Bivariate Statistik: Kreuztabelle
|
|
|
- Anke Holtzer
- vor 9 Jahren
- Abrufe
Transkript
1 Bivariate Statistik: Kreuztabelle Beispiel 1: Im ALLBUS wurde u.a. nach dem Nationalstolz und nach dem Gefühl der Überfremdung gefragt: Würden Sie sagen, dass Sie sehr stolz, ziemlich stolz, nicht sehr stolz oder überhaupt nicht stolz darauf sind, ein(e) Deutsche(r) zu sein? Durch die vielen Ausländer in Deutschland fühlt man sich zunehmend als fremder im eigenen Land. a) Univariate Verteilungen v Gültig Fehlend 1 SEHR STOLZ ZIEMLICH STOLZ NICHT SEHR STOLZ GAR NICHT STOLZ TNZ: NICHT DEUTSCH 9 KEINE ANGABE Gültige Kumulierte Häufigkeit Prozent Prozente Prozente 7 19,,, 17,9 1, 7,1 1,, 9,7 19,7, 1, 7 9,9 1,,7 117, 1,1 1 1, v FREMDER IM EIGENEN LAND DURCH AUSLAENDER Gültig Fehlend 1 STIMME GAR NICHT ZU 7 STIMME VOELLIG ZU TNZ: NICHT DEUTSCH 99 KEINE ANGABE Gültige Kumulierte Häufigkeit Prozent Prozente Prozente 7, 7, 7, 7 1,9 1,, 1, 11,1,7 1 1, 1,1, 9,7 1, 77,, 9,1, 1,7 1,7 1, 17 9,7 1,,7 1, 9 7, 1 1, 1
2 Frage: Gibt es zwischen den beiden Variablen einen Zusammenhang? Sind vielleicht diejenigen besonders stolz, die sich auch besonders wohl und eben nicht als Fremde im eigenen Land fühlen? Oder fühlen sich die besonders Deutsch-Stolzen vielleicht auch besonders heftig durch die vielen Ausländer gestört? Oder hat das eine möglicherweise mit dem anderen überhaupt nichts zu tun? b) Bivariate Verteilung: Häufigkeiten FREMDER IM EIGENEN LAND DURCH AUSLAENDER * v Kreuztabe Anzahl v FREMDER IM EIGENEN LAND DURCH AUSLAENDER 1 STIMME GAR NICHT ZU 7 STIMME VOELLIG ZU v 1 SEHR ZIEMLICH NICHT GAR NICHT STOLZ STOLZ SEHR STOLZ STOLZ Zusatzfrage : Wenn es einen Zusammenhang gibt... könnte man dann eine der beiden Variablen als Ursache (= unabhängige Variable ) und die andere als Wirkung (= abhängige Variable ) ansehen? oder beeinflussen sich die beiden Variablen möglicherweise gegenseitig (= Wechselwirkung )? oder hängen die beiden Variablen vielleicht von einer dritten ab (= Scheinkontingenz )? Bisweilen hängt die Antwort auf diese Frage auch vom Blickwinkel der Forscherin ab. Wir nehmen im vorliegenden Fall einmal an, die Forscherin interessiere sich für die Nebenwirkungen des deutschen Nationalstolzes. In diesem wäre der Nationalstolz die unabhängige und die Überfremdungsangst die abhängige Variable.
3 Konsequenzen der Antwort auf die Zusatzfrage : Um die Wirkung der unabhängigen Variable auf die abhängige Variable zu analysieren, teilt man die Stichprobe anhand der unabhängigen Variable in Gruppen auf und untersucht in jeder dieser Gruppen die Verteilung der abhängigen Variable. Im Beispiel: Schätzen die sehr stolzen Deutschen die Überfremdungsgefahr anders ein als die ziemlich stolzen, die nicht sehr stolzen und die überhaupt nicht stolzen Deutschen? Um diese Frage zu beantworten, berechnet man für jede (durch die unabhängige Variable bestimmte) Gruppe die prozentuale Verteilung der abhängigen Variable. c) Bivariate Verteilung: Gruppenvergleich Um diese Frage zu beantworten, berechnet man für jede (durch die unabhängige Variable bestimmte) Gruppe die prozentuale Verteilung der abhängigen Variable. FREMDER IM EIGENEN LAND DURCH AUSLAENDER * v Kreuztabe % von v v 1 SEHR STOLZ ZIEMLICH STOLZ NICHT SEHR STOLZ GAR NICHT STOLZ v FREMDER 1 STIMME GAR NICHT ZU,%,% 9,%,% 7,% IM EIGENEN,9% 1,% 1,% 1,% 1,% LAND DURCH 9,% 1,% 1,% 1,% 11,% AUSLAENDER 11,7% 1,9% 11,% 1,% 1,% 9,% 1,% 9,%,% 1,7% 11,%,9% 9,%,% 9,% 7 STIMME VOELLIG ZU,% 11,% 11,% 1,% 1,% 1,% 1,% 1,% 1,% 1,% Dann untersucht man, ob einzelne Ausprägungen der unabhängigen Variable in bestimmten Gruppen besonders oft und in anderen besonders selten vorkommen. Im Beispiel: Völlig frei von Überfremdungsängsten ( stimme gar nicht zu ) sind von den sehr stolzen Deutschen,%, von den ziemlich stolzen,%, von den nicht sehr stolzen 9,% und von den gar nicht stolzen,%. Umgekehrt finden sich besonders große Überfremdungsängste ( stimme völlig zu ) vor allem unter den sehr stolzen Deutschen (,%) und weit seltener in den anderen Gruppen. Die folgende Grafik veranschaulicht die einzelnen Zeilen der Tabelle in Form von Balkengraphiken.
4 d) Bivariate Verteilung: graphische Veranschaulichung V=1 1 V= V= 1 V= 1 1 1
5 1 V= 1 1 V= 1 V=7 1 1
6 Übung: Interpretation einer Kreuztabelle v FREMDER IM EIGENEN LAND DURCH AUSLAENDER * v79kl PROZENTUALER AUSLAENDERANTEIL IN KLASSEN v79kl PROZENTUALER AUSLAENDERANTEIL v FREMDER IM EIGENEN LAND DURCH AUSLAENDER 1 STIMME GAR NICHT ZU 7 STIMME VOELLIG ZU 1 BIS UNTER % % BIS UN- TER 1% 1% BIS UNTER % Anzahl Zeilen% 9,%,%,% 1,% Spalten% 7,7% 7,% 7,% 7,% Anzahl Zeilen% 1,9%,%,% 1,% Spalten% 1,1% 1,7% 1,% 1,% Anzahl Zeilen%,9%,%,9% 1,% Spalten% 1,% 1,1% 1,% 11,1% Anzahl Zeilen%,1% 9,%,% 1,% Spalten% 1,% 1,1% 1,% 1,1% Anzahl 11 1 Zeilen%,% 9,%,% 1,% Spalten% 9,% 11,% 11,% 1,% Anzahl Zeilen% 7,%,%,% 1,% Spalten%,7% 1,1%,% 9,1% Anzahl Zeilen% 9,%,%,% 1,% Spalten% 1,% 1,% 1,% 1,7% Anzahl Zeilen%,9%,%,% 1,% Spalten% 1,% 1,% 1,% 1,%
7 Interpretation einer Kreuztabelle oder: Antworten auf die Frage Ist das ein großer Unterschied? a) Noch einmal und vereinfacht: Kreuztabelle vkl Nationalstolz in Klassen * vkl Fremd im eigenen Land ( Klassen) Kreuztabelle Anzahl vkl Nationalstolz in Klassen 1 sehr/ziemlich stolz nicht sehr/gar nicht stolz vkl Fremd im eigenen Land ( Klassen) 1 Nein (1-) Ja (-7) vkl Nationalstolz in Klassen * vkl Fremd im eigenen Land ( Klassen) Kreuztabelle % von vkl Nationalstolz in Klassen vkl Nationalstolz in Klassen 1 sehr/ziemlich stolz nicht sehr/gar nicht stolz vkl Fremd im eigenen Land ( Klassen) 1 Nein (1-) Ja (-7),%,77% 1,% 7,7% 7,9% 1,%,%,% 1,% b) Graphische Darstellung der Antwort "Ja" 1 sehr/ziemlich stolz nicht sehr/gar nicht stolz Nationalstolz in Klassen 7
8 c) Signifikanztest 1. Überlegung: Wie müsste die Tabelle aussehen, wenn sich die Stolzen und die Nicht- Stolzen in ihrer Überfremdungsangst nicht unterscheiden würden? Zeilenprozente Überfremdungsangst 1 Nein Ja Stolz 1 sehr/ziemlich,%,% 1,% nicht sehr /nicht,%,% 1,%,%,% 1,% Anzahl ( Erwartete Häufigkeiten [E]) Überfremdungsangst 1 Nein Ja Stolz 1 sehr/ziemlich 1, 71,7, nicht sehr /nicht,7 7, 7, 1, 1, 1,. Überlegung: Wie groß ist der Unterschied zwischen dieser erwarteten Verteilung und der beobachteten Verteilung? Differenzen: Beobachtete Häufigkeiten [F] Erwartete Häufigkeiten [E] Überfremdungsangst 1 Nein Ja Stolz 1 sehr/ziemlich 7, 7,, nicht sehr /nicht 7, 7,,,,,
9 Quadrierte Differenzen: (F E) Überfremdungsangst Dr. Bardo Heger / Dr. Renate Prust 1 Nein Ja Stolz 1 sehr/ziemlich 7, 7, 7, nicht sehr /nicht 7, 7, 7, 7, 7, 99, Gewichtete quadrierte Differenzen: (F E) / E Überfremdungsangst 1 Nein Ja Stolz 1 sehr/ziemlich 1,1,9,9 nicht sehr /nicht,, 1,1,9 11, 1,1 (F E) χ = Σ E = 1,1 9
Was sind Zusammenhangsmaße?
Was sind Zusammenhangsmaße? Zusammenhangsmaße beschreiben einen Zusammenhang zwischen zwei Variablen Beispiele für Zusammenhänge: Arbeiter wählen häufiger die SPD als andere Gruppen Hochgebildete vertreten
Bivariate Zusammenhänge
Bivariate Zusammenhänge Tabellenanalyse: Kreuztabellierung und Kontingenzanalyse Philosophische Fakultät Institut für Soziologie Berufsverläufe und Berufserfolg von Hochschulabsolventen Dozent: Mike Kühne
Einfache statistische Auswertungen mit dem Programm SPSS
Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...
Chi-Quadrat Verfahren
Chi-Quadrat Verfahren Chi-Quadrat Verfahren werden bei nominalskalierten Daten verwendet. Die einzige Information, die wir bei Nominalskalenniveau zur Verfügung haben, sind Häufigkeiten. Die Quintessenz
3. Deskriptive Statistik
3. Deskriptive Statistik Eindimensionale (univariate) Daten: Pro Objekt wird ein Merkmal durch Messung / Befragung/ Beobachtung erhoben. Resultat ist jeweils ein Wert (Merkmalsausprägung) x i : - Gewicht
Überblick über multivariate Verfahren in der Statistik/Datenanalyse
Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)
Bivariate Kreuztabellen
Bivariate Kreuztabellen Kühnel, Krebs 2001 S. 307-342 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/33 Häufigkeit in Zelle y 1 x 1 Kreuztabellen Randverteilung x 1... x j... x J Σ
B. Heger / R. Prust: Quantitative Methoden der empirischen Sozialforschung (Master Modul 1.3)
B. Heger / R. Prust: Quantitative Methoden der empirischen Sozialforschung (Master Modul 1.3) Übung 1 (mit SPSS-Ausgabe) 1. Erstellen Sie eine einfache Häufigkeitsauszählung der Variable V175 ( des/der
Zwei kategoriale Merkmale. Homogenität Unabhängigkeit
121 Zwei kategoriale Merkmale Homogenität Unabhängigkeit 122 Beispiel Gründe für die Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährige Schulkinder in Michigan, USA Grund für Beliebtheit weiblich
Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren
Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei
Bivariate Analyse: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt.
Bivariate Analyse: Tabellarische Darstellung: Gemeinsame (bivariate) Häufigkeitstabelle. Sie wird auch Kontingenz-, Assoziations- oder Korrelationstabelle (f b )genannt. Beispiel: Häufigkeitsverteilung
Aufbau des Experiments Reihung von Versuchsitems und Distraktoren
Reihung von Versuchsitems und Distraktoren Reihung von Versuchsitems und Distraktoren Hinweis D1 (Verhältnis Distraktoren:Versuchsitems): Es sollten Distraktoren eingebaut werden, im Falle von Sprecherbefragungen
Analytische Statistik II
Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,
Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten
Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 4.1 4. Statistische Entscheidungsverfahren Entscheidung zwischen zwei Möglichkeiten auf der Basis unsicherer (zufälliger) Daten Beispiel:
Inhaltsverzeichnis. Vorwort
V Vorwort XI 1 Zum Gebrauch dieses Buches 1 1.1 Einführung 1 1.2 Der Text in den Kapiteln 1 1.3 Was Sie bei auftretenden Problemen tun sollten 2 1.4 Wichtig zu wissen 3 1.5 Zahlenbeispiele im Text 3 1.6
Datenanalyse mit Excel. Wintersemester 2013/14
Datenanalyse mit Excel 1 KORRELATIONRECHNUNG 2 Korrelationsrechnung Ziel der Korrelationsrechnung besteht im bivariaten Fall darin, die Stärke des Zusammenhangs zwischen zwei interessierenden statistischen
Lage- und Streuungsparameter
Lage- und Streuungsparameter Beziehen sich auf die Verteilung der Ausprägungen von intervall- und ratio-skalierten Variablen Versuchen, diese Verteilung durch Zahlen zu beschreiben, statt sie graphisch
Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08
Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung
3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten)
3. ZWEI KATEGORIALE MERKMALE (bivariate kategoriale Daten) Beispiel: Gründe für Beliebtheit bei Klassenkameraden 478 neun- bis zwölfjährigen Schulkinder in Michigan, USA warum ist man bei seinen Klassenkameraden
Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen
- nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige
Willkommen zur Vorlesung Statistik (Master)
Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften
Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de
rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent
Bivariater Zusammenhang in der Mehrfeldertafel PEΣO
Bivariater Zusammenhang in der Mehrfeldertafel PEΣO 9. November 2001 Bivariate Häufigkeitsverteilungen in Mehrfeldertabellen In der Mehrfeldertabelle werden im Gegensatz zur Vierfeldertabelle keine dichotomen
Aufgaben zu Kapitel 9
Aufgaben zu Kapitel 9 Aufgabe 1 Für diese Aufgabe benötigen Sie den Datensatz Nominaldaten.sav. a) Sie arbeiten für eine Marktforschungsfirma und sollen überprüfen, ob die in diesem Datensatz untersuchte
Anwendung A_0801_Quantile_Minimum_Maximum
8. Lageparameter 63 8.3 Interaktive EXCEL-Anwendungen (CD-ROM) Anwendung A_080_Quantile_Minimum_Maimum Die Anwendung besteht aus einem Tabellenblatt Simulation : In der Simulation wird aus einer Urliste
S tandardabweichung : σ= n p 1 p = 200 0,24 0,76 6,04
R. Brinkmann http://brinkmann-du.de Seite 1 14.10.2007 Wahrscheinlichkeiten von Umgebungen Bei einer Binomialverteilung ist der Erwartungswert der mit der größten Wahrscheinlichkeit. In der Umgebung des
Kategoriale Daten. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/17
Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/17 Übersicht Besitzen die Daten, die statistisch ausgewertet werden sollen, kategoriales Skalenniveau, unterscheidet man die folgenden Szenarien:
Statistik II: Signifikanztests /1
Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 [email protected] Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test
Statistik II. Statistische Tests. Statistik II
Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen
Zusammenfassung Ergebnisse des Fragebogens Gesundheitskommunikation
Institut für Umweltentscheidungen (IED) Consumer Behavior Zusammenfassung Ergebnisse des Fragebogens Gesundheitskommunikation Zuerst einmal nochmals vielen Dank, dass Sie unseren Fragebogen ausgefüllt
Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil?
AKULTÄT ANGEWANDTE SOZIALWISSENSCHATEN PRO. DR. SONJA HAUG Projekt Kaffeemaschine Welche aktoren beeinflussen das Geschmacksurteil? Ausgehend von der Verkostung an der Hochschule Regensburg und der dabei
Statistik eindimensionaler Größen
Statistik eindimensionaler Größen Michael Spielmann Inhaltsverzeichnis 1 Aufgabe der eindimensionalen Statistik 2 2 Grundbegriffe 2 3 Aufbereiten der Stichprobe 3 4 Die Kennzahlen Mittelwert und Streuung,
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert
Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir
Auswertung mit dem Statistikprogramm SPSS: 30.11.05
Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit
Angewandte Statistik 3. Semester
Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen
B. Heger / R. Prust: Quantitative Methoden der empirischen Sozialforschung (Master Modul 1.3) GET FILE ='Z:\ALLBUS_2007_neu.sav'.
B. Heger / R. Prust: Quantitative Methoden der empirischen Sozialforschung (Master Modul 1.3) Übung 1 (mit SPSS-Ausgabe) 1. Öffnen Sie den Datensatz ALLBUS_2007_neu! GET FILE ='Z:\ALLBUS_2007_neu.sav'.
Grundlagen der Statistik
Grundlagen der Statistik Übung 2 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe
Nicht-parametrische Statistik Eine kleine Einführung
Nicht-parametrische Statistik Eine kleine Einführung Überblick Anwendung nicht-parametrischer Statistik Behandelte Tests Mann-Whitney U Test Kolmogorov-Smirnov Test Wilcoxon Test Binomialtest Chi-squared
Zusammenhangsanalyse in Kontingenztabellen
Zusammenhangsanalyse in Kontingenztabellen Bisher: Tabellarische / graphische Präsentation Jetzt: Maßzahlen für Stärke des Zusammenhangs zwischen X und Y. Chancen und relative Chancen Zunächst 2 2 - Kontingenztafel
Bivariate Verteilungen. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09
Bivariate Verteilungen Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2008/09 Wiederholung Konfidenzintervalle Abschätzung wie gut eine Stichprobe die Grundgesamtheit repräsentiert
Regression ein kleiner Rückblick. Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate
Regression ein kleiner Rückblick Methodenseminar Dozent: Uwe Altmann Alexandra Kuhn, Melanie Spate 05.11.2009 Gliederung 1. Stochastische Abhängigkeit 2. Definition Zufallsvariable 3. Kennwerte 3.1 für
Anpassungstests VORGEHENSWEISE
Anpassungstests Anpassungstests prüfen, wie sehr sich ein bestimmter Datensatz einer erwarteten Verteilung anpasst bzw. von dieser abweicht. Nach der Erläuterung der Funktionsweise sind je ein Beispiel
Chi Quadrat-Unabhängigkeitstest
Fragestellung 1: Untersuchung mit Hilfe des Chi-Quadrat-Unabhängigkeitstestes, ob zwischen dem Herkunftsland der Befragten und der Bewertung des Kontaktes zu den Nachbarn aus einem Anderen Herkunftsland
Korrespondenzanalyse
Seite 1 von 5 Korrespondenzanalyse Ziel der Korrespondenzanalyse... 1 Anforderungen an die Daten (Stärke des Verfahrens)... 1 Einordnung in die multivariaten Verfahren... 1 Normierung der Daten... 1 Festlegung
1.5 Berechnung von Rangzahlen
1.5 Berechnung von Rangzahlen Bei vielen nichtparametrischen Verfahren spielen die so genannten Rangzahlen eine wesentliche Rolle, denn über diese werden hier die Prüfgrößen berechnet. Dies steht im Gegensatz
Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend
Standardisierte Vorgehensweisen und Regeln zur Gewährleistung von: Eindeutigkeit Schlussfolgerungen aus empirischen Befunden sind nur dann zwingend oder eindeutig, wenn keine alternativen Interpretationsmöglichkeiten
Assoziation & Korrelation
Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den
Kapitel 5: Einfaktorielle Varianzanalyse
Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse
b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!
Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies
Test auf den Erwartungswert
Test auf den Erwartungswert Wir interessieren uns für den Erwartungswert µ einer metrischen Zufallsgröße. Beispiele: Alter, Einkommen, Körpergröße, Scorewert... Wir können einseitige oder zweiseitige Hypothesen
Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es
Beispiel für Anwendung: z-tabelle kann genutzt werden, um z.b. Poissonverteilung näherungsweise zu integrieren. Beispiel: wie wahrscheinlich ist es beim radioaktiven Zerfall, zwischen 100 und 110 Zerfälle
1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung?
86 8. Lageparameter Leitfragen 1) Warum ist die Lage einer Verteilung für das Ergebnis einer statistischen Analyse von Bedeutung? 2) Was ist der Unterschied zwischen Parametern der Lage und der Streuung?
Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht
Ergebnisse der empirischen Studie zum Thema Second Screen im Unterricht Befragungszeitraum: Marz 2016 bis Mai 2016 27.06.2016 Hon.-Prof. Dr. Christian Kreidl / Prof. Dr. Ulrich Dittler Inhaltsübersicht
Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS
Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag
Sozialwissenschaftliche Datenanalyse mit R
Katharina Manderscheid Sozialwissenschaftliche Datenanalyse mit R Eine Einführung F' 4-1 V : 'i rl ö LiSl VS VERLAG Inhaltsverzeichnis Vorwort 5 Danksagung 7 Inhaltsverzeichnis 9 R für sozialwissenschaftliche
1. Maße der zentralen Tendenz Beispiel: Variable Anzahl der Geschwister aus Jugend '92. Valid Cum Value Frequency Percent Percent Percent
Deskriptive Statistik 1. Verteilungsformen symmetrisch/asymmetrisch unimodal(eingipflig) / bimodal (zweigipflig schmalgipflig / breitgipflig linkssteil / rechtssteil U-förmig / abfallend Statistische Kennwerte
MATHEMATIK 3 STUNDEN
EUROPÄISCHES ABITUR 01 MATHEMATIK 3 STUNDEN DATUM : 11. Juni 01, Vormittag DAUER DER PRÜFUNG : Stunden (10 Minuten) ZUGELASSENE HILFSMITTEL : Prüfung mit technologischem Hilfsmittel 1/5 DE AUFGABE B1 ANALYSIS
STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG
STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem
Assoziation & Korrelation
Statistik 1 für SoziologInnen Assoziation & Korrelation Univ.Prof. Dr. Marcus Hudec Einleitung Bei Beobachtung von 2 Merkmalen stellt sich die Frage, ob es Zusammenhänge oder Abhängigkeiten zwischen den
Übungen mit dem Applet Vergleich von zwei Mittelwerten
Vergleich von zwei Mittelwerten 1 Übungen mit dem Applet Vergleich von zwei Mittelwerten 1 Statistischer Hintergrund... 2 1.1 Typische Fragestellungen...2 1.2 Fehler 1. und 2. Art...2 1.3 Kurzbeschreibung
Kapitel 16 Kreuztabellen
Kapitel 16 Kreuztabellen Eine Kreuztabelle dient dazu, die kombinierte Häufigkeitsverteilung zweier Variablen darzustellen. Sie bildet somit das Pendant zu einer Häufigkeitstabelle für den 2-Variablen-Fall.
Brückenkurs Statistik für Wirtschaftswissenschaften
Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München
Einführung in SPSS. 1. Die Datei Seegräser
Einführung in SPSS 1. Die Datei Seegräser An 25 verschiedenen Probestellen wurde jeweils die Anzahl der Seegräser pro m 2 gezählt und das Vorhandensein von Seeigeln vermerkt. 2. Programmaufbau Die wichtigsten
1 Verteilungen und ihre Darstellung
GKC Statistische Grundlagen für die Korpuslinguistik Kapitel 2: Univariate Deskription von Daten 8.11.2004 Univariate (= eindimensionale) Daten bestehen aus Beobachtungen eines einzelnen Merkmals. 1 Verteilungen
Ein- und Zweistichprobentests
(c) Projekt Neue Statistik 2003 - Lernmodul: Ein- Zweistichprobentests Ein- Zweistichprobentests Worum geht es in diesem Modul? Wiederholung: allgemeines Ablaufschema eines Tests Allgemeine Voraussetzungen
Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche
Lehrveranstaltung Empirische Forschung und Politikberatung der Universität Bonn, WS 2007/2008 Häufigkeitsauszählungen, zentrale statistische Kennwerte und Mittelwertvergleiche 30. November 2007 Michael
Eine zweidimensionale Stichprobe
Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,
Bivariate Analyseverfahren
Bivariate Analyseverfahren Bivariate Verfahren beschäftigen sich mit dem Zusammenhang zwischen zwei Variablen Beispiel: Konservatismus/Alter Zusammenhangsmaße beschreiben die Stärke eines Zusammenhangs
VS PLUS
VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen - Inferenzstatistik 1 [Übungsaufgaben und Lösungenn - Inferenzstatistik 1] ÜBUNGSAUFGABEN
Modul G.1 WS 07/08: Statistik
Modul G.1 WS 07/08: Statistik 10.01.2008 1 2 Test Anwendungen Der 2 Test ist eine Klasse von Verfahren für Nominaldaten, wobei die Verteilung der beobachteten Häufigkeiten auf zwei mehrfach gestufte Variablen
Methodik für Linguisten
Claudia Methodik für Linguisten Eine Einführung in Statistik und Versuchsplanung narr VERLAG 1 Reisevorbereitungen und Wegweiser 2 Linguistik als empirische Wissenschaft 15 2.1 Karl Popper und der Falsifikationismus
1.4 Der Binomialtest. Die Hypothesen: H 0 : p p 0 gegen. gegen H 1 : p p 0. gegen H 1 : p > p 0
1.4 Der Binomialtest Mit dem Binomialtest kann eine Hypothese bezüglich der Wahrscheinlichkeit für das Auftreten einer Kategorie einer dichotomen (es kommen nur zwei Ausprägungen vor, z.b. 0 und 1) Zufallsvariablen
Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO
Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung
1.8 Kolmogorov-Smirnov-Test auf Normalverteilung
1.8 Kolmogorov-Smirnov-Test auf Normalverteilung Der Kolmogorov-Smirnov-Test ist einer der klassischen Tests zum Überprüfen von Verteilungsvoraussetzungen. Der Test vergleicht die Abweichungen der empirischen
9.3 Lineare Regression
9.3 Lineare Regression 115 A B C D E F G H 1 2 Pearsonscher Korrelationskoeffizient 3 4 5 6 x-werte y-werte ANALYSE ASSISTENT 7 2,4-4 8 3,2-1 9 8,3 6,4 Spalte 1 Spalte 2 10 6,4 6 Spalte 1 1 11 7,2 6,3
Mathematik für Biologen
Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 19. Januar 2011 1 Nichtparametrische Tests Ordinalskalierte Daten 2 Test für ein Merkmal mit nur zwei Ausprägungen
Kapitel 1: Deskriptive Statistik
Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.
Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.
Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite
Drittvariablenkontrolle in der linearen Regression: Trivariate Regression
Drittvariablenkontrolle in der linearen Regression: Trivariate Regression 14. Januar 2002 In der Tabellenanalyse wird bei der Drittvariablenkontrolle für jede Ausprägung der Kontrollvariablen eine Partialtabelle
Auswertung der am häufigsten genannten zehn ersten Berufswünsche 1. Berufswünsche der Ausbildungsplatzsuchenden
Altbewerberinnen und Altbewerber in Bremen, Teil 2 Auswertung der am häufigsten genannten zehn 1 Stand vom 25.11.2010, Herbert Rüb Inhalt der Ausbildungsplatzsuchenden... 1 Die zehn am häufigsten genannten
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66
Univariate Häufigkeitsverteilungen Kühnel, Krebs 2001: Statistik für die Sozialwissenschaften, S.41-66 Gabriele Doblhammer: Empirische Sozialforschung Teil II, SS 2004 1/19 Skalenniveaus Skalenniveau Relation
Gemeinsame Wahrscheinlichkeitsverteilungen
Gemeinsame Wahrscheinlichkeitsverteilungen Worum geht es in diesem Modul? Gemeinsame Wahrscheinlichkeits-Funktion zweier Zufallsvariablen Randverteilungen Bedingte Verteilungen Unabhängigkeit von Zufallsvariablen
THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ
W THEMA: ZUSAMMENHANGSANALYSEN FÜR KATEGORIALE VARIABLEN " TORSTEN SCHOLZ HERZLICH WILLKOMMEN BEI W Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education Consultant Training Dr. Torsten Scholz
Gesundheitskompetenz in der Schweiz:
Swiss Public Health Conference 2008 in der Schweiz: Eine Querschnittstudie zur Ausprägung und Verteilung in der deutsch- und französischsprachigen Schweiz Kathrin Sommerhalder, Berner Fachhochschule Thomas
1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18
3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen
Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS
Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von
Übung Statistik I Statistik mit Stata SS Datentransformationen II und Datenmanagement
Übung Statistik I Statistik mit Stata SS07-07.05.2007 4. Datentransformationen II und Datenmanagement Andrea Kummerer (M.A.) Oec R. I-53 Sprechstunde: Di. 15-16 Uhr [email protected]
VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler
VU Testtheorie und Testkonstruktion WS 08/09; Lengenfelder, Fritz, Moser, Kogler Hausübung In der Übung Übungsblatt 06 1. Gegeben: Skala zur Messung der Gesundheitssorge mit 20 Items (dichotomes Antwortformat).
Probeklausur Statistik Lösungshinweise
Probeklausur Statistik Lösungshinweise Prüfungsdatum: Juni 015 Prüfer: Studiengang: IM und BW Aufgabe 1 18 Punkte 0 Studenten werden gefragt, wie viele Stunden sie durchschnittlich pro Tag ihr Smartphone
Bivariate lineare Regression. Statistik für SozialwissenschaftlerInnen II p.154
Bivariate lineare Regression Statistik für SozialwissenschaftlerInnen II p.154 Grundidee und Typen der Regression Die Regressionsanalyse dient zur Quantifizierung des Zusammenhangs und der statistisch
Statistische Tests zu ausgewählten Problemen
Einführung in die statistische Testtheorie Statistische Tests zu ausgewählten Problemen Teil 4: Nichtparametrische Tests Statistische Testtheorie IV Einführung Beschränkung auf nichtparametrische Testverfahren
