemeinmedizin Andreas Sönnichsen Institut für Allgemeinmedizin und Familienmedizin Universität Witten/Herdecke
Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1
Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne
Statistik II: Signifikanztests /1
Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test
