Bivariate Zusammenhänge
|
|
|
- Hella Schmidt
- vor 9 Jahren
- Abrufe
Transkript
1 Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne SS 2007 Martin Otto, Robert Pelz
2 Gliederung 1. Kreuztabellen 2. Tabellenanalyse Chi-Quadrat Chi-Quadrat-Unabhängigkeitstest Zusammenhangsmaße für nominale Daten Zusammenfassung Quellen
3 Die Kreuztabelle (Kontingenztabelle) i x j Kreuztabelle Merkmal 2 Ausprägung Zeilensummen Merkmal j Ausprägung 1 n 11 n n 1j n 1. Ausprägung 2 n 21 n n 2j n 2. Ausprägung 3 n 31 n n 3j n Ausprägung i n i1 n i2... n ij n i. Spaltensumme n. 1 n n. j n.. Tabelle 1
4 Vorteile der Kreuztabelle Übersichtliche Darstellung Einfache Auswertung Variablen unterschiedlicher Skalenniveaus können einfach auf ihren Zusammenhang untersucht werden
5 Beispiel: Analyse der Produktpräferenzen (absolute Werte) Bevorzugter Brotaufstrich Wohnort Margarine Butter ländlich städtisch Tabelle 2
6 Wohnort ländlich städtisch Margarine 21,7% 78,3% 100% Butter 60% 40% 100% Tabelle 3: Darstellung mit Spaltenprozenten Wohnort Margarine Butter ländlich 33,8% 66,2% 100% städtisch 73,5% 26,5% 100% Tabelle 4: Darstellung mit Zeilenprozenten
7 Nachteile Drittvariableneinflüsse sind nicht erkennbar Tabellendesign kann Zusammenhänge verdecken Unübersichtlich bei vielen Ausprägungen
8 Tabellenanalyse Besteht eine Abhängigkeit zwischen den beobachteten Variablen? Wie ist die Stärke der Abhängigkeit messbar?
9 Abhängigkeit? Bevorzugter Brotaufstrich Wohnort Margarine Butter ländlich 12,7% 24,9% 37,6% städtisch 45,9% 16,5% 62,4% 58,6% 41,4% 100% Tabelle 5 Gibt es einen Zusammenhang zwischen den Variablen Wohnort und Brotaufstrich?
10 Unabhängigkeit Bevorzugter Brotaufstrich Wohnort Margarine Butter ländlich 37,6% städtisch 62,4% 58,6% 41,4% 100% Tabelle 5 Angenommen, es besteht kein Zusammenhang zwischen Brotaufstrich und Wohnort, dann müssten sich diese Verhältnisse in jeder Zeile bzw. Spalte widerspiegeln.
11 erwartete Werte Werte bei unterstellter Unabhängigkeit Über die Randhäufigkeiten lassen sich die erwarteten Werte errechnen. Erwarteter Wert = Zeilensumme Spaltensumme Gesamtsumme
12 beobachtete / erwartete Werte Bevorzugter Brotaufstrich Wohnort Margarine Butter ländlich 23 / / städtisch 83 / / Tabelle 6
13 a) Chi - Quadrat χ 2 χ 2 = i,j (n ij - ñ ij ) 2 ñ ij Maß für den Unterschied zwischen beobachteten und erwarteten Werten χ 2 = 0, Variablen X und Y sind unabhängig
14 b) χ 2 - Unabhängigkeitstest Aufstellen der Hypothesen: H 0 : Wohnort und Brotaufstrich sind unabhängig. H A : Brotaufstrich ist abhängig vom Wohnort Irrtumswahrscheinlichkeit festlegen: Signifikanzniveau: α = 0,05 Berechnung
15 b) χ 2 -Unabhängigkeitstest χ 2 = (23 40) (45 28) (83 66) (30 47) ,47 χ 2 0, d.h. eine Abhängigkeit ist zu vermuten
16 b) χ 2 -Unabhängigkeitstest χ 2 0, d.h. eine Abhängigkeit ist zu vermuten Vergleichswert bei Signifkanzniveau α = 0,05 ist 3,84 (Bestimmung über χ 2 - Tabelle) χ 2 = 27,47 > 3,84, d.h. H 0 ist mit einer Irrtumswahrscheinlichkeit von 5% abzulehnen
17 b) χ 2 -Unabhängigkeitstest χ 2 = (23 40) (45 28) (83 66) (30 47) ,47 χ 2 = (46 79,6) 2 79,6 + (90 56,4) 2 56,4 + ( ,4) 2 132,4 + (60 93,6) 2 93,6 54,78 χ 2 0, d.h. eine Abhängigkeit ist zu vermuten, Stärke und Richtung des Zusammenhangs sind nicht erkennbar
18 Yates-Korrektur und exakter Ungenauigkeit des Fisher-Test χ 2 -Unabhängigkeitstest bei kleinen Stichprobenumfängen Yates-Korrektur bei Stichprobenumfang von Exakter Fisher-Test bei n < 20
19 c) Zusammenhangsmaße für Prozentsatzdifferenz nominale Daten Phi Kontingenzkoeffizient C Cramer s V χ 2 -basierte Maßzahlen Odds Ratio Relative Risiken Spezielle Maßzahlen
20 Prozentsatzdifferenz Einfachste Art, die Stärke von Zusammenhängen zwischen Merkmalen zu messen Differenzen der relativen Häufigkeiten werden gebildet Bsp: Der Unterschied zwischen Butterkäufern auf dem Land (60%) und Butterkäufern in der Stadt (40%) beträgt 20%.
21 Phi ϕ= Beruht auf χ 2 Je größer ϕ, desto stärker der Zusammenhang Nimmt Werte zwischen 0 und 1 an Orientierung: ϕ > 0,3 mehr als triviale Abhängigkeit χ 2 N
22 Nachteile des ϕ-koeffizienten Unterschiedliche ϕ-koeffizienten lassen sich nicht vergleichen Transformation des Skalenniveaus haben Auswirkung auf ϕ Ist nur für Vier-Feldertafel geeignet (sonst ϕ > 1)
23 Kontingenzkoeffizient C Sinnvoll, bei mehreren Ausprägungen Modifikation von ϕ C = χ 2 χ 2 + N Nimmt Werte zwischen 0 und 1 an Erreicht nur selten 1
24 Kontingenzkoeffizient C Obergrenze ist abhängig von der Anzahl der Merkmalsausprägungen C = 0,362 C max = C max = 0,707 R -1 R R = min[i,j]
25 Cramer s V Anwendbar für alle i j - Kreuztabellen Identisch mit ϕ, falls Variablen binär V= χ 2 N (min[i,j] - 1) Nimmt Werte zwischen 0 und 1 an
26 Odds Ratio und Risk Krankheit Ja Nein Summe Placebo Medikament Summe
27 Odds Ratio Odds - Chancen Verhältnis der Wahrscheinlichkeit, dass ein Ereignis eintritt zu der, dass es nicht eintritt Odds Ratio - relative Chancen Maß für das Chancenverhältnis zwischen zwei Gruppen Odds der Gruppen werden ins Verhältnis zueinander gesetzt Nur für Vier-Feldertabellen geeignet
28 Odds Odds = p / (1-p) Chance, dass Placebogruppe Krankheit bekommt: O PK = 52 / 255 = 0,204 = 1 : 5 Chance, dass Medikamentengruppe Krankheit bekommt: O MK = 21 / 294 = 0,071 = 1 : 14
29 Odds Ratio Odds Ratio zwischen den Gruppen Placebo und Medikament Chancenverhältnis der Gruppen, die Krankheit zu bekommen OR = O PK O MK OR = 0,204 0,071 2,9 D.h.: Chancen der Placebogruppe die Krankheit zu bekommen ist 2,9 mal höher als die der Medikamentengruppe
30 Risk Risiko ist die Wahrscheinlichkeit für ein unerwünschtes Ereignis z.b.: Krankheit in der Placebogruppe bekommen: p = 52 / 307 = 0,169 Relatives Risiko Maß für das Risikoverhältnis zwischen zwei Gruppen Risiken der Gruppen werden ins Verhältnis zueinander gesetzt
31 Risiko Krankheit: Placebogruppe: 52 / 307 = 0,169 Medikamentengruppe 21 / 315 = 0,067 Relatives Risiko Verhältnis Placebogruppe zu Medikamentengruppe 0,169 / 0,067 2,5 D.h.: Risiko der Placebogruppe, Krankheit zu bekommen ist 2,5 mal höher als das der Medikamentengruppe.
32 3. Zusammenfassung Zu untersuchende Variablen auswählen Konstruktion der Kreuztabelle Signifikanztest zur Überprüfung einer Abhängigkeit Auswahl eines geeigneten Zusammenhangsmaßes Messniveau beachten
33 4. Quellen Backhaus, K.; Erichson, B.; Plinke, W.; Weiber, R. (1996): Multivariate Analysemethoden. Eine anwendungsorientierte Einführung. Berlin u.a.: Springer Bamberg, G.; Baur, F. (2001): Statistik. 11. Auflage. München: Oldenbourg Diekmann, A. (2003): Empirische Sozialforschung. Grundlagen, Methoden, Anwendungen. Hamburg: Rowohlt Janssen, J.; Laatz, W. (2005): Statistische Datenanalyse mit SPSS für Windows. 5., neu bearbeitet und erweiterte Auflage. Berlin u.a.: Springer Spiegel, M.R. (1990): Statistik. 2., überarb. und erw. Auflage. London u.a.: McGraw-Hill
Bivariater Zusammenhang in der Vierfeldertafel PEΣO
Bivariater Zusammenhang in der Vierfeldertafel PEΣO 12. Oktober 2001 Zusammenhang zweier Variablen und bivariate Häufigkeitsverteilung Die Bivariate Häufigkeitsverteilung gibt Auskunft darüber, wie zwei
Einführung in die sozialwissenschaftliche Statistik
Einführung in die sozialwissenschaftliche Statistik Sitzung 4 Bivariate Deskription Heinz Leitgöb in Vertretung von Katrin Auspurg Sommersemester 2015 04.05.2015 Überblick 1. Kontingenztabellen 2. Assoziationsmaße
1 x 1 y 1 2 x 2 y 2 3 x 3 y 3... n x n y n
3.2. Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare von Merkmalsausprägungen (x, y) Beispiele:
Bivariate Verteilungen
Bivariate Verteilungen Tabellarische Darstellung: Bivariate Tabellen entstehen durch Kreuztabulation zweier Variablen. Beispiel: X Y Student(in) Herkunft Fakultät 0001 Europa Jura 000 Nicht-Europa Medizin
erwartete Häufigkeit n=80 davon 50% Frauen fe=40 davon 50% Männer fe=40 Abweichung der beobachteten von den erwarteten Häufigkeiten:
Verfahren zur Analyse von Nominaldaten Chi-Quadrat-Tests Vier-Felder Kontingenztafel Mehrfach gestufte Merkmale Cramers V, Kontingenzkoeffizient, Phi-Koeffizient Muster aller Chi-Quadrat-Verfahren eine
Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt.
Bivariate Analyse: Tabellarische Darstellung: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Beispiel: Häufigkeitsverteilung
Alternative Darstellung des 2-Stcihprobentests für Anteile
Alternative Darstellung des -Stcihprobentests für Anteile DCF CF Total n 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Bei Gültigkeit der Nullhypothese Beobachtete Response No Response Total absolut
11. Zusammenhangsmaße für nominale Variablen
Statistik I Übung 11. Zusammenhangsmaße für nominale Variablen Dozent: Jürgen Leibold 1 Evaluation Nominale Zusammenhangsmaße Übersicht Chi-Quadrat Phi Cramers V Nominale Zusammenhangsmaße 3 Randverteilung
Skalenniveaus =,!=, >, <, +, -
ZUSAMMENHANGSMAßE Skalenniveaus Nominalskala Ordinalskala Intervallskala Verhältnisskala =,!= =,!=, >, < =,!=, >, ,
Bivariate Kreuztabellen
Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ
Grundlagen der empirischen Sozialforschung
Grundlagen der empirischen Sozialforschung Sitzung 11 - Datenanalyseverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 5. Januar 2009 1 / 22 Online-Materialien Die Materialien
Kreuztabellenanalyse und Assoziationsmaße. Assoziationsmaße. Allgemeines Beispiel Graphiken Notation. Risiken. Drittvariablenkontrolle.
FB 1 W. Ludwig-Mayerhofer Zusammenhänge zwischen Merkmalen 1 Kreuztabellenanalyse und FB 1 W. Ludwig-Mayerhofer Zusammenhänge zwischen Merkmalen 2 Kreuztabellen eignen sich zur Darstellung und Analyse
Was sind Zusammenhangsmaße?
Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten
Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen
Kapitel 5 Wichtige Maßzahlen für den Zusammenhang zwischen Merkmalen 5.1 Darstellung der Verteilung zweidimensionaler Merkmale 5.2 Maßzahlen für den Zusammenhang zweier nominaler Merkmale 5.3 Maßzahlen
Zusammenhangsanalyse in Kontingenztabellen
Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel
Chi Quadrat-Unabhängigkeitstest
Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland
Quantitative Auswertung II. Korpuslinguistik Heike Zinsmeister
Quantitative Auswertung II Korpuslinguistik Heike Zinsmeister 16.12.2011 Unterschiedstest Fall 1: unabhängige Stichproben Daten eine unabhängige Variable auf Nominal- oder Kategorialniveau eine abhängige
Einführung in SPSS. Sitzung 4: Bivariate Zusammenhänge. Knut Wenzig. 27. Januar 2005
Sitzung 4: Bivariate Zusammenhänge 27. Januar 2005 Inhalt der letzten Sitzung Übung: ein Index Umgang mit missing values Berechnung eines Indexes Inhalt der letzten Sitzung Übung: ein Index Umgang mit
Statistik I. Sommersemester 2009
I Sommersemester 2009 I Wiederholung/Einführung χ 2 =?!? I Wiederholung/Einführung χ 2 =?!? Nächste Woche: Maße für ordinale, nominal/intervallskalierte und intervallskalierte Daten I Zum Nachlesen Agresti/Finlay:
Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1
LÖSUNG 4B a.) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit "Deskriptive Statistiken", "Kreuztabellen " wird die Dialogbox "Kreuztabellen" geöffnet. POL wird in das Eingabefeld von
Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit
Kapitel 17 Unabhängigkeit und Homogenität 17.1 Unabhängigkeit Im Rahmen der Wahrscheinlichkeitsrechnung ist das Konzept der Unabhängigkeit von zentraler Bedeutung. Die Ereignisse A und B sind genau dann
Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest
Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation
Kreuztabellenanalyse. bedingte Häufigkeiten
Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Kreuztabellenanalyse bedingte Häufigkeiten 07. Dezember 2007 Michael Tiemann, Bundesinstitut für Berufsbildung,
2-Stichprobentest für Anteilswerte
-Stichprobentest für Anteilswerte Wir analysieren den Anteilswert (Prozentsatz) für ein interessierendes Ereignis in zwei verschiedenen Grundgesamtheiten (π, π ) Ziel: Auf der Basis von Stichprobenerhebungen
Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt 6 Gerhard Tutz, Jan Ulbricht WS 05/06.
Statistik I für Statistiker, Mathematiker und Informatiker Lösungen zu Blatt Gerhard Tutz, Jan Ulbricht WS 05/0 Lösung Aufgabe 4 Notation: X: Rauchen, Y : chronische Bronchitis S X {ja, nein} {a 1, a },
Alternative Darstellung des 2-Stichprobentests für Anteile
Alternative Darstellung des -Stichprobentests für Anteile DCF CF Total n= 111 11 3 Response 43 6 69 Resp. Rate 0,387 0,3 0,309 Bei Gültigkeit der Nullhypothese Beobachtete Response No Response Total absolut
THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ
W THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ HERZLICH WILLKOMMEN BEI W Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Training Dr. Torsten Scholz
Tutorial:Unabhängigkeitstest
Tutorial:Unabhängigkeitstest Mit Daten aus einer Befragung zur Einstellung gegenüber der wissenschaftlich-technischen Entwicklungen untersucht eine Soziologin den Zusammenhang zwischen der Einstellung
Grundkurs Statistik für Politologen und Soziologen
Grundkurs Statistik für Politologen und Soziologen Bearbeitet von Uwe W Gehring, Cornelia Weins 5., überarbeitete Auflage 2010. Buch. 345 S. Softcover ISBN 978 3 531 16269 0 Format (B x L): 14,8 x 21 cm
5.3 (Empirische) Unabhängigkeit und χ 2
5.3 (Empirische) Unabhängigkeit und χ 2 5.3.1 (Empirische) Unabhängigkeit Durch den Vergleich der bedingten Häufigkeiten mit den Randhäufigkeiten kann man Zusammenhänge beurteilen Illustration an einem
Einführung in die Statistik
Elmar Klemm Einführung in die Statistik Für die Sozialwissenschaften Westdeutscher Verlag INHALTSVERZEICHNIS 1. Einleitung und Begrifflichkeiten 11 1.1 Grundgesamtheit, Stichprobe 12 1.2 Untersuchungseinheit,
Gibt es einen Zusammenhang zwischen Merkmalen? Korrelationen
Arbeitsblatt SPSS Kapitel 8 Seite Gibt es einen Zusammenhang zwischen Merkmalen? Korrelationen Wie in allen Kapiteln gehen wir im Folgenden davon aus, dass Sie die Datei elporiginal.sav geöffnet haben.
Der χ 2 -Test (Chiquadrat-Test)
Der χ 2 -Test (Chiquadrat-Test) Der Grundgedanke Mit den χ 2 -Methoden kann überprüft werden, ob sich die empirischen (im Experiment beobachteten) Häufigkeiten einer nominalen Variable systematisch von
Wichtige statistische Koeffizienten und Formeln
Wichtige statistische Koeffizienten und Formeln Felix Baumann Skalenniveau Art des Koeffizienten Koeffizient Formel (ab) ominalskala: (Unterscheidung nach Gleichheit/Ungleichheit; jeder Ausprägung eine
Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg
für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2016 Prof. Dr. Stefan Etschberger Hochschule Augsburg Einstichproben-t-Test und approximativer Gaußtest
Der χ2-test Der χ2-test
Der χ 2 -Test Überblick Beim χ 2 -Test handelt es sich um eine Familie ähnlicher Tests, die bei nominal- oder ordinalskalierten Merkmalen mit zwei oder mehr Ausprägungen angewendet werden können. Wir behandeln
Institut für Soziologie Werner Fröhlich. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest
Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Was sind Kontingenztabellen? Wofür werden Kontingenztabellen verwendet? Aufbau und Interpretation
Hypothesentests mit SPSS
Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht
Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen
- nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige
Der χ 2 -Test. Überblick. Beispiel 1 (χ 2 -Anpassungstest)
Der χ 2 -Test Überblick Beim χ 2 -Test handelt es sich um eine Familie ähnlicher Tests, die bei nominal- oder ordinalskalierten Merkmalen mit zwei oder mehr Ausprägungen angewendet werden können. Wir behandeln
Statistisches Testen
Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall
2-Stichprobentest für Anteilswerte
-Stichprobentest für Anteilswerte Wir betrachten den Anteilswert (Prozentsatz) für ein interessierendes Ereignis in zwei verschiedenen Grundgesamtheiten (π 1, π ) Ziel: Auf der Basis von Stichprobenerhebungen
Hypothesentests. Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht.
Hypothese Behauptung eines Sachverhalts, dessen Überprüfung noch aussteht. Wissenschaftliche Vorgehensweise beim Hypothesentest Forscher formuliert eine Alternativhypothese H 1 (die neue Erkenntnis, die
Statistik I. 1. Klausur Wintersemester 2010/2011 Hamburg, Art der Anmeldung: STiNE FlexNow Zulassung unter Vorbehalt
Statistik I 1. Klausur Wintersemester 2010/2011 Hamburg, 11.02.2011 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN! Nachname:............................................................................ Vorname:.............................................................................
Zwei kategoriale Merkmale. Homogenität Unabhängigkeit
121 Zwei kategoriale Merkmale Homogenität Unabhängigkeit 122 Beispiel Gründe für die Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährige Schulkinder in Michigan, USA Grund für Beliebtheit weiblich
Institut für Soziologie Sabine Düval. Methoden 2. Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest
Institut für Soziologie Methoden 2 Kontingenztabellen Chi-Quadrat-Unabhängigkeitstest Aufbau der Sitzung Wiederholung Exkurs zur Inferenzstatistik Was sind Kontingenztabellen? Recodieren, Kategorisieren
Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS
Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick Kreuztabellen 1. Ziel der Kreuztabellierung 2. Übersicht CROSSTABS - Syntax
Statistik II: Signifikanztests /1
Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test
entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.
Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen
Klassifikation von Signifikanztests
Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen
Chi-Quadrat Verfahren
Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz
Arbeitsbuch zur deskriptiven und induktiven Statistik
Helge Toutenburg Michael Schomaker Malte Wißmann Christian Heumann Arbeitsbuch zur deskriptiven und induktiven Statistik Zweite, aktualisierte und erweiterte Auflage 4ü Springer Inhaltsverzeichnis 1. Grundlagen
5.5 PRE-Maße (Fehlerreduktionsmaße) 6
359 5.5 PRE-Maße (Fehlerreduktionsmaße) 6 5.5.1 Die grundlegende Konstruktion Völlig andere, sehr allgemeine Grundidee zur Beschreibung von Zusammenhängen. Grundlegendes Prinzip vieler statistischer Konzepte.
Statistische Methoden in den Umweltwissenschaften
Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau
2-Stichprobentest für Anteilswerte
-Stichrobentest für Anteilswerte Wir betrachten den Anteilswert (Prozentsatz) für ein interessierendes Ereignis in zwei verschiedenen Grundgesamtheiten (π, π ) Ziel: Auf der Basis von Stichrobenerhebungen
Bivariater Zusammenhang in der Mehrfeldertafel PEΣO
Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen
Vl Zweidimensionale Verteilungen Zusammenhangsmaße 3.1. Zwei dimensionale Häufigkeitstabellen. Absolute Häufigkeitstabelle
Vl. 5.12.11 3. Zweidimensionale Verteilungen Zusammenhangsmaße 3.1. Zwei dimensionale Häufigkeitstabellen schnell mittel langsam 3 Arten von Häufigkeitstabellen: Absolute Häufigkeitstabelle relative Häufigkeitstabelle
Test auf den Erwartungswert
Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen
Wahrscheinlichkeitsrechnung und Statistik. 11. Vorlesung /2019
Wahrscheinlichkeitsrechnung und Statistik 11. Vorlesung - 2018/2019 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 2 heißt Median. P(X < z
Analyse von Querschnittsdaten. Arten von Variablen und Strategien der Datenanalyse
Analyse von Querschnittsdaten Arten von Variablen und Strategien der Datenanalyse Gliederung 1. Arten von Variablen 2. Analyse einzelner Variablen (univariate Verteilungen) 3. Analyse der Zusammenhänge
Bivariate Statistik: Kreuztabelle
Bivariate Statistik: Kreuztabelle Beispiel 1: Im ALLBUS wurde u.a. nach dem Nationalstolz und nach dem Gefühl der Überfremdung gefragt: Würden Sie sagen, dass Sie sehr stolz, ziemlich stolz, nicht sehr
Dr. Matthias Rudolf: M3 Multivariate Statistik Vorlesung LogRA. Folie Nr. 1
2.1 Beispiele 2.2 Odds Ratio 2.3 Modell der logistischen Regression 2.3.1 Modellgleichung 2.3.2 Voraussetzungen 2.4 Schätzungen, Tests und Modellgüte 2.4.1 Schätzung der logistischen Regressionskoeffizienten
5.3 (Empirische) Unabhängigkeit und χ 2
5.3 (Empirische) Unabhängigkeit und χ 2 5.3 (Empirische) Unabhängigkeit und χ 2 5.3.1 (Empirische) Unabhängigkeit Durch den Vergleich der bedingten Häufigkeiten mit den Randhäufigkeiten kann man Zusammenhänge
fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik
fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse
Übungsblatt 3: Bivariate Deskription I (Sitzung 4)
1 Übungsblatt 3: Bivariate Deskription I (Sitzung 4) Aufgabe 1 Eine Kreuztabelle beinhaltet unterschiedliche Verteilungen. a) Geben Sie an, wie diese Verteilungen heißen und was sie beinhalten. b) Welche
Assoziation & Korrelation
Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den
Musterlösung zur Aufgabensammlung Statistik I Teil 3
Musterlösung zur Aufgabensammlung Statistik I Teil 3 2008, Malte Wissmann 1 Zusammenhang zwischen zwei Merkmalen Nominale, Ordinale Merkmale und Mischungen Aufgabe 12 a) x\ y 1.Klasse 2.Klasse 3.Klasse
Assoziation & Korrelation
Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es systematische Zusammenhänge oder Abhängigkeiten
Lösungen zum Aufgabenblatt 2: Bivariate Kreuztabellen mit nominalem Messniveau
Lösungen zum Aufgabenblatt 2 1 Lösungen zum Aufgabenblatt 2: Bivariate Kreuztabellen mit nominalem Messniveau Nach dem Laden des Datensatzes (G:\DATEN\METH2\DATEN\EUROBAR\ Euba30.sav) ist zunächst der
W-Rechnung und Statistik für Ingenieure Übung 5
W-Rechnung und Statistik für Ingenieure Übung 5 Grafische/ tabellarische Darstellung für bivariate Daten diskrete Merkmale (qualitativ+ quantitativ diskret) stetige Merkmale (quantitativ stetig) Zusammenhangsmaße
Vorlesung: Statistik II für Wirtschaftswissenschaft
Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2
Parametrische vs. Non-Parametrische Testverfahren
Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer
5 Assoziationsmessung in Kontingenztafeln
5 Assoziationsmessung in Kontingenztafeln 51 Multivariate Merkmale 51 Multivariate Merkmale Gerade in der Soziologie ist die Analyse eindimensionaler Merkmale nur der allererste Schritt zur Beschreibung
Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler
Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung
6. Multivariate Verfahren Übersicht
6. Multivariate Verfahren 6. Multivariate Verfahren Übersicht 6.1 Korrelation und Unabhängigkeit 6.2 Lineare Regression 6.3 Nichtlineare Regression 6.4 Nichtparametrische Regression 6.5 Logistische Regression
Chi² Test und Kontingenzkoeffizient. - aber keine natürliche Reihenfolge
Chi² Test und Kontingenzoeffizient Für nominalsalierte Daten: - diese haben unterschiedliche Ausprägung, - aber eine natürliche Reihenfolge 1. Chi² Test Test nominalsalierter Daten Vergleich von beobachteten
Statistische Überlegungen: Eine kleine Einführung in das 1 x 1
Statistische Überlegungen: Eine kleine Einführung in das 1 x 1 PD Dr. Thomas Friedl Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Ulm München, 23.11.2012 Inhaltsübersicht Allgemeine
Analyse von Kontingenztafeln bei ordinalskalierten Merkmalen
Analyse von Kontingenztafeln bei ordinalskalierten Merkmalen Weisen die in einer Kontingenztafel dargestellten Merkmale zusätzlich Ordinalskalenniveau auf, so kommen auch Kenngrößen zum Einsatz, die in
Aufgaben zu Kapitel 9
Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte
Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung)
Kreuztabellen und Häufigkeitstabellen Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) kategoriale Variablen Beispiel: Wenn Frau (Ursache) dann Angst
Kreuztabellen und Häufigkeitstabellen. Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung)
Kreuztabellen und Häufigkeitstabellen Kreuztabellen: - unabhängige Variable in Zeilen (Ursache) - abhängige Variable in Spalten (Wirkung) kategoriale Variablen Beispiel: Wenn Frau (Ursache) dann Angst
Statistik I für Betriebswirte Vorlesung 10
Statistik I für Betriebswirte Vorlesung 10 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. Juni 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 10 Version: 13.
Forschungsmethoden in der Sozialen Arbeit
Forschungsmethoden in der Sozialen Arbeit Fachhochschule für Sozialarbeit und Sozialpädagogik Alice- Salomon Hochschule für Soziale arbeit, Gesundheit, Erziehung und Bildung University of Applied Sciences
Deskription, Statistische Testverfahren und Regression. Seminar: Planung und Auswertung klinischer und experimenteller Studien
Deskription, Statistische Testverfahren und Regression Seminar: Planung und Auswertung klinischer und experimenteller Studien Deskriptive Statistik Deskriptive Statistik: beschreibende Statistik, empirische
